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We show that dynamic quantum phase transitions (DQPT) in many situations involve renormal-
ization group (RG) fixed points that are unphysical in the context of thermal phase transitions.
In such cases, boundary conditions are shown to become relevant to the extent of even completely
suppressing the bulk transitions. We establish these by performing an exact RG analysis of the
quantum Ising model on scale-invariant lattices of different dimensions, and by analyzing the zeros
of the Loschmidt amplitude. Further corroboration of boundaries affecting the bulk transition comes
from the three-state quantum Potts chain, for which we also show that the DQPT corresponds to a
pair of period-2 fixed points.

Dynamical quantum phase transitions (DQPT), a re-
cent discovery of phase transitions, often periodic, in
large quantum systems during time evolution [1–3], have
generated a lot of interest because here time itself acts
as the parameter inducing the transitions. Also, to be at
a transition point, only time needs to be chosen properly
without any requirement of fine-tuning of system param-
eters, unlike thermal transitions [4]. The signature of
DQPT is the nonanalytic behaviour of various quantities
in time around critical times tc’s. These transitions have
now been shown in many models, like the transverse-field
Ising model (TFIM), spin chains, quantum Potts models,
the Kitaev model, and many others[1, 2, 6–10], and also
observed experimentally[11, 12]. In spite of being a zero-
temperature quantum phenomenon, DQPT is not deter-
mined by the quantum phase transitions of the system
but rather seems related to the classical thermal crit-
icalities of an associated system[10]. However, despite
the use of many techniques so far, very few exact re-
sults are known on the scaling and universality in DQPT
[10]. Moreover, the natures of the possible phases and
the transitions remain to be properly classified, e. g.,
whether only equilibrium phases and transitions would
suffice or there can be specialities of its own[10].
A general approach for phase transitions is the renor-

malization group (RG) framework [5] in terms of length-
dependent effective parameters and their flows to the
fixed points (FP), with the stable FPs determining the
allowed phases, and the unstable ones (or separatrices)
the phase transitions. In this Letter, we adopt an exact
RG scheme for TFIM and the three-state quantum Potts
chain (3QPC). Our exact results establish that there are
DQPTs involving FPs that are unphysical in traditional
thermal transitions. Second, we show that, for those un-
physical FPs, boundary conditions (BC) are relevant and
can even lead to a suppression of the transitions com-
pletely, unlike thermal cases where BCs do not affect the
bulk transitions. Another surprising result is the emer-
gence of a pair of period-2 FPs, never seen in the thermal
context, that controls the DQPT in 3QPC, in contrast
to the zero-temperature FP [2] for the Ising DQPT case.
In short, our exact results bring out several distinctive

features of DQPT, not to be found in equilibrium tran-
sitions.
If a quantum system, with Hamiltonian H, is prepared

in a noneigenstate |ψ0〉 and suddenly allowed to evolve,
then the probability for the system to be in state |ψ0〉
after time t is given by P (t) = |L(t)|2 ∼ e−Nλ(t), where

L(t) = 〈ψ0|e
−itH |ψ0〉 ∼ e−Nf(t), (~ = 1), (1)

is the Loschmidt amplitude with f(t) and λ(t) = 2Ref(t)
as the large-deviation rate functions[13] for a large system
of N(→ ∞) degrees of freedom. Often, λ(t) and f(t)
show phase-transition-like nonanalyticities at time t = tc.
These phase transitions in time are the DQPTs[8, 10].
TFIM is defined on a lattice as HI = H +HΓ, where

H = −J
∑

〈jk〉

σz
j σ

z
k, HΓ = −Γ

∑

j

σx
j , (J,Γ > 0), (2)

σα
j being the Pauli matrices (α = x, y, z) at lattice site
j, and 〈jk〉 denoting nearest neighbours[14]. The inter-
action favours an aligned state in the z direction [15],
and HΓ is the transverse field term that aligns the spins
in the x direction. We may add a boundary term given
by HB = −h(σz

1 + σz
N ), where the boundary field h acts

only on the first and the Nth spins. Two special cases
are h = 0 and h → ∞ corresponding to open BC and
fixed BC (both up in the z-direction) respectively. For
periodic BC in one dimension, HB = −Jσz

1 σ
z
N .

The TFIM is prepared in a product state |ψ0〉 [16] with
all spins aligned in the x direction, e.g., by Γ → ∞. At
time t = 0, we set Γ = 0. So, the magnet evolves with
H of Eq. (2) and any boundary term mentioned above.
This is the particular sudden quench we use in this Letter.
By expressing |ψ0〉 in terms of the eigenstates of H, the
Loschmidt amplitude and the rate function per bond can
be expressed as [10, 15],

L(y) = 2−N
∑

C

y−EC/2J , f(y) = −N−1
B lnL(y), (3)

respectively, where y = e2zJ , NB is the number of bonds,
and, for generality, z is taken as a complex number. L(y)
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is an analytic continuation of the partition function of the
traditional nearest neighbour Ising model[17] defined for
1 ≤ y < ∞ on the real positive axis (z = β being the
inverse temperature). The quantum time evolution in
Eq. (1) is given by the unit circle |y| = 1 (y = ei2Jt) in
the complex y plane. A phase transition—defined as the
point of nonanalyticity of f—is expected along the unit
circle if there are zeros or limit points of zeros of L(y) on
the path[17]. An isolated zero on the circle, in contrast,
just indicates orthogonality of the evolved and the initial
states. The S1 (circle) topology guarantees (via winding
numbers) that, if there are zeros on the circle, there will
be periodic transitions in time.

In one-dimensional TFIM and 3QPC, similar DQPT
occurs, viz., linear kinks in f(t), despite the absence of
any thermal transitions[1, 7]. For the two-dimensional
TFIM, DQPT was found to be the same as the two di-
mensional Ising critical point[2]. However, the generality
of these results has not yet been established. In this con-
text, we focus on a class of exactly solvable models that
would help us in alienating the specialities of DQPT.

We choose scale-invariant lattices for which the real
space renormalization group (RSRG) can be imple-
mented exactly. The lattices are constructed hierarchi-
cally by replacing a bond iteratively by a diamondlike
motif of b branches[18, 20] as shown in Fig. 1. Such lat-
tices appear naturally in approximate RSRG for usual
lattices. Three cases are considered here, (i) b = 1 corre-
sponding to a one-dimensional lattice, (ii) b = 2 which is
two dimensional but not a Bravais lattice, and (iii) b = 3
as a fractal-type lattice.

b=1 b=2 b=3

(i) (ii) (iii)

FIG. 1. Construction of hierarchical lattices. The sites are
represented by squares. Replace each bond by a motif of b
branches. (i) b = 1, (ii) b = 2 (diamondlike motif), and (iii)
b = 3. Three generations are shown for b = 2.

The hierarchical structure of the lattice allows us to
calculate L(y) via a real space renormalization group ap-
proach, by decimating spins on individual motifs[18, 19].
Let us define Zn = 2NLn and fn = (2b)−n lnZn for the
nth generation. Note that fn(y) is related to f(y) of Eq.
(3) by f = fn(1)−fn(y). Zn, and fn satisfy the following
recursion relations (see Supplemental Material [21])

Zn(y) = ζ(y1)Zn−1(y1), ζ(x) = 2bx1/2, (4a)

fn(y) = (2b)−1fn−1(y1) + (2b)−1g(y1), (4b)

with g(x) = ln ζ(x), and the RG flow equation

y1 = 2−b(y + y−1)b. (4c)

The boundary conditions (BC) are encoded in Z1 as,

Z1 =

{

2(y1/2 + y−1/2), (Open BC)
y1/2, (Fixed BC)(↑↑),

(4d)

with f1 = lnZ1.
Equation (4c) has FPs at y = 1 (infinite-temperature

FP, paramagnetic phase), y = ∞ (zero-temperature FP,
ordered phase), and a b-dependent unstable FP at y = yc
(for b > 1) representing the critical point. For any
odd b > 1, there are additional “unphysical” FPs at
y = −1,−yc (±∞ to be identified). There is no yc for
b = 1, as there is no thermal phase transition for the
one-dimensional Ising model. The zeros of Ln(y) can be
determined from those of Ln−1 via Eqs.(4a) and (4c),
starting from the BC-dependent roots of L1(y) = 0. In
the n → ∞ limit, the zeros then belong to the set of
points that do not flow to infinity, thereby constituting
the Julia set of the transformation[19]. These sets, ob-
tained by MATHEMATICA, are shown for b = 1, 2, and 3 in
Figs. 2 and 3.

Open BC

Re y

Im y

−1

(i) b=1

A2

periodic/fixed  BC

Re y

+1

A1

Im y

−1

i

−i

(ii)

A 1

A 4

A 3

A 4

AA

A

23

4
❉❊

❉❊

❄

c

Im y
−planey

y Re y

] 8

Flows of Arcs

] 1
A 3
A 1

A 2

1 A 2A

1

(iii)
b=2

2A

K 2
K 1

K 2

A 2A 1
K 1
A 1

A 2

❄

A

K
2

❉

❉

❄

c

❊

❊

11K

1
−1

] 8+
−

y −plane
Im y

y

Flows of Arcs

1−y
c

−1 yRe

(iv)
b=3

FIG. 2. Zeros of L(y) in the complex-y plane, and RG flows.
The red circle is the unit circle (UC) for time evolution. For
b = 1, (i) only one zero at y = −1 for open BC, while (ii) the
zeros populate the imaginary axis for periodic or fixed BC.
(iii) For b = 2, the zeros meet the UC at four points, Ap, p =
1, 2, 3, 4. Under RG, UC flows to the positive real axis, taking
each Ap to yc = 3.38298.... (iv) For b = 3, the four meeting
points are of two types; A1, A2 flow to yc = 2.05817..., while
K1, K2 to −yc < 0. See Fig. 3

The y, y−1 symmetry in Eq. (4c) ensures that if y∗ is
a FP, then 1/y∗ flows to y∗. Therefore, there are four
special points on the unit circle which flow to the non-
trivial FPs, and are, necessarily, members of the Julia set.
These four points on the unit circle in Figs. 2(iii), 2(iv),
and Fig. 3 are the four critical points in time for b > 1.
Incidentally, Eq. (4c) also ensures that any point on the
unit circle, y = eiθ, under iteration, first flows to the
real axis to cos θ and then remains real afterwards. Con-
sequently, complex RG fixed points for b > 1 are not
important.
DQPT has been studied for b = 1 under periodic

BC[1]. The surprising result we find here is that, unlike
the thermal case, boundary conditions may even suppress
the bulk transition. The transfer matrix solution of the
1D Ising model describes the partition function by the
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i) ii)

iii)

FIG. 3. Zeros of L(y) as Julia sets in the complex-y plane for
(i) b = 2, and (ii) b = 3. See Fig. 2. The zeros pinch UC at
four points. (iii) For b = 3, zoomed view of the region near
A1 of Fig. 2(iv)

two eigenvalues Λ± = y1/2 ± y−1/2, with the larger one
determining the N → ∞ behaviour[17]. For y flowing to
y∗ = +1 (y∗ = −1), the larger eigenvalue in magnitude
is Λ+ (Λ−), so that, with y = eiθ, the rate functions for
the two regions (f± ∼ ln Λ±/2) are (see Supplemental
material [21])

f+(y) = −
1

2
ln cos2

θ

2
, and f−(y) = −

1

2
ln sin2

θ

2
, (5)

respectively. As characteristics of the high-temperature
phases, f± should be independent of dimensions, remain-
ing valid for all b. Open BC yields only one zero at
y = −1 [Fig. 2(i)], and therefore no DQPT. On the other
hand, periodic and fixed BC give zeros on the imaginary-
y axis [Fig. 2(ii)]. Two zeros y = ±i on the unit circle,
demarcating the RG flows of the points on the unit circle
to y = ±1, are the known transition points[1, 2]. The
transitions are from a paramagnetic (described by FP at
y = 1, and f+) to another paramagnetic phase, which we
call para′, described by FP y = −1, and rate function
f−]. [Fig. 4(i)].
Now consider an open chain with the boundary term

HB = −h(σz
1 + σz

N ). For a finite chain, there will be
contributions from both the FPs y = ±1, so that for an
N -site chain (see Supplemental Meterial [21])

L(t, h) = (cos Jt)N−1 cos2 ht+ (i sin Jt)N−1 sin2 ht. (6)

DQPT with f±(t) is recovered in the N → ∞ limit only
if h 6= 0. See Fig. 4(i). For an open chain, L(t) ≡
L(t, h = 0) = (cos Jt)N−1. Hence, there is no transi-
tion [Fig. 4(ii)], consistent with one single zero [Fig. 2(i)].
There are four sectors of possible configurations of the
two boundary spins, viz., (±,±). Each of these four sec-
tors individually shows DQPT. However, for the zero-
field open chain, requiring superposition of the four sec-
tors, there is a perfect cancellation of the y = −1 con-
tributions. Thus, only f+ survives [Fig. 4(ii)]. When the
subtle cancellation of the four sectors is disturbed by the
small boundary fields, the transitions appear, as shown

in Fig. 4(i). We see that boundary conditions (like open-
chain) become relevant only at the unphysical fixed point.
For any odd b > 1, there are four critical points on the

unit circle, Figs. 2, and 3. These are A1, θA = 2Jτ1 =
arccos yc

−1/b, and A2, 2Jτ2 = 2π − θA on the right half-
plane, flowing to yc > 0, and K1, 2Jκ1 = π − θA =
arccos(−yc)

−1/b, and K2, 2Jκ2 = π + θA, on the left
half-plane, flowing to the unphysical FP at −yc < 0, via
y = −1/yc. These transition points (lπ±θA, for any inte-
ger l) are determined exactly. In this particular case, the
nature of the singularity happens to be the same for all,
as for the thermal case [a diverging third derivative of f ,
Fig. 4(iii)]. The flows of the four arcs of the unit circle
are shown in Fig. 2(vi). K1K2, being characterized by
FP y = −1, is expected to be sensitive to any constraint
on the boundary spins. For, say, fixed boundary spins, a
sequence of phases occurs in time, para-ferro-para′-ferro-
para, separated by the four critical points. The two para
phases with FP y = ±1 have ferromagnetic phases in be-
tween. However, in the unbiased case, the algebraic sum
of the contributions of the four boundary sectors may
lead to cancellation as in the b = 1 case. A signature
of the cancellation in the K1K2 region is the failure of
Eq. (4b) for f as y → −1 on renormalization. This sta-
bility problem is also seen in the one-dimensional case,
Fig. 4(i) vis-à-vis Fig. 4(ii) [the recursion relation, Eq.
(4b), fails for π/2 < 2Jt < 3π/2]. We, therefore, conjec-
ture that for the open BC case (free boundary spins)
there is no intermediate para′ phase, but instead the
whole arc A1K1K2A2 represents the ferro phase—a ma-
jor boundary effect on bulk DQPT.
For even b, there are again four points on the unit

circle [Figs. 2(iii) and 3(i)], Ai, (i = 1, 4), which have
identical angular relations as the four points for odd b,
except that here all flow to yc in two steps via y = 1/yc.
All points in arcs A1A4 and A2A3 flow to ∞ implying an
ordered state, while the remaining two arcs, A1A2 and
A3A4, flow to 1, the disordered phase. Therefore, there is
an oscillation between ordered (broken-symmetry) phase
and the standard disordered phase with critical points at
four different times. The nonanalytic features at the four
critical times are the same as for the temperature-driven
critical point at yc. In essence, DQPT here follows closely
the thermal transition.
To show the generality of the boundary effect, let us

consider the three state Potts chain of N sites (3QPC)
involving 3× 3 matrices [7]. The interaction term is

H = −J
∑

j

(Ω†
jΩj+1 +H.c.), (7)

where Ω = diag(1, ei2π/3, ei4π/3). Analogous to the trans-
verse field of Eq. (2), the spin flipping term for Potts spin
is HΓ = −Γ

∑

j Tj , where the elements of the 3 × 3 ma-

trix T are given by Tαβ = 1− δαβ , (α, β = 1, 2, 3). Γ can
be used to prepare the chain in a product state of equal-
amplitude superpositions of the three states of each spin.
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y1 = R(y) ≡ (y2 + 2)/(2y + 1), (8)

whose fixed points are yp = 1, yu = −2 (“unphysi-
cal”), and y = ±∞. The DQPT involves the tran-
sition between the two stable phases described by yp
and yu, (analogous to Fig. 2(iv)), with the critical times
at the points of intersection of the unit circle and the
line of zeros of L(y) = 0. These intersectioons are A1,
yA1 = ei2π/3, and A2, yA2 = ei4π/3, which flow into each
other under the RG transformation. In other words, A1,i
and A2 are period-2 FPs of RG, i.e., the fixed points of
R(2) = R(R(y)). By linearizing R(2) around A1 or A2,
the thermal eigenvalue is found to be 1, which leads to a
kink in Re f at the transition points [7]. The emergence
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I. ON HIERARCHICAL LATICES

For a hierarchical lattice (diamond type) of b branches,
the dimension[S1] is given by

d =
ln 2b

ln 2
, (S1)

so that d = 1, 2 for b = 1, 2, while d = ln 6/ ln 2 = 2.58...
for b = 3. For the nth generation, the number of bonds
is Bn = (2b)n and the number of sites is

Nn = bBn−1 +Nn−1 = 2 + b
(2b)n − 1

2b− 1
. (S2)

In the n→ ∞ limit, Nn

Bn
→ b

2b−1 .

II. PARTITION FUNCTION

The partition function of the traditional nearest neigh-
bour Ising model is given by[S2]

Z =
∑

C∈2N states

e−βEC , (S3)

with

EC = −J
∑

〈jk〉

sjsk,

as the energy of configuration C. Here, sj = ±1, β =
1/kBT , T being the temperature and kB the Boltzmann
constant. The free energy is given by −kBT lnZ.
We take y = e2βJ as the variable because 2J is the

energy gap for a single bond.

A
A

B B

b=3

n=1 n=0

FIG. S1. Decimation of a motif of b branches by summing
over the internal spins (green disks), keeping the spins at A
and B fixed.

The existence of the thermodynamic limit (N → ∞)
for the Ising model ensures the large deviation form
L = exp(−Nf(y)), with f as the analog of the free
energy extended to the complex plane.

RG RELATIONS FOR THE ISING MODEL

We derive the RG relations for the Ising model on a
hierarchical lattice of b branches. The decimation of a
motif to a bond is shown in Fig. S1

Denoting the partition function of a bond of two spins
s1, s2 = ±1 by Zs1s2(y), the summation over the internal
spins (green disks) yields the relation between the par-
tition function Z1 of the larger cell (generation n = 1)
as a function of y and the partition function of a bond
(n = 0) as a function of the renormalized parameter y1.
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Explicitly,

Z1|++ ≡ [(Z++(y))Z++(y) + Z+−(y)Z−+(y)]
b

= ζ(y1) Z++(y1), (S4a)

Z1|+− ≡ [Z+−(y)Z−−(y) + Z++(y)Z+−(y)]
b

= ζ(y1) Z+−(y1), (S4b)

exploiting the fact that the b branches are independent.
Only two relations are sufficient, thanks to the symmetry
that Z++(y) = Z−−(y), and Z+−(y) = Z−+(y). Noting
that Z++(y) = y1/2, and Z+−(y) = y−1/2, one gets

y1 = 2−b(y + y−1)b, (S5a)

ζ(y) = 2by1/2. (S5b)

III. DERIVATION OF f± AND ZEROS OF THE

ONE-DIMENSIONAL ISING CHAIN

The two high temperature fixed points of Eq. S5a,
y∗ = ±1 characterize the two possible phases of the one
dimensional Ising model. The Ising partition function
can be determined by a transfer matrix approach [S2].

If T is the 2 × 2 transfer matrix, then the partition
functions for a chain of N sites under different BCs are
given by

ZN =











Tr TN , (periodic BC),
∑

j, k=1, 2 [TN−1]jk, (free BC),

(ezh e−zh)TN−1
(

ezh

e−zh

)

, (with boundary fields),

(S6)
For periodic BC

ZN = ΛN
+ + ΛN

− , (S7)

where Λ± = y1/2 ± y−1/2 are the two eigenvalues of T.
Eq. 6 of the text follows from Eq. (S6)

For large N , and y = eiθ

ZN =

{

ΛN
+ , for θ near 0, |Λ+| > |Λ−|

ΛN
− , for θ near π, |Λ−| > |Λ+|

(S8)

The rate functions

f±(θ) ≡ −Re lim
N→∞

ln(ZN/2
N ) = −Re ln(Λ±/2),

are then given by

f+ = −
1

2
ln cos2

θ

2
, and f− = −

1

2
ln sin2

θ

2
, (S9)

as quoted in Eq. (5) of the text.
Zeros of the one-dimensional Ising chain

The partition function for an N -site Ising chain with
periodic boundary condition is given in Eq. (S7). The
zeros of LN (y) = ZN/2

N are then given by

y = i cot
(2n+ 1)π

N
, n = −N, ..., N − 1,

which lie along the imaginary axis. This is shown in Fig
2(b) in the text.
For open BC, the partition function is given by ZN =

ΛN
+ . There is therefore only one zero at Λ = 0. Therefore,

LN (y) has only one zero at y = −1, as shown in Fig 2(a)
in the text.

V. ZEROS OF THE ONE-DIMENSIONAL POTTS

CHAIN

For the Potts model y = exp(3βJ). The partition func-
tions for the Potts chain are given by

ZN =

{

ΛN
1 + 2ΛN

2 , (periodic BC),
ΛN
1 , (Open BC),

(S10)

where Λ1 ∝ (y + 2), and Λ2 ∝ (y − 1) are the two eigen
values of the transfer matrix given in Ref. [S4]. The
zeros for the periodic BC case are given by Λ1/Λ2 =
ei(2n+1)π/N , so that

y = −
1

2
+ i

3

2
cot

π(2n+ 1)

N
, (PBC). (S11)

For an open chain (free BC), it follows from Eq. (S10)
that there is only one zero at Λ1 = 0, i.e., at y = −2.

V. ON Ln AND fn

Under the decimation transformation of Fig. S1 and
Eq. (S4a), the partition function for generation n with
parameter y, Zn(y), can be related to that of the (n−1)th
generation with parameter y1. The recursion relations for
Zn, and fn = (2b)−n lnZn can be written as[S3]

Zn(y) = ζ(y1)Zn−1(y1), (S12)

and fn(y) =
1

2b
fn−1(y1) +

1

2b
g(y1), (S13)

where g(x) = ln ζ(x) = 2−1 ln(4bx), and y1 is given by
Eq. (S5a). Note that fn is defined without the normaliza-
tion factor 2N (Eq. (4a) in text). With successive trans-
formation y → y1 → ... → yn following the RG flow
equation, the Loschmidt amplitude is given by a rapidly
convergent sum for large n as

fn+1(y) =

n
∑

j=1

1

(2b)j
g(yj) +

1

(2b)n
f1(yn), (S14)

provided the functions remain well-defined at the trans-
formed arguments.
The fixed points of Eq.(S5a) satisfy the equation

y2 − 2y(b+1)/b + 1 = 0. (S15)

The nontrivial fixed points are yc = 3.38298.... for b = 2,
and yc = 2.05817... for b = 3.
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In the limit n→ ∞, one gets

f∞(1) =
b

2b− 1
ln 2, (S16)

which is the infinite temperature entropy per bond Eq.
(S2)). The rate function f as defined in Eq. (4a) in the
text, is given by f(y) ≡ fn(1)− fn(y), where fn(1) takes
care of the normalization in L. Fig. 4 in the text shows
the plots of f(y).
For points Ai’s and Ki’s that flow to ±yc in two steps,

we have the same value of f = fc for all of them with

fc =
1

4b
ln

4b

yc
+

1

4b(2b− 1)
ln(4byc)−

b

2b− 1
ln 2, (S17)

which evaluates to

fc
∣

∣

b=2
= 0.10156312, and fc

∣

∣

b=3
= 0.0482183.

The intersection of the f = fc line with the f -vs-t curve
gives the critical points Ai’s and Ki’s.
For b = 3, the transition points are

A1 : 2Jτ1 = 0.666239...,

A2 : 2Jτ2 = 2π − 0.666239 = 5.616946,

K1 : 2Jκ1 = π − 0.666239 = 2.47535,

and K2 : 2Jκ2 = 3.807832.

For b = 2, the transition points are

A1 : 2Jτ1 = 0.99597...,

A2 : 2Jτ2 = 5.28722,

A3 : 2Jτ3 = 4.13756,

and A4 : 2Jτ4 = 2.14562.
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