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Outsourcing of research is commonly observed in knowledge-intensive industries e.g. biotech.

We model innovation as an ambiguous stochastic process, and assume that the commercial

�rms are more ambiguity averse than the research labs. We characterize the optimal se-

quence of short-term contracts governing innovation, and show how it facilitates ambiguity-

sharing. The �rm�s ambiguity aversion mitigates the dynamic moral hazard problem, resulting

in monotonically decreasing investment and prevents equilibrium delay. However, compared

to an ambiguity-neutral policymaker�s benchmark, the research alliance stops experimenting

earlier, and may liquidate the project even after being patented; even redesigning patent laws

cannot solve both of the problems.
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1. INTRODUCTION

Outsourcing of research is a large and growing trend in knowledge intensive sectors

(e.g. biotechnology, information technology, and software sectors). In these indus-

tries, big commercial �rms often outsource their research to smaller research oriented

�rms. These inter-organizational research alliances are generally voluntary agreements

between �rms involving exchange, sharing or co-development of products, technologies,

or services, and play an important role in organizing R&D in the innovation-intensive

industries (Baker et al.(2008)). For example, in biotechnology sector, 650 new alliances

formed in 2006 alone, with related �nancial commitments of over $90 billion (Edwards

(2007)). During 1996-2007, the industry-university strategic partnerships alone resulted

in $457.1 billion worth of patented innovations (Sytch and Philipp (2008)). In phar-

maceutical industry, more than 70% of the U.S. companies are involved in research

partnerships, and each year on average 25% of the 26bn industry-�nanced R&D is in-

vested through research alliances (Biopharmaceutical Research Industry Pro�le (2013)).

Information technology sector, accounting for 37% of all strategic research partner-

ships, registered 254 technology agreements in the year 1996 (Reddy (2001), Hagedoorn

et.al.(1992)). In this paper, we study the nature of the dynamic contracts that govern

this type of research alliance where the contractees di¤er in the attitude towards the

contextual ambiguity which is inherent in innovation industries.

In the context of innovation, the projects in question are unique in nature. So,

su¢cient amount of data from very similar situations are generally not available to

form a reliable estimate of the true pro�tability of the project. So it is often di¢cult

to form a unique single-valued probabilistic belief about the true state of nature. Such

situations can be modeled as �Knightian uncertainty�, or, �ambiguity�, using Knight�s

de�nition (Knight (1921)):

�The practical di¤erence between the two categories, risk and uncer-

tainty, is that in the former the distribution of the outcome in a group of

instances is known (either through calculation a priori or from statistics of

past experience), while in the case of uncertainty this is not true, the reason

being in general that it is impossible to form a group of instances, because

the situation dealt with is in a high degree unique.�

In innovation contexts, then, we can assume that the researching entities know only a

partial description of the underlying probability distribution associated with the choices.

Here, we model innovation as a stochastic ambiguous process, with the research labs,

specialized in dealing with ambiguity, are assumed to be less ambiguity averse than the

commercial �rms. The strategic partnerships between the commercial �rms and the

research �rms aim to exploit the gains from this specialization to deal with ambiguity

through the use of dynamic contracting.

More generally, this paper focuses on the optimal sequence of short term contracts

2



that govern the alliance between two parties involved in research activity characterized

by contextual ambiguity. We show how their di¤erence in the attitude towards ambi-

guity leads to an ambiguity sharing agreement, alleviating the dynamic moral hazard

problem. This prevents funding delays on the equilibrium path and ensures a monotoni-

cally non-increasing funding �ow over time. However, for a range of beliefs the alliances

choose not to develop the product that they have been patented for, which resembles

Patent Troll3 like cases observed in real life.

While the standing example used in this paper is that of a research alliance, the

results also apply to the research cells within a big �rm enjoying su¢cient autonomy,

innovation based departments within a large university, and many such situations com-

monly observed in these industries.

Following Gilboa and Schmeidler�s seminal work on ambiguity (Gilboa and Schmei-

dler (1989)), multiple prior models of ambiguity have been applied to various decision

making contexts. However, in dynamic setting with multiple priors, prior-by-prior up-

dating of belief using Bayes rule leads to dynamic inconsistency. In this paper, we use

the ambiguity framework developed in Dumav and Stinchcombe (2013). This frame-

work characterizes a vonNeumann Morgenstern approach to ambiguity and we can use

Bayes rule to obtain dynamically consistent updating of beliefs4 .

Our contribution is, therefore, threefold. First, we formulate a model to capture the

dynamics of the research partnerships under ambiguity, and characterize the dynamic

contract that governs this type of alliances, illustrating the role of ambiguity sharing

among the contractees. The optimal contract features some widely observed phenomena

in the research intensive industries: (a) no delay in funding, (b) weakly decreasing

investment volumes, (c) early dissolution of alliances, and (d) Patent troll like cases.

Second, in this environment, we evaluate the research alliances as a mode of organizing

research and analyze the role of government policies in such contexts. Lastly, we use a

new interpretation of ambiguity due to Dumav and Stinchcombe (2013) and apply it in

a dynamic contracting environment5 . This provides a tractable framework to be used

in applied contexts in order to illustrate the e¤ects of ambiguity.

The paper is organized as follows. In the remainder of this section, we motivate

the interpretation of ambiguity we are dealing with using a real life example, and place

this study in the existing body of related literature. Section 2 contains the model and

analyzes the main results of the paper. Also, we consider some generalizations of the

model. Section 4 re�ects on the general implications of the results. The last section

summarizes the �ndings of this paper and concludes.

3A Patent troll is a company or a person that acquires patenting rights without actually developing
the goods or services it has been patented for.

4Other alternative approaches to modelling ambiguity averse preferences in a dynamically con-
sistent way include the works by Epstein and Schneider (2003), Epstein and Schneider (2007), Mac-
cheroni, Marinacci, and Rustichini (2006), Klibano¤, Marinacci and Mukherji (2009), Siniscalchi (2011),
Machina and Schmeidler (1992). For a review, see Machina and Siniscalchi (2014).

5However, the intuition of the results derived here will remain the same if we use any other dynam-
ically consistent approach to modeling ambiguity. The approach used here gives a tractable framework
to obtain dynamic consistency.
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1.1. Motivating Example

Warner-Lambert-Ligand agreement

Let us examine the case of Warner-Lambert & Ligand Agreement (1999) (hence-

forth W-L): a research, development, and license agreement between Warner-Lambert,

a large pharmaceutical company, and Ligand Pharmaceuticals, a much smaller biotech

company. This example (a) highlights the contractual features which we will examine in

our theoretical model, and more importantly, (b) illustrates how the notion of ambiguity

is an important element in such innovation contexts.

The W-L partnership was engaged in a directed research to discover and design

small-molecule compounds that act through the estrogen receptors, to develop those

compounds into pharmaceutical products, and to take those products through the FDA

approval process and then commercialization. They started o¤ with almost 10,000

compounds, out of which only 250 compounds reached the pre-clinical stage. During

the research stage, Ligand engaged in directed research, with Warner-Lambert providing

the bulk of the funding. The research stage consisted of three periods with duration of

�fteen months to three years, after each of the periods Warner-Lambert had the option

of unilaterally abandoning the project with little or no direct cost.

Once a successful compound was identi�ed, the project moved from the research to

the development stage, and regulatory and market experience became more important.

The cost of the project, all of which will be borne by Warner-Lambert, also increased

exponentially. As a result, both responsibility and decision making shifted to Warner-

Lambert, who had the option to develop the project.

� Innovation as an Ambiguous Process:

In this strategic partnership between Warner-Lambert and Ligand, the research

could have ended in one of the three possible ways:

(a) They could have found a molecule which passes all the clinical trials and is

found �t to be developed into a drug. This can be modeled as the case when the

true state (or, pro�tability) of the project is Good.

(b) They could have failed to �nd a suitable molecule that acts through the estro-

gen receptors, after testing all the candidate molecules. This case can be modeled

as the true state being Bad.

(c) Apart from these two states, the research could have ended in �nding one (or

more) molecule which is capable to work through the estrogen receptors, but, given

the state of the current pharmaceutical technology, can not be developed into a

drug. If the research �nds such a molecule, it is not presently known if in the future

a new pharmaceutical technology will be invented so that the molecule(s) can be

developed into a drug; or if there is some chemical property of the molecule(s)

because of which it (they) can never be processed as a drug. So, in this case,
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even after conducting the decade-long research, it is possible stumble upon �open

questions�. We model this state as a new epistemic state and call it Unknowable

or Amalgamated, because if the research ends up here, the innovation process is

not yet understood. The existence of such unknowable states distinguish research

activities from other manufacturing activities where the production process is

well understood. In the framework of ambiguity we are dealing with in this paper

(Dumav and Stinchcombe (2013)6), this new epistemic state captures the essence

of ambiguity.

Notice that for Ligand, which is a research based �rm, reaching this state is still

valuable, because it adds to their stock of intellectual capital and leads to further

research into the properties of these molecules, but Warner-Lambert will not value

this state as much. So, it is natural to assume that Ligand is less ambiguity averse

than W-L.

Next, we note the speci�cs of this contract.

Contractual Features:

� Short Term Contracting: In W-L agreement, each contracting phase lasted for

�fteen months up to three years, whereas the partnership lasted for more than

a decade. Similarly, many of the collaborative R&D ventures are governed by

short term contracts, with the contracting terms being renegotiated after every

contracting phase. This paper studies the optimal sequence of short term contracts

without commitment.

� Rich forms of collaborating: The W-L agreement contained a rich braiding of

explicit (legally enforceable) and implicit (legally unenforceable) terms (Gilson,

Sabel and Scott (2009)). On one hand there was an elaborate description of the

payments under various possible contingencies (e.g., the milestone bonuses, the

royalty rate), which are legally enforceable. On the other hand, the contract

speci�es the control rights and property rights, which gives unilateral decision

power to one of the contracting parties7 . To mimic this complex contracting

structure, the present model allows for both a state contingent payment structure

and a unilateral liquidation power.

� Moral Hazard: Since Warner-Lambert could not perfectly monitor Ligand�s activ-

ity, it was possible for Ligand to divert the resources (time and money) in order to

either cross-subsidize other projects or for personal gain. Such cross-subsidization

6Appendix B contains the preliminaries of this framework.
7The gap between contract formation and the appearance of a marketable drug was more than

a decade. So, Ligand�s compensation was carefully structured. First, it was paid for some fraction
(perhaps all) of the resources assigned to the task. Second, the agreement established a number of
speci�c milestones, and, upon reaching each milestone, Ligand received an additional payment. Finally,
after the research produced marketable products, Ligand received royalty payments on sales. However,
if Warner-Lambert chose to abort the project at any time, they retained the property rights.
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possibility gives rise to potential moral hazard problem in such contractual rela-

tionships.

In the dynamic relationship between the two �rms, the moral hazard problem is

more severe. Apart from the one-time gain by diverting resources, the researching

party can also appropriate a dynamic gain from diversion, since following a diver-

sion of resources, the learning paths for the two �rms diverge. This gives rise to a

further incentive to cheat and is referred to in the literature as the �dynamic moral

hazard� problem. In this model we consider a dynamic contracting environment,

taking into account this potential dynamic moral hazard problem.

In the innovation-intensive sectors we can �nd many such examples, where we can

motivate the existence of this new epistemic state: �Unknowable� and consider inno-

vation to be an ambiguous process. This paper uses this interpretation of ambiguity

and examines the contractual structure that governs the inter-organizational research

partnerships under this type of uncertainty.

1.2. Related Literature

This paper adds to the literature on optimal contracts for experimentation. It is most

closely related to Bergemann and Hege (1998) and Bergemann and Hege (2005), which

characterize the optimal contract for experimentation modeling innovation as a risky

stochastic optimal stopping problem. In this framework, they document the potential

dynamic moral hazard problem and how it leads to possible in-equilibrium delay of

funding (in �nite horizon) and monotonically increasing investment volume in in�nite

horizon. Hörner and Samuelson (2013) examine a similar framework of experimentation

in continuous time and characterize all possible equilibria.

There are two signi�cant di¤erences between these papers and ours. Firstly, here we

consider innovation as an ambiguous process, rather than a risky one. We show that

the introduction of ambiguity and the di¤erent attitudes towards ambiguity among

the contractees alleviate the dynamic moral hazard problem, preventing in-equilibrium

delay in funding in the �nite horizon case, and in the in�nite horizon this leads to a

monotonically decreasing level of investment. Also, we use non-conclusive signals in

the experimentation stage, which gives rise to a positive option value of waiting and

changes the optimal contract structure. It illustrates the role of patent laws, which

enables us to evaluate the alliances as a mode of organizing research, and analyze the

role of government policies in innovation.

Optimal contracting for experimentation under moral hazard or adverse selection

concerns has been studied in a vast body of literature. Bonatti and Horner (2009) and

Campbell et al.(2013) study experimentation in teams, with unobservable actions and

they also �nd the possibility of �nancing delay. Lerner and Malmendier (2010) show how

incomplete contracts can be used as optimal contractual design to solve the problem
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of moral hazard in biotechnology research partnerships. Poblete and Spulber (2014)

discuss the optimal design of delegated experimentation and shows that the optimal

sequential search in this case involves a stopping rule, so the optimal contract turns

out to be an option. In di¤erent contexts Mason and Välimäki (2015), Akcigit and Liu

(2015), Green and Taylor (2016), Halac, Kartik, and Liu (2016), Adrian and Wester-

�eld (2009), He et al.(2017), Manso (2011), Ederer and Manso (2013) , Jeitschko and

Mirman (2002), Jeitschko et al.(2002) all analyze di¤erent versions of the contracting

problem to motivate innovation8 . Our paper joins this line of enquiry with the addi-

tional assumptions of ambiguity and no commitment power. In this environment, we

�nd the optimal sequence of short term contracts and discuss the policy implications.

This paper also �ts in a vast and growing strand of literature on dynamic contracting

problems in discrete and continuous times. Bergemann and Pavan (2015) contains a

detailed survey of this literature. The importance of dynamic agency cost has been

well documented in literature using both the continuous time framework (DeMarzo

and Sannikov (2016), Sannikov (2008)) and discrete time models (Bhaskar and Mailath

(2017), Bhaskar (2012)). In the present study, we show that the presence of ambiguity

and di¤erence in attitude towards ambiguity among the contracting parties alleviate

the dynamic moral hazard problem.

Lastly, this paper is also related to the literature on ambiguity in a contracting envi-

ronment. Besanko, Tong and Wu (2012) considers innovation as an ambiguous process

and examines contracting for delegated experimentation with unobservable agent type.

In contrast, in this paper we study moral hazard rather than adverse selection. Also,

in contrast to some other related papers that analyze dynamic contracting problems

in non-standard choice theoretic setting (e.g. Szydlowski (2012). , Dumav and Riedel

(2014)), we use a novel approach to ambiguity: in our framework we can use Bayesian

updating instead of maximum likelihood updating to ensure dynamic consistency9 .

2. MODEL AND ANALYSIS

2.1. The Model

States: The innovation activity is centered around a project, success of which

depends on the true state or true pro�tability of the project: � 2 �: The true state is

not known; moreover, it is not possible to form a single probabilistic assessment about

it. In a multiple prior setting, the state space and the common prior belief shared by

8Apart from these papers, there is an entire strand of literature that models experimentation using
two-armed bandit framework, starting with Keller, Rady, and Cripps (2005). For a review of that
literature, refer to Hörner and Skrzypacz (2016)..

9There is another prominent strand of literature on mechansim design and contracting problems
under ambiguity in a static context: see Lopomo, Rigotti and Shannon (2011),Garrett (2014), Carroll
(2015), Amarante, Ghossoub and Phelps (2012). For a detailed survey, refer to Mukerji and Tallon
(2004) and Etner, Jeleva and Tallon (2012).
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all the agents can be represented as:

� = fGood;Badg

P (� = Good) = [r0; s0] ; 0 � r0 < s0 � 1:

Using the framework of ambiguity developed in Dumav and Stinchcombe (2013)10 ,

we observe that the class of non-empty, closed, convex subsets of probabilities like [r0; s0]

can be represented as a simplex:

K�(�) = f[r; s] : 0 � r � s � 1g

Thus, this multiple prior [r0; s0] has a unique representation as a convex combination

of extreme states given by �0 = fGood;Bad; Unknowableg; where the new epistemic

state �Unknowable� is motivated in the previous example.

Each [r0; s0] has a unique representation as:

[r0; s0] = r0[1; 1] + (1� s0)[0; 0] + (s0 � r0)[0; 1]

where the state Unknowable is represented as [0; 1]; the state at which the decision

maker knows only that the probability of � = Good is someplace between 0 and 1:

Thus, in this framework, we can alternatively represent this set-valued prior by a

three state expected utility model, where the true state of the project lies in �0 :

�0 = fGood;Bad; Unknowableg

P (� = Good) = r0

P (� = Bad) = 1� s0

P (� = Unknowable) = s0 � r0

0 � r0 < s0 � 1:

That is, with probability r0; at the end it will be revealed that the project is prof-

itable, with probability 1 � s0 it will be revealed that the project is not pro�table,

but with probability s0 � r0; the true pro�tability of the project will turn out to be

�Unknowable�; or, Not Yet Known, depending on the current state of technology and

knowledge. Notice that s0 � r0 captures the idea that the decision maker knows only

a partial description about the underlying distribution; if r0 = s0 then we are back to

the �risky� situation.

If the payo¤ for � = Good is uG; for � = Bad is uB < uG; then the payo¤ associated

with the new state � = Unknowable is computed as:

u(� = Unknowable) =
1

2
(uG + uB)�

v

2
(uG � uB);

10Refer to the Representation Theorem 1 in Appendix B.
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where the ambiguity aversion parameter v captures the attitude towards ambiguity.

v > 0 refers to the decision maker being ambiguity averse: The higher v is, the more

the decision maker dislikes the state � = Unknowable; hence can be considered as more

ambiguity averse. Here, I assume v 2 [0; 1]:

Contracting Parties:

The two parties forming the research alliance are: a big commercial �rm (hence-

forth CF ) and the smaller research-oriented �rm or research lab (henceforth RL). We

assume that both the parties are risk-neutral and share a common prior about the true

pro�tability of the project. RL is ambiguity neutral while CF is ambiguity averse11 .

Also assume that the contracting parties do not have the power to commit to a long

term contract, hence innovation occurs in a sequence of short term contracts:

FIG. 1 Contracting Time Line: Experimentation Stage

Contracting Time Line: RL owns the project, but is liquidity constrained, so CF

funds the project. The contracting time line involves two stages: an experimentation

stage and a development stage, as depicted in the �gures 1 and 2 below.

Experimentation Stage: In the experimentation stage, at the beginning of each

period t, RL makes a take-it-or-leave-it o¤er12 to CF specifying

(a) xt: : the proportional share of the �nal return RL receives, if the project is

developed till the end

(b) bt : the bonus that RL gets once the project is granted a Patent, and,

(c) Kt : amount of investment to be disbursed in the t
th period.

CF accepts or rejects the o¤er. If accepted, the funds are disbursed and then RL

privately decides whether to invest the fund or divert it for personal bene�t (or cross-

11Essentially, we are assuming that it is not possible to contract the know-how derived from working
on a project. The ability to write a contract on the knowledge generated from the research can change
the ambiguity attitude of the two �rms.
12Here, it is assumed that the research lab faces a competetive market of commercial �rms for that

project, hence enjoys all the bargaining power. This is a simplifying assumption. Relaxing the full
bargaining power assumption does not qualitatively change the results.
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FIG. 2 Contracting Time Line: Development Stage

subsidization). At the end of the period, a binary signal St is publicly realized and

beliefs are accordingly updated from [rt�1; st�1] to [rt; st].

Development Stage: Now, assume that there is an exogenously given patenting

threshold in place which the research alliance has to obey. For the purpose of this model,

this threshold is in terms of posterior belief after observing the signal that comes out

of the experimentation: the project is granted a patent if the posterior belief after

observing the public signal at tth period : [rt; st] 2 �H � K�(�) (refer to Figure ). In

Section 3, we will analyze how a non-strategic policymaker may endogenously determine

this threshold.

Once the posterior belief after observing the signal clears the patent threshold, i.e.,

[rt; st] 2 �H , the project is allowed to move to the Development Stage. In the De-

velopment stage, CF unilaterally decides whether to continue developing the product,

liquidate the project, or keep experimenting further:

aCFt 2 fDevelop; Liquidate; Continueg

If the project is continued till the end, after investing the �xed amount I; the true state

� is realized and returns accrue to the contracting parties. If the project is liquidated,

CF appropriates the property rights, therefore obtains the liquidation value L minus

the bonus bt:

If the posterior belief is not high enough , i.e., [rt; st] =2 �H ; then CF decides

whether to continue experimenting at period t+ 1 with updated beliefs; or to abandon

the project, earning a return of 0 forever:

aCFt 2 fAbandon;Continueg

10



FIG. 3 Patent Law

Right now, we only assume that any reasonable patent rule has to ensure that the

expected return from developing the project has to be at least as high as the liquidation

value.

�H :=

�
[rt; st] �K�(�)j

rt + st
2

R� I � L

�
(1)

Assume that the parameters are such that:

R > L > K

R > 2K(I + L)

L < 2K (2)

Signal Structure: The public signal observed at the end of every period during

the experimentation stage is binary and conditionally independent, they are informative

about the true state � 2 �013 . Also, assume that at any period t; investment �ow

increases signal precision.

P (St = sH j�) = ��Kt; � 2 fG;B;Ug

13 Intuitively, the signals can be thought of as random draws from a Bernoulli distribution:St �
Bernoulli(��Kt) if � = fG;B;Ug
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where

1 > �GKt � �UKt � �BKt � 0 8Kt 2 [0;K] (A1)

In this linear parametric structure, this assumption ensures that (a) ��(Kt) is a valid

probability measure de�ned on �0; (b) higher investment increases the signal precision.

This is similar to the Monotone Likelihood Ratio Property14 .

The conditional distribution associated with this binary signal is characterized below:

St sH sL

� = G (1; 1) rt�1�GKt rt�1(1� �GKt)

� = Unknowable (0; 1) (st�1 � rt�1)�UKt (st�1 � rt�1)(1� �UKt)

� = B(0; 0) (1� st�1)�BKt (1� st�1)(1� �BKt)

�t 1� �t

So that, at any tth period,

P (St = sH) = �t(Kt) = Kt�t

= Kt[rt�1�G + (1� st�1)�B + (st�1 � rt�1)�U ]| {z }
�t

After observing the binary signal, at the end of each period, the beliefs are updated

using Bayes Rule. For example, after observing a high signal St = sH , the updated

posterior on the true state being Good is as follows:

P (� = GjSt = sH) =
rt�1�G
�t

= rHt

To save on notation, let us de�ne the average of the posterior belief as the posterior

mean and the average spread of the posterior belief as the posterior ambiguity:

posterior mean =
rt + st
2

= pt

posterior ambiguity =
st � rt
2

= qt

Note that, byMLRP; after observing St = sH ; posterior mean pt increases and posterior

ambiguity qt decreases; and after St = sL; pt decreases and qt increases.

2.2. Two Period Example

Before discussing the in�nite horizon model, let us �rst analyze the two period

contracting game in order to illustrate the intuitions behind the main results of this

paper. The �ndings from this two period example are readily extendable to a �nite

horizon contracting problem, and they will provide the intuitive understanding about

the model in the general in�nite horizon setting.

14Section 4 discusses the case with a non-linear signal structure that retains this MLRP.
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Here, let�s assume that the project is exogenously terminated after t = 2.

First of all, note that since RL has full bargaining power, the participation constraint

of CF holds as an equality in every period. So, whenever the posterior belief enters the

patenting region, experimentation stops.

So,

Pr((r2; s2) 2 �H) = Pr(S2 = sH) = �2 = K2�2

RL solves:

V2(r1; s1) = max
aCF2

fV Dev2 ; V Liq2 g (3)

where

V Dev2 =
RL0s expected payo¤ from period 2 if, given the contractual terms,

CF develops the product after reaching �H:(a
CF
2 = Dev)

V Liq2 =
RL0s expected payo¤ from period 2 if, given the contractual terms,

CF liquidates the product after reaching �H:(a
CF
2 = Liq)

V Dev2 = max
x2;b2;K2

�2[Rp2j(r2;s2)2�H
x2]

�2[Rp2j(r2;s2)2�H
x2] � K2 (ICRL2;Dev)

�2[R(p2 � vq2)j(r2;s2)2�H
(1� x2)� I] � K2 (PCCF2;Dev)

R(p2 � vq2)j(r2;s2)2�H
(1� x2)� I � L� b2 (ICCF2;Dev)

x2 2 [0; 1]; b2 � 0;K2 2 [0;K]

V Liq2 = max
x2;b2;K2

�2[b2]

�2[b2] � K2 ICRL2;Liq

�2[L� b2] � K2 (PCCF2;Liq)

R(p2 � vq2)j(r2;s2)2�H
(1� x2)� I � L� b2 (ICCF2;Liq)

x2 2 [0; 1]; b2 � 0;K2 2 [0;K]

Let us take a closer look at the constraint set. In each of the cases; ICRL2 s are

the standard incentive compatibility constraints for RL; ensuring no diversion of funds

on the equilibrium path. Notice that, because of the linear structure, if any partial

diversion is bene�cial, so is the full diversion, that is why it is su¢cient to consider

the incentive constraint only for the full diversion case. PCCF2; s are the participation

constraints for CF , guaranteeing CF an expected return to cover the investment cost.

Without loss of generality, CF 0s outside option is normalized to 0. The last constraint

ensures that after the signal realization, it is sequentially optimal for CF to develop the

project in the �rst case and liquidate in the second.
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Solving 3, we get two regions of posterior belief: �D;�L:

�D = f(r2; s2) 2 �H j a
CF
2 j�H

= Dev

i:e:; CF chooses to develop the project once being granted a patentg

�L = f(r2; s2) 2 �H j a
CF
t j�H

= Liq

i:e:; CF chooses to liquidate the project once being granted a patentg

The payment rules are:

if (r2; s2) 2 �D if (r2; s2) 2 �L

x2 = 1�
1

R(p2�vq2)

�
I + 1

�2

�
; b2 = L�

1
�2

b2 � L�
1
�2

x2 � 1�
1

R(p2�vq2)

�
I + 1

�2

�

KDev
2 = K = KLiq

2

And the expected value to RL from t = 2 is:

V2(r1; s1) = �2Kmax

�
p2

�
R�

1

p2 � vq2

�
I +

1

�2

��
;

�
L�

1

�2

��
(4)

Now, let us go one step backward at t = 1:

At t = 1; RL solves:

V1(r0; s0) = max
aCF1

fV Dev1 ; V Liq1 g

where V Dev1 and V Liq1 are de�ned as in t = 2; with three sets of constraints: an incentive

constraint for RL ensuring no diversion, a participation constraint for CF requiring that

they continue investing, and an incentive constraint specifying that it is indeed bene�cial

for CF to Develop in �D and Liquidate in �L: In period 1; compared to the problem

at t = 2; the participation constraint and incentive constraint for CF remain the same

with the corresponding posterior belief at t = 1; however the incentive constraint for

RL requires a closer look. The incentive constraints (ICRL1;Liq) and (IC
RL
1;Dev) highlight

the two sources of gain from cheating: the static gain and the dynamic gain.

K1�1[Rp1j(r1;s1)2�H
x1] + �(1�K1�1)E1V2(r1; s1j(r1;s1)=2�H

)

� K1 + �E1V2(r1; s1; r0; s0j(r1;s1)=2�H
) (ICRL1;Dev)

K1�1b1 + �(1�K1�1)E1V2(r1; s1j(r1;s1)=2�H
)

� K1 + �E1V2(r1; s1; r0; s0j(r1;s1)=2�H
) (ICRL1;Liq)

The static gain is similar as in the second period, stemming from the bene�t RL

derives by diverting the investment amount (K1), so the IC at t = 1 has to ensure that

RL0s expected payo¤ from t = 1 has to be greater than the investment. However, there

is a dynamic gain from cheating as well, captured by the dynamic cheating value: which

arises from the fact that following a diversion of funds at t = 1; the posterior belief of

RL and CF diverge. Because of the diversion, the signal S1 is always sL; observing

14



which CF is prompted to update his belief to [r1; s1]jS1=sL ; with posterior mean p1 and

ambiguity q1: The next period�s contract will then be based on this public belief [r1; s1]:

However, RL has perfectly observed his own action, so even after the low signal he does

not update his belief and evaluates the future contracting terms using his private belief

[r0; s0]. This constitutes the dynamic agency cost:

DAC2 = �[V2(cheat)� V2(no cheat)]

= �[E1V2(r1; s1; r0; s0)� (1�K1�1)E1V2(r1; s1)]

=

8
<
:
�
h
�1p1
�2p2

� (1�K1�1)
i
V2(r1; s1) if (r2; s2) 2 �D

�
h
�1
�2
� (1�K1�1)

i
V2(r1; s1) if (r2; s2) 2 �L

> 0

This dynamic agency cost may lead to delay in funding for a range of parameter values

for which ICRL2 is satis�ed but not ICRL1 :

�Delay :=
�
(r1; s1)jmax f�2Rp2; �2b2g � �K > max f�1Rp1; �1b1g �DAC2

	
(5)

Under risk, rt = st for all t; and it can be seen that �Delay 6= �: The possibility of

in-equilibrium delay due to dynamic agency cost is well documented in the literature

of dynamic contracts (Bergemann and Hege (1998); Bonatti and Horner (2011)). How-

ever, in the present scenario with ambiguity, we �nd that the dynamic agency cost, and

consequently the region �Delay where delay happens shrinks as ambiguity aversion of

CF goes up. In fact, if CF 0s ambiguity aversion is higher than a threshold, then equi-

librium delay never happens whenever the contracting parties are not in�nitely patient.

In the presence of ambiguity, due to the ambiguity sharing contractual arrangement,

the commercial �rm�s ambiguity aversion reins in the dynamic moral hazard problem.

Intuitively, CF; being ambiguity averse, becomes much more cautious and pes-

simistic after each low signal. So, following a low signal, CF has to be guaranteed

a greater share of the �nal return in order to keep investing. This ambiguity shar-

ing agreement disciplines RL and lowers his dynamic expected value from cheating

(DAC2) which, in turn, eases the funding constraint at t = 1 and possibility of in-

equilibrium delay decreases.

Proposition 1. For discount rate � � � = 1�
�
p2�vq2
p1�vq1

�2
q1
q2

�
1
�1
+I

1
�2
+I

�
; 9ev 2 (0; 1);

such that 8v � ev; �Delay = �; that is, in-equilibrium delay never happens.

Proof. In Appendix A.

Let us summarize the �ndings from this two period model. The results qualitatively

hold true for all �nite t > 2 as well.

Ambiguity sharing: Contract e¤ectively shares ambiguity: as CF becomes more am-

biguity averse, his share 1� xt increases.
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Alleviation of dynamic moral hazard Ambiguity sharing alleviates dynamic moral

hazard problem. In a �nite horizon setting, under a range of parameter values,

this results in the impossibility of an in-equilibrium delay.

Evolution of share Every period the posterior belief about the project falls. To com-

pensate, CF needs a higher share to continue funding the project (1�xt increases,

hence xt decreases with t).

Patent Troll If the project clears the patenting threshold after a lot of failed trials, the

posterior belief of CF decreases beyond a threshold so that even though the project

obtains the patent rights, CF decides not to develop it further: this resembles

patent troll like situation. In absence of ambiguity, this never happens because

8(rt; st) 2 �H ; p2R� I > L ;but for every v > 0; there are (rt; st) 2 �H such that

p2(1� v)R� I � L:

We de�ne this region of beliefs (�L) as Patent troll region:

�L(v) = f(rt; st)j((rt; st) 2 �H) \ (p2(1� v)R� I � L)g

2.3. In�nite Horizon Model

In this section we formally set up the in�nite horizon sequential contracting game

between CF and RL and derive the equilibrium contractual outcome. Let us �rst de�ne

the equilibrium.

At any period t; let HP
t denote the set of all possible public histories up to, but not

including, period t: Each element hPt 2 H
P
t contains

(a) past contractual terms: fxj ; bj ;Kjg
t�1
j=1

(b) past strategic choices of CF to accept or reject the contract o¤ered at each

period: f�jg
t�1
j=1 (�t = 1 if CF accepts an o¤er at period t; 0 otherwise)

(c) past realized values of the signals: fSjg
t�1
j=1

(d) past strategic choices of CF after observing the signal realizations at every

period: faCFj gt�1j=1.

In contrast, the set of possible private histories is denoted by Ht; which can be

potentially di¤erent than the private history of RL; who observes his own decision to

divert the fund as well. So each element ht 2 Ht; in addition to h
P
t ; contains fdjg

t�1
j=1;

the past realizations of the strategic choices of RL whether to divert the fund (dt = 1

if the fund is invested in period t and 0 if diverted15).

The true history leads to the posterior belief formed by RL at the beginning of

period t :

[rt�1; st�1] : Ht ! K�[0;1]

15Notice that the linear signal structure implies that if partial diversion of funds is optimal, so is full
diversion, so the action set is essentially binary.
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In consequence, CF also has a belief about the true history, captured by the belief about

the true posterior formed by CF :

[r0t�1; s
0
t�1] : H

P
t �D

0
t ! K�[0;1]

which depends on the public history as well as the belief CF has about RL0s past

investment behavior: fd0jg
t�1
j=1: D

0
t contains the set of all beliefs fd

0
jg
t�1
j=1:

Then, a contract (xt; bt;Kt) by RL is a mapping from the true history Ht into the

sharing rule xt , bonus rule bt and investment �ow Kt.

xt : Ht ! [0; 1]

bt : Ht ! R+

Kt : Ht ! [0;K] � [0; 1]

A decision rule by CF whether to accept or reject the contract is then a mapping from

the perceived history: fxj ; bj ;Kj ; �j ; a
CF
j ; d0jg

t�1
j=1; and the contract proposed, into a

binary decision to reject or accept the contract:

�t : H
P
t � [0; 1]� R+ � [0;K]! f0; 1g

An investment policy by RL is:

dt : Ht � [0; 1]� R+ � [0;K]� f0; 1g ! f0; 1g

A decision rule by CF after observing the signal at the end of period t is a mapping

from the public history; contractual terms, perceived belief about diversion strategy of

RL given the incentives provided by the contract, and the realized signal St 2 fsH ; sLg

into the choice to develop, liquidate, continue, or abandon the project at the end of

period t:

aCFt : HP
t � [0; 1]� R+ � [0;K]� f0; 1g �K�[0;1]

! fDev; Liq;Abandon;Contg

In this model, we are in a Markovian world, because all the payo¤ relevant history

can be captured by the four state variables: (rt�1; st�1; r
0
t�1; s

0
t�1) : the true posterior

belief held by RL : [rt�1; st�1] and the belief of CF about the true posterior:[r
0
t�1; s

0
t�1]:

In this context, let us de�ne the suitable Markov equilibrium concept.

Definition 1 (Markov Sequential Equilibrium). A Markov sequential equilibrium

is a sequential equilibrium fxt; bt;Kt; �t; a
CF
t ; dtg

1
t=1; if

17



(rt�1; st�1)(ht) = (rt�1; st�1)(ĥt) =)

xt(ht) = xt(ĥt)

bt(ht) = bt(ĥt)

Kt(ht) = Kt(ĥt)

(r0t�1; s
0
t�1)(h

P
t ) = (r

0
t�1; s

0
t�1)(ĥ

P
t )

(xt; bt;Kt) = (x̂t; b̂t; K̂t)

)
=)

�t(h
P
t ; xt; bt;Kt)

= �t(ĥ
P
t ; x̂t; b̂t; K̂t)

(rt�1; st�1)(ht) = (rt�1; st�1)(ĥt)

(xt; bt;Kt) = (x̂t; b̂t; K̂t)

�t = �̂t

9
>=
>;

=)
dt(ht; xt; bt;Kt; �t)

= dt(ĥt; x̂t; b̂t; K̂t; �̂t)

(rt�1; st�1)(ht) = (rt�1; st�1)(ĥt)

(xt; bt;Kt) = (x̂t; b̂t; K̂t)

�t = �̂t

dt = d̂t

9
>>>>=
>>>>;

=)
aCFt (hPt ; xt; bt;Kt; �t; dt)

= aCFt (ĥPt ; x̂t; b̂t; K̂t; �̂t; d̂t)

8ht 2 Ht;8h
P
t 2 H

P
t ;8ĥt 2 Ĥt;8ĥ

P
t 2 Ĥ

P
t ;8(xt; bt;Kt); (x̂t; b̂t; K̂t);8�t; �̂t;8dt; d̂t

The Markovian sequential equilibrium ensures that the continuation strategies are

time consistent and identical after any history with identical updated true posterior

belief [rt�1; st�1] and CF
0s belief about the posterior: [r0t�1; s

0
t�1]: It imposes that on

the equilibrium path CF has the true belief given the incentives, i. e., on the equilibrium

path [rt�1; st�1] = [r
0
t�1; s

0
t�1]; but allows for the possibility of divergence of posterior

beliefs o¤ the equilibrium path.

The stopping regions are de�ned as before:

�D = f(rt; st) 2 �H j a
CF
t = Devg

�L = f(rt; st) 2 �H j a
CF
t = Liqg

�CS = f(rt; st) 2 K�[0;1]
j aCFt = Abandong

Now, at every period t; RL solves:

Vt(rt�1; st�1)

=

max�D;�L;�C
S
;(xt;bt;Kt)2Ct Pt((rt; st) 2 �D)(ptRxt)

+Pt((rt; st) 2 �L)bt

+�(1� Pt((rt; st) 2 �D)� Pt((rt; st) 2 �L)� Pt((rt; st) 2 �
C
S )EtVt+1(rt; st)

(6)

where the contract space Ct is given by:

Ct = f(xt; bt;Kt) 2 [0; 1]� R+ � [0;K]g
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such that

Pt((rt; st) 2 �D)(ptRxt) + Pt((rt; st) 2 �L)bt

+�Pt((rt; st) 2 K�[0;1]n�D [�L [�
C
S )EtVt+1(rt; st)

� Kt + �EVt+1(rt�1; st�1; rt; st)

(ICRLt )

Pt((rt; st) 2 �D)[(pt � vqt)R(1� xt)� I] + Pt((rt; st) 2 �L)(L� bt)

� Kt (PCCFt )

if (rt; st) 2 �D; (pt � vqt)R(1� xt)� I � L� bt (ICCFt )

if (rt; st) 2 �L; (pt � vqt)R(1� xt)� I < L� bt

The following proposition states that there is a unique optimal contract, and summa-

rizes the optimal contracting terms and stopping rules. Figure illustrates the optimal

stopping regions.

Proposition 2. (1) There exists a unique Markov sequential equilibrium in the

dynamic contracting game.

(2) The contractual optima is given by the stopping rule:

aCFt (rt; st) =

8
>>>><
>>>>:

Dev if (rt; st) 2 �D

Liq if (rt; st) 2 �L

Abandon if (rt; st) 2 �
C
S

Continue otherwise

where the optimal stopping thresholds are:

�D =

�
(rt; st) 2 �H j

�
ptR�

pt
(pt � vqt)

�
I +

1

�t

��
� L�

1

�t

�

�L =

�
(rt; st) 2 �H j

�
ptR�

pt
(pt � vqt)

�
I +

1

�t

��
< L�

1

�t

�

�CS =

�
(rt; st) 2 K�[0;1]

j L <
2

�t

�

The stopping time is:

T := infftj(rt; st) 2 �H [ (rt; st) 2 �
C
S g

The payment rules are:
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FIG. 4 Contractual Equilibrium

if (rt; st) 2 �D if (rt; st) 2 �L

xt = 1�
1

R(pt�vqt)

�
I + 1

�t

�
; bt = L�

1
�t

bt � L�
1
�t

xt � 1�
1

R(pt�vqt)

�
I + 1

�t

�

Proof. In Appendix A.

Now we will turn to the funding pattern to answer the questions: a) Is it possible

that the project will obtain full funding till the end, i.e., till the time the posterior

(rt; st) 2 �
C
S , b) If full funding is not available at all times, how does the funding �ow

evolve over time?

De�ne

�F : = f(rt; st) 2 K�[0;1]
n�CS j0 < Kt < K :

the region of posterior beliefs where full funding is not availableg (7)

There are three distinct cases:

Case 1: The project always receives full funding �F = �

Proposition 3 �nds a su¢cient condition on the initial prior for the project receiving

full funding till the end.

Case 2: The project receives full funding whenever it is optimal to develop�D\�F =

�

Case 3: The project does not receive full funding for all the beliefs for which it is
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optimal to develop �D \�F 6= �

Under this case, the ambiguity aversion of CF plays a role. Full funding region,

i.e. the region where (rt; st) 2 �D \ �
C
F ; increases with ambiguity aversion of CF:

After full funding stops, i.e. for all (rt; st) 2 �D \ �F ; funding volume decreases

over time. The intuition is same as in the two-period example. As CF becomes more

ambiguity averse, the dynamic moral hazard problem is alleviated. CF; being ambiguity

averse, becomes much more cautious and pessimistic after each low signal. So, following

a low signal, CF has to be guaranteed a greater share of the �nal return in order

to keep investing. Thus, the contractual terms sharing ambiguity also discipline RL

and lower his dynamic expected value from cheating which, in turn, eases the funding

constraint towards the beginning. Thus, if the project receives full funding in �D\�
C
F ,

as v increases, this region increases. After the project stops receiving full funding, the

investment �ow is monotonically decreasing over time. This result is in contrast with

the result in Bergemann and Hege (2005), where it is possible to have monotonically

increasing investment pattern over time due to the severity of the dynamic agency

problem.

Proposition 3. The project receives full funding under the following su¢cient con-

dition:

� �
2� �0L

1� �0[ �K + L
2 ]

(8)

If the project does not receive full funding till the end,

a) If � � L
L+1 ;�D \�F = �; so full funding is available for all (rt; st) 2 �D.

b) If � < L
L+1 ;�D\�F 6= �; the project does not receive full funding for all (rt; st) 2

�D: In this case, as v increases, the project receives full funding for a longer time

horizon, i.e., �D \�F shrinks.

After full funding stops, investment volume monotonically decreases over time.

Proof. In Appendix A.

Next section, we discuss the patent law if it is set by a non-strategic Policymaker

and consequently the policy implications.

3. POLICY RECOMMENDATIONS

3.1. Patent Law

Assume that the patent law is set by the Policymaker (the patent-granting authority,

or the regulatory agency), who is a risk and ambiguity neutral entity16 . The Policymaker

values the �open questions�, or the �Unknowable� state more than the commercial �rms

do, hence is less ambiguity averse (for simpli�cation, I assume ambiguity neutrality).

16Another benchmark we can possibly consider is a social planner�s optima, where the social planner
maximizes the aggregate welfare. Qualitatively the results remain the same whenever the planner puts
a positive weight on the �rm�s utility.
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Assume that the Policymaker cares only for the payo¤s generated from the project17 .

Let us assume that the Policymaker sets the patent law to re�ect his own desired

outcome: the �Policymaker�s Optima� , or, the �Risk and Ambiguity Neutral Optima

(RAN Optima)� without considering the research alliances� response to it, so he is

non-strategic.

After observing the signal at the end of each period, the Policymaker chooses whether

to develop or to liquidate the project, or to continue experimenting further:

aRANt 2 fDev; Liq; Contg

The Policymaker�s optimal stopping rule identi�es the regions of posterior beliefs

where it is optimal to stop experimenting and develop the project: �H ; and the region

where it is optimal to stop experimenting and liquidate the project: �S .

�H = f(rt; st) 2 K�[0;1]j a
RAN
t = Devg

�S = f(rt; st) 2 K�[0;1]j a
RAN
t = Liqg

Then, at the beginning of each period, the problem can be formulated recursively

using the optimality equation or Bellman equation:

V RANt (rt�1; st�1) = max
�H ;�S ;KRAN

t

Pt((rt; st) 2 �H)(ptR� I) + Pt((rt; st) 2 �S)L�Kt

+�[Pt((rt; st) 2 K�[0;1]n(�H [�S)]EtV
RAN
t+1 (rt; st) (RAN )

Proposition 4. The RAN optima, or, the �Policymaker�s Optima� is given by the

stopping rule

aRANt (rt; st) =

8
><
>:

Dev if (rt; st) 2 �H

Liq if (rt; st) 2 �S

Continue otherwise

where the optimal stopping thresholds are:

�H : = f(rt; st)j�H1rt + �H2st � �H3g;

�S : = f(rt; st)j�S1rt + �S2st < �S3g

The stopping time is:

TRAN = infftj(rt; st) 2 �H [ (rt; st) 2 �Sg

17 It might be argued that it is more natural to assume that the Policymaker would internalize
the positive externalities the project might generate as well. Including these externalities will naturally
make the contractual outcome diverge further from the risk and ambiguity neutral benchmark outcome,
making our results even more robust.
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FIG. 5 Policymaker�s Outcome

Also, the project receives full funding in every period it is continued.

Kt = K 8t � TRAN

Proof. In Appendix A.

Thus, the Policymaker�s value from this innovation project is:

V S0 = E0

�
TSP
t=1
�t�1

�
Pt((rt; st) 2 �H)(ptR� I) + Pt((rt; st) 2 �S)L�K

��
(9)

The patent law threshold for a parametric example is depicted in the Figure 5.

3.2. Policy Recommendations

Now that we have analyzed the contractual equilibrium within the research alliance,

and the Policymaker�s desired outcome, we can compare them and evaluate the alliance

as a mode of organizing research. Notice that in the contractual scenario, there are

three possible sources of deviation from the RAN outcome. Firstly, the static and

dynamic moral hazard can potentially distort the incentives and make it harder for

the project to obtain funding at every period, thereby creating a divergence from the

optima the Policymaker intends to implement. Also, the presence of ambiguity and CF 0s

ambiguity aversion creates a divergence in preferences among the strategic alliance and

the Policymaker, thus contributing to the di¤erence from the RAN optima. Lastly, the
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short term contracting and lack of commitment can result in the contractual outcome

being di¤erent that the RAN optima. Let us �rst examine how these possible sources of

ine¢ciencies interact with each other and result in a divergence in the desired outcome

and the contractual outcome.

The Policymaker�s value from the project carried out by the strategic partnership is

given by:

V SC0 =E0

2
4

TP
t=1
�t�1[Pt((rt; st) 2 �D)(ptR� I) + Pt((rt; st) 2 �L)L

�(1� Pt((rt; st) 2 �F ))K � Pt((rt; st) 2 �F )Kt]

3
5 (10)

Comparing 9 and 10, we see that the contractual outcome diverges from the Policy-

maker�s outcome in three ways:

(a) Patent Troll: If the posterior belief (rt; st) 2 �L � �H ; the risk and ambigu-

ity neutral Policymaker �nds it optimal to develop the product, but because of CF 0s

ambiguity aversion; the strategic partnership liquidates the product even after being

granted patent. So, every time the posterior lies in this region, there is a loss of value

ptR�I�L > 0 to the Policymaker. This loss is attributed to the di¤erence in ambiguity

attitude of the Policymaker and CF:

(b) Less experimentation: The Policymaker optimally stops experimentation

and abandons the project as soon as the posterior belief enters �S ; while the research

alliance abandons it when the posterior lies in �CS ; where �S � �CS : So the research

alliance abandons the project for a larger range of posterior beliefs, compared to the

Policymaker. This result is due to the short termism, lack of commitment power of the

research alliance, and the moral hazard problem.

(c) Partial Funding: The Policymaker optimally invests the maximal funding

in the project till the end, whereas the research partnership, if the prior belief is not

too high ( if 8 is not satis�ed), does not receive full funding till the end. The lower

investment �ow is driven by the static and dynamic moral hazard problem, which makes

the incentive constraints harder to satisfy. However, as we have noted in Proposition 3,

dynamic moral hazard problem is alleviated as v goes up, causing the project to receive

maximal funding for a longer time horizon.

The next proposition summarizes how the equilibrium contractual outcome diverges

from the Policymaker�s optimal outcome.

Proposition 5. Compared to the Policymaker�s optima, the equilibrium contracts

governing the research alliances result in (a) liquidation of the project even after being

patented, (b) less experimentation, and (c) lower investment �ow.

Proof. In Appendix A.

The following �gure illustrates the di¤erence between the two outcomes.

Given that the contracts governing the strategic partnerships fail to implement the

Policymaker�s optima, next we examine if the Policymaker can restructure the patent
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FIG. 6 Comparison Between Contractual Outcome and Policymaker�s Outcome

law in order to implement its desired optima. Speci�cally, if the patent law is designed

to internalize the possible response from the research alliances, is it possible to alleviate

the three sources of ine¢ciency discussed above? Analyzing the e¤ects of changing

the patent law, we �nd that if the patent law is made stricter, i.e., �H is set at a

higher level, it will shrink �L; so it is less likely that the project will be liquidated

after being granted patent. However, this would lower the incentive to experiment

as well, because Pt((rt; st) 2 �H) decreases, causing the research alliance to abandon

the project even earlier (for a larger range of posteriors) than before. In fact, setting

�H = �D eliminates the possibility of patent troll, but increases the range of posteriors

for which the project is abandoned forever; i. e. , �CS expands.

On the other hand, if the patent policy is relaxed, that boosts the incentive to

invest in the project, increasing Pt((rt; st) 2 �H) at every period, and results in longer

experimentation and higher level of investment. However, it also results in an expansion

of �L; so patent troll problem becomes more severe. Thus, changing the patent law

can never fully implement the Policymaker�s optima and eliminate all three sources of

e¢ciency. If initially �L is large, i.e., patent troll is a severe problem to start o¤ with,

then making the patent law more stringent bene�ts the Policymaker more, whereas if

the ine¢cient stopping proves to be a more severe concern, then relaxing the patent

policy would be bene�cial. So, restructuring the patent law can not implement the

Policymaker�s outcome.
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3.3. Generalizations

3.3.1. General signal structure

In this model, we have used the simplifying assumption of linearity in the signal

structure. This resulted in the Policymaker�s optima characterized by full funding at

all times.

With a more general signal structure satisfying only the Maximum Likelihood Ration

Property, instead of full funding, the optimal outcome will be characterized by a partial

investment �ow that decreases over time for the Policymaker as well as the strategic

partnership. The regions �D;�L; and �
C
S can be characterized likewise. The main

results qualitatively stays the same.

A more general signal structure instead of the binary signal will change the results

signi�cantly. Indeed, in some real life contexts, the information �ow that arrives at each

period of experimentation can not be encoded into a simple binary signal. Assuming

a continuous signal structure will generalize the model and consequently change the

optimal contract structure.

3.3.2. No Limited Liability of RL

In the present model, the research lab is assumed to be liquidity constrained, thus

always requires a non-negative payment in each period. However, in many real life sce-

nario, the research based �rms, though smaller in comparison to the commercial giants,

can a¤ord to put forth some investment, in the form of collateral , in order to continue

experimentation even after clearing the patent thresholds. Under this assumption, ex-

perimentation may continue even after clearing the patenting threshold and there is a

possible non-monotonicity of experimentation; the patent troll region shrinks, and the

alliance experiments longer.

3.3.3. Long Term Contracts

In some situations, �rms can attain commitment power through brand reputations,

press releases and a variety of other ways. If the contracting parties can commit to

long term relations, the participation constraint of CF will not have to be met in

every period, so intertemporal transfer of payments will be possible. This relaxes the

funding condition at every period and results in longer experimentation. In this case,

experimentation may continue even after being granted a patent and the patent troll

region shrinks.

3.3.4. Partially Observable Signal

In many scenario, the informative signal is not publicly revealed. Sometimes, the

�nancing �rm hires experts to evaluate the reports given by the research �rm, whose

evaluation criteria varies from the research �rm. It is also possible that the results from

26



the experimentation can be mis-reported. In these cases, the assumption that the signal

at each period is publicly observed breaks down. One can explore the existence of a

strategy-proof contract under such partial observability and possible mis-reporting of

the signals.

4. DISCUSSION

In the innovation intensive industries, we observe that research partnership is in-

creasingly becoming an important mode of organizing research. The results from this

paper suggest that the policy making organizations should recognize the fact and be

aware of how the innovation activity conducted in the research alliances is a¤ected by

the patent policy. Using the predictions from the theoretical model, we observe that

relaxing the patent criteria is likely to result in longer experimentation, but at the same

time the possibility of patent troll like cases increases; whereas if the patent law is

made more stringent then the patented projects are more likely to be developed, but

the research alliances stop experimenting ine¢ciently early. This result suggests that

studying the present state of the industry, the patent authority should decide on the

patent criterion.

Also, comparing the optimal contractual outcome and the Policymaker�s optima,

we can see that it is never possible to implement the Policymaker�s optima. As the

contextual ambiguity associated with the project increases, the divergence between the

contractual outcome and the desired outcome increases. This suggests that the projects

with high level of ambiguity can not be satisfactorily organized by research partner-

ships. Indeed, there can be projects, which the Policymaker deems pro�table enough to

invest in, that can be never funded in a research partnership. In innovative industries,

the concern about important innovations not being carried out has long been voiced

(Clayton Christensen, ITExpo, 2011). The industry�s Internal Rate of Return Criterion

and lack of foresight are often blamed as the root causes for not investing in innovative

technologies.

This suggests a potential role of a regulatory body or the �State� as an entrepreneur.

State intervention in innovation in the form of funding programs for smaller research ori-

ented �rms can support innovation organized in research �rms. State programs for Small

and Medium Enterprises (SMEs) and New Biotechnology Firms (NBFs) like Small Busi-

ness Innovation Research (SBIR), 1982, Small Business Technology Transfer (STTR),

1992 have been able to fund numerous ventures by smaller research �rms and touted as

success(SBIR/STTR Impact Report, 2012). In the US, 57% of �basic research� is sup-

ported through Federal funding (NSF report, 2008). Programs such as these, providing

funds to the research oriented smaller �rms, lead to the development of the projects not

otherwise funded (Mazzucato (2013)).

Another mode of organizing innovation when the research alliances can not e¢-

ciently carry it out is direct state initiative. There are several examples where State
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as an entrepreneur has participated in innovation and led to successful development

of projects. In UK, Medical Research Council (MRC), funded by the Department for

Business, Innovation and Skills (BIS) has been leading the Pharmaceutical innovation

and was behind the development of monoclonal antibodies, widely used in Pharmaceu-

tical industry since then. In the US, National Institute of Health (NIH) has been key

funding source for research in Biotechnology, spending $30.9 bn in 2012 alone. Another

example of State�s entrepreneurial venture is National Nanotechnology Initiative (NNI),

which, funded in 2000, strives to engage in cutting edge research in Nanotechnology.

According to the famous adage by Polanyi (1944):

�The road to the free market was opened and kept open by an enormous

increase in continuous, centrally organized and controlled interventionism.�

5. SUMMARY AND CONCLUSION

Research alliances are responsible for a major share of innovation activity in the

research-intensive industries. The innovation processes they undertake is often charac-

terized by ambiguity rather than risk. Given the prevalence of these research alliances

in these sectors, it is important to examine the optimal research outcome that is gener-

ated in these R&D partnerships, understand the strategic incentives of the contracting

parties and how these interact to shape the optimal choices, and to evaluate the research

alliance as a mode of organizing research in the ambiguous environment. This paper

provides a theoretical framework to analyze these partnerships and compare it to the

optimal outcome that a risk and ambiguity neutral Policymaker wants to implement.

Apart from the di¤erent extensions and robustness issues mentioned in the previous

section, this study can open up the path of further research on strategic partnerships.

It will be interesting to study multi-lateral strategic partnerships in the innovation-

based industries as networks and examine the optimal network structure that emerges

under ambiguity with di¤erent parametric assumptions. Also, analyzing di¤erent patent

policies in this context under ambiguity constitutes another interesting direction for

future research.
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APPENDIX: FOR ONLINE PUBLICATION

Appendix A: Proofs

Proof of Proposition 1. Using a few lemmata we get to the main result of the

two period example, captured in Proposition 1.

Equilibrium delay occurs when the incentive constraint in t = 1 can not be satis�ed,

but in t = 2 can be. The range of posterior beliefs for which this happens is given in 5:

max f�2Rp2; �2b2g � �K > max f�1Rp1; �1b1g �DAC2

,
1 + �1p1

�
1

(p1�vq1)�1
+ I

p1�vq1

�
� �

�
�1p1 � (1� �1)�2p2

�
1

(p2�vq2)�2
� I

p2�vq2

��

�1p1 � � (�1p1 � (1� �1)�2p2)

> R �
1 + �2p2

�
1

(p2�vq2)�2
+ I

p2�vq2

�

�2p2
(11)

For the sake of brevity, de�ne:

T1 =
1 + �1p1

�
1

(p1�vq1)�1
+ I

p1�vq1

�
� �

�
�1p1 � (1� �1)�2p2

�
1

(p2�vq2)�2
� I

p2�vq2

��

�1p1 � � (�1p1 � (1� �1)�2p2)

T2 =
1 + �2p2

�
1

(p2�vq2)�2
+ I

p2�vq2

�

�2p2

De�ne the range of posterior beliefs for which delay happens as:

�Delay(v) = f(r1; s1)jT1 > R > T2g (12)

If T1 < T2; delay can never happen. So the �rst step is identify the region of posterior

belief for which delay happens, when both the parties are ambiguity neutral, i.e. v = 0:

Then we can show that (T1 � T2) decreases with v:

Lemma 1. For v = 0; i. e. , if the principal is ambiguity neutral, then

T1 > T2

So, in equilibrium delay is possible.

Proof. If v = 0;

T1 =
2 + �1I � � (�1p1 � (1� �1)�2I)

�1p1 � � (�1p1 � (1� �1)�2p2)

T2 =
2 + �2I

�2p2
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Hence,

T1 � T2 =
[I�2p2�1� + �1p1(� � (1� �)�2I)]

(�1p1 � � (�1p1 � (1� �1)�2p2))(�2p2)

> 0

, �Delay(v = 0) 6= �

Lemma 2. If the discount factor is not too high, � � � < 1; for all v 2 [0; 1]; as v

increases, T1 � T2 falls, where � is given by:

� = 1�

�
p2 � vq2
p1 � vq1

�2
q1
q2

 
1
�1
+ I

1
�2
+ I

!

The proof follows directly from taking derivatives. Next, we prove the existence of

a threshold value of v = ev for which delay does not happen.

Lemma 3. There exists ev 2 (0; 1) for which T1 = T2:

Proof.

T1�T2 =
1
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And

�1p1(1� �) + �2p2[��1p1 + �(1� �1)� 1]

= (1� �)(�1p1 � �2p2) + �2p2�[�1p1 � �1] > 0
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Since

1�
p2 � q2
p1 � q1

1
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+ I

1
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> � = 1�
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!
;

) 8� � �; T1 � T2jv=1 < 0

So, T1 � T2 is continuous in v and it decreases as v increases. Also, T1 � T2jv=0 > 0

and T1 � T2jv=1 < 0; hence there must exist a ev 2 (0; 1); for which T1 = T2:
Hence,

�Delay(v) = � for all v > ev

Proof of Proposition 2. Since CF stops experimenting the �rst time the poste-

rior crosses the patenting threshold, RL only chooses the contract to o¤er depending on

whether developing the project after being patented is more bene�cial than liquidating.

Thus, whenever RL0s expected payo¤ if CF develops the product: �tpt

�
R�

(I+ 1
�t
)

pt�vqt

�

is greater than the expected payo¤ if CF liquidates: L� 1
�t
; he chooses

xt = 1�

�
I + 1

�t

�

R(pt � vqt)
; bt � L�

1

�t
(14)

and the reverse otherwise. This gives us �D;�L:

The project is abandoned when no contract satisfying both the incentive constraint

for RL and the participation constraint for CF can be o¤ered. Combining both the

constraints, it is most di¢cult to hold if (rt; st) 2 �L :

L�
1

�t
�
1

�t
(15)

So, the project is abandoned if

(rt; st) 2 �
C
S =

�
(rt; st)jL <

2

�t

�

The value function 6 can be rewritten as:

Vt(rt�1; st�1)
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We can de�ne the operator � : R! R as:
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Properties of � :

Monotonicity:

As V (r; s) � V 1(r; s) ; �(V ) � �(V 1) 8(r; s) 2 K�[0;1]
:

Discounting:

The discount factor � 2 (0; 1) ensures that

[�(V + a)](r; s) � �(V )(r; s) + �a

for all V; a � 0; (r; s) 2 K�[0;1]
:

Hence � satis�es Blackwell�s su¢ciency conditions (Theorem 3.3 in Stokey (1989)),

so it is a contraction. Then, by directly using the Contraction Mapping Theorem

(Theorem 3.2 in Stokey (1989)), we show that T has exactly one �xed point V that

solves the contracting problem.

Proof of Proposition 3.

To examine the funding �ow, �rst let us look at the incentive constraint RL faces

at any t:

If (rt; st) 2 �D; the dynamic incentive constraint is:

�tptRxt + (1� �t)�EVt+1(rt; st) � Kt + �EVt+1(rt�1; st�1; rt; st)

Substituting for the optimal share xt from 2, rewrite it as:

�tpt
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�
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�t

��
+ (1� �t)�EVt+1(rt; st)

� Kt + �EVt+1(rt�1; st�1; rt; st)

Now, the dynamic expected payo¤ to be collected by RL in future periods following a

diversion can be expressed as:

EVt+1(rt�1; st�1; rt; st) =
�t�1pt�1
�tpt

EVt+1(rt; st) (17)

Using this, the dynamic IC ICRLt can be rewritten as:
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where the RHS captures the dynamic agency cost.

Similarly, if (rt; st) 2 �L; the dynamic incentive constraint can be rewritten as:

�t

�
L�

1

�t

�
�Kt � �

�
�t�1
�t

� (1� �t)

�
EVt+1(rt; st) (19)

and it does not depend on CF 0s ambiguity aversion.

The �rst lemma �nds the su¢cient conditions under which the project receives full

funding till the end.

Lemma 4. Su¢cient condition for the project to obtain full funding till the end is:

�0 �
2� �

L(1� �
2 )� �K

Proof. Let us look at the last period T; after which the project is abandoned forever.

At T th period, the incentive constraint binds:

�T

�
L�

1

�T

�
= KT , �T =

2

L

So,

EVT (rT�1; sT�1) = KT

At the penultimate period, the dynamic IC is:

�T�1(L�
1

�T�1
)�KT�1 � �

�
�T�1
�T

� (1� �T�1)

�
EVT (rT�1; sT�1)

() �T�1(L�
1

�T�1
)�KT�1 � �

�
�T�1
�T

� (1� �T�1)

�
KT

This incentive constraint is most di¢cult to satisfy if KT = KT�1 = K:

Thus, the project receives full funding till the end if:

�T�1L� 2 � �
�T�1
�T

� 1 + �T�1K

, �T�1 �
2� �

L(1� �
2 )� �K

(using �T =
2

L
)

The su¢cient condition becomes:

�0 �
2� �

L(1� �
2 )� �K

(20)

, � �
2� �0L

1� �0[K + L=2]
(21)

Now let us analyze Case 2 and Case 3. If the project does not receive full funding till

the end, we want to characterize the switching point, i.e. the posterior beliefs at which

37



the investment �ow switches from full funding to partial funding. To characterize the

equilibrium switching point, we derive the di¤erence equation for CF 0s funding decision,

provided the ICRLt is binding under restricted funding.

Case 2: �F \�D = � : At the switching point. after being patented, the project

is liquidated.

Case 3: �F \�D 6= � : At the switching point, after being granted a patent, the

project is developed till the end.

First, let us focus on Case 2.

Lemma 5. If �F \ �D = �, then the switching point can be given as a quadratic

equation in (rt; st) :

�L(rt; st) = L1r
2
t + L2s

2
t + L3rtst + L1 = 0 (22)

Lemma 6. and

�F = f(rt; st)j�L(rt; st) < 0g

Proof. The expected value of RL along the equilibrium path can be represented as:

EVt(rt�1; st�1) = �t(L�
1

�t
) + �(1� �t)EVt+1(rt; st) (23)

Now, if the project receives restricted funding at time t, ICRLt binds on the equilibrium

path, so:

�t(L�
1

�t
)�Kt = �

�
�t
�t+1

� (1� �t)

�
EVt+1(rt; st)

Using the Bayesian updating:

�t+1 =
(�G � �U )rt�1(1�Kt�t) + 1� �tKt � (1� st�1)(1� �BKt)(�U � �B)

1� �tKt

=
At �BtKt

1� �t
=
�t �BtKt

1� �tKt

where At and Bt are given by:

At = (�G � �U )rt�1 � (1� st�1)(�U � �B) + 1 = �t

Bt = (�G � �U )rt�1�t + (�t � �B)(1� st�1)(�U � �B)

Simplifying, we get

Bt = �
2
t + (�t � �B)(1� st�1)(�U � �B) > �

2
t
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EVt+1(rt; st) =
Kt[�tL� 2]

�
h
�t
�t+1

� 1 + �tKt

i (24)

=
[�tL� 2][�t �BtKt]

�Bt[1� �tKt]
(25)

= hL(Kt)

Now,

hL(Kt)

=
[�tL� 2]

�Bt

h
1��tKt

�t�BtKt

i ;8Kt 6=
�t
Bt

And,

@

@Kt

�
1� �tKt

�t �BtKt

�

=

�
Bt � �

2
t

(�t �BtKt)2

�
> 0;8Kt 6=

�t
Bt

So,
@hL
@Kt

> 0; for Kt 6=
�t
Bt

(26)

Substituting 24 into 23, we obtain:

EVt(rt�1; st�1) = �t(L�
1

�t
) + �(1� �t)hL(Kt)

= �t(L�
1

�t
) +

[�tL� 2][�t �BtKt]

Bt

Moving it one period forward, an alternative expression for EVt+1(rt; st) is found:

EVt+1(rt; st) = �t+1(L�
1

�t+1
) +

[�t+1L� 2][�t+1 �Bt+1Kt+1]

Bt+1
(27)

= Kt+1(�t+1(Kt)L� 1) +
[�t+1(Kt)L� 2][�t+1(Kt)�Bt+1(Kt)Kt+1]

Bt+1(Kt)
(28)

= gL(Kt;Kt+1)

where
@gL
@Kt

� 0;
@gL
@Kt+1

> 0

Then, the di¤erence equation with restricted funding is obtained by equating 23 and

27:

gL(Kt;Kt+1) = hL(Kt) (29)
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By Implicit function theorem,

dKt+1

dKt
= �

@gL
@Kt

� @hL
@Kt

@gL
@Kt+1

� 0

Thus, the di¤erence equation 29 expresses Kt+1 as an increasing function of Kt: This

ensures the existence of a �xed point of the equation 29 at the full funding level, denoted

by:

K (�t+1L� 1) +
[�t+1L� 2][�t+1 �Bt+1K]

Bt+1
=
[�tL� 2][�t �BtK]

�Bt[1� �tK]

which can be succinctly rewritten as the quadratic equation:

�L(rt�1; st�1) = L1r
2
t�1 + L2s

2
t�1 + L3rt�1st�1 + L1 = 0 (30)

This denotes the switching point. �F is the area below the switching point:

�F = f(rt; st) 2 K�[0;1]
n�CS j�L(rt; st) � 0g

Next lemma establishes that the switching point given by 22 indeed lies above the

stopping threshold, i.e., �F � K�[0;1]
n�CS ; and also �nds the range of parameters for

which the project is liquidated at the switching point, i.e. �F \�D = �:

Lemma 7. The switching point locus always lies above the optimal stopping thresh-

old, i.e. �F � K�[0;1]
n�CS

If � � L
L+1 , the project receives full funding for all beliefs (rt; st) 2 �D; i.e. �F \

�D = �:

Proof. We show that at the last period, the posterior belief is such that the project

will not receive full funding.

At t = T; L = 2
�T
: Plugging this in 22, it is shown that, if the su¢ciency condition

does not hold,

�L(rT ; sT ) = K (�TL� 1) +
[�TL� 2][�T �BTK]

BT
�
[�T�1L� 2][�T�1 �BT�1K]

�BT�1[1� �T�1K]

= K �
[�T�1L� 2][�T�1 �BT�1K]

�BT�1[1� �T�1K]

< BT�1[�

�
1�

2K

L

�
]� �T�1(�T�1L� 2)

< 0 (since L < 2K)

Similarly, whenever it is optimal to liquidate after being granted patent rights, i.e.
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whenever

pt

�
R�

1

pt � vqt

�
I +

1

�t

��
< L�

1

�t

, �tpt

�
R�

1

pt � vqt

�
I +

1

�t

��
< (�tL� 1)

, �t <
vqt

(ptR� L)(pt � vqt)� pt
� ~� (31)

we can show that under some parametric ranges full funding is not available for the

project. If 31 is satis�ed, then

�L(rt; st) < 0

, Bt+1Bt�K(1� �tK)(�t+1L� 1)

+�Bt(1� �tK)(�t+1L� 2)(�t+1 �Bt+1K)

�Bt+1(�tL� 2)(�t �BtK) < 0

Now,

LHS

< �t+1�t�K(1� �tK)(�t+1L� 1)

+��t(1� �tK)(�t+1L� 2)(�t+1 �Bt+1K)

�Bt+1(�tL� 2)(�t �BtK)

< ��t(1� �tK)[��
2
tL� ��t + �tL� 2]

�Bt+1(�tL� 2)(�t �BtK)

< 0

if � �
L

L+ 1
(32)

Next, we consider Case 3.

Lemma 8. If �F \ �D 6= �, then the switching point can be given as a quadratic

equation in

(rt; st) : �D(rt; st) = D1r
2
t + D2s

2
t + D3rtst + D1 = 0

and

�F = f(rt; st) 2 K�[0;1]
n�CS j�D(rt; st) < 0g

Proof. Similar to the previous case, the expected value of RL along the equilibrium
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path can be represented as:

EVt(rt�1; st�1) = �tpt

�
R�

1

pt � vqt

�
I +

1

�t

��
+ �(1� �t)EVt+1(rt; st)

Now, with restricted funding, ICRLt binds on the equilibrium path, so:

�tpt

�
R�

1

pt � vqt

�
I +

1

�t

��
�Kt = �

�
�tpt

�t+1pt+1
� (1� �t)

�
EVt+1(rt; st) (33)

Using the expression for �t+1pt+1:

�t+1pt+1 =
�G � �U

�G + �B � 2�U| {z }
F

�t +

�
�U � 2

�G � �U
�G + �B � 2�U

�

| {z }
G

pt

= F�t +Gpt

we can rewrite 33 as:

EVt+1(rt; st) =
�tpt

h
R� 1

pt�vqt

�
I + 1

�t

�i
�Kt

�
h

�tpt
F�t+Gpt

� (1� �t)
i

=
Kt

h
�tptR�

�tptI
pt�vqt

� pt
pt�vqt

i

�
h

�tpt
�t+1pt+1

� 1 + �tKt

i

=

h
�tptR�

�tptI
pt�vqt

� pt
pt�vqt

i

�
h

�tpt
�t+1pt+1Kt

� 1
Kt
+ �t

i ;8Kt 6= 0

= hD(Kt)

since �tpt > �t+1pt+1;
@hD
@Kt

> 0

Using the similar technique as in the previous case; we obtain the di¤erence equation

with restricted funding as:

gD(Kt;Kt+1) = hD(Kt) (34)

where

EVt+1(rt; st) = �t+1pt+1

�
R�

1

pt+1 � vqt+1

�
I +

1

�t+1

��

+(1� �t+1)
�tpt

h
R� 1

pt�vqt

�
I + 1

�t

�i
�Kt

h
�tpt

F�t+Gpt
� (1� �t)

i

= gD(Kt;Kt+1) (35)
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with
@gD
@Kt

� 0;
@gD
@Kt+1

> 0:

Then, by Implicit function theorem,

dKt+1

dKt
= �

@gD
@Kt

� @hD
@Kt

@gD
@Kt+1

� 0

Thus, the di¤erence equation 34 expresses Kt+1 as an increasing function of Kt: The

�xed point can be written as the quadratic equation:

�D(rt; st) = D1r
2
t + D2s

2
t + D3rtst + D1 = 0 (36)

This denotes the switching point. Also, denote the area below the switching point as:

�F := f(rt; st) 2 K�[0;1]
n�CS j�D(rt; st) � 0g

If the condition is not satis�ed, then at the switching point, the project is developed

after obtaining patent:

Next lemma shows that �Dn�F shrinks as v increases, i.e. as CF becomes more

ambiguity averse, the project receives full funding for longer horizon under Case 3,

where at the switching point the project is developed if granted a patent.

Lemma 9. If �F \�D 6= �; then �Dn�F shrinks as v increases.

Proof. The switching point 36 is given as:

�D(rt; st) = gD(K;K)� hD(K) = 0

@gD
@v

= �
Kt+1pt+1qt+1(I�t+1 + 1)

(pt+1 � vqt+1)2
� (1� �t+1Kt+1)

Ktptqt(I�t + 1)

(pt � vqt)2

< 0

@hD
@v

= �
Ktptqt(I�t + 1)

(pt � vqt)2
< 0

And

@�D
@v

=
@gD
@v

�
@hD
@v

= �
Kt+1pt+1qt+1(I�t+1 + 1)

(pt+1 � vqt+1)2

+�t+1Kt+1
Ktptqt(I�t + 1)

(pt � vqt)2

> 0
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Also, using IFT,
@Kt

@v
= �

@�D
@v
@�D
@Kt

� 0

Thus, �D(rt; st) = 0 shifts, so, as v increases, the project receives full funding for a

longer time if � < L
L+1 ; also funding level is weakly increasing in v after full funding

stops.

Also,

@�D
@(pt � vqt)

=
@gD

@(pt � vqt)
�

@hD
@(pt � vqt)

< 0

So,

@Kt

@(pt � vqt)
= �

@�D
@(pt�vqt)

@�D
@Kt

< 0

Intuitively, as v increases, the dynamic moral hazard decreases in the region where

the project will be developed if patented. Thus, in the region �Dn�F ; the project

always receives full funding, and in the region �F ; investment gradually declines. This

completes the proof of the proposition 3.

Proof of Proposition 4. We will use the following two lemmata to derive the

Policymaker�s optima.

Lemma 10. There exists a unique solution to the RAN optimization problem.

Proof. The Policymaker�s problem is recursively written as:

V RAN (r; s) = max
�H ;�S ;KRAN

(Pt((r
0; s0) 2 �H)(pR� I) + Pr((r

0; s0) 2 �S)L�K)

+�[Pr((r
0

; s
0

) 2 K�[0;1]n(�H [�S)]EV
RAN (r0; s0)

We can de�ne the operator T : R! R as:

T (V RAN ) = max
�H ;�S ;KRAN

(Pr((r0; s0) 2 �H)(pR� I) + Pr((r
0; s0) 2 �S)L�K)

+�[Pr((r
0

; s
0

) 2 K�[0;1]n(�H [�S)]EV
RAN (r0; s0)

Properties of T :

Monotonicity:

As V (r; s) � V 1(r; s) ; T (V ) � T (V 1) 8(r; s) 2 K�[0;1]
:

Discounting:

The discount factor � 2 (0; 1) ensures that

[T (V + a)](r; s) � T (V )(r; s) + �a
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for all V; a � 0; (r; s) 2 K�[0;1]
:

Hence T satis�es Blackwell�s su¢ciency conditions (Theorem 3.3 in Stokey (1989)),

so it is a contraction. Then, by directly using the Contraction Mapping Theorem

(Theorem 3.2 in Stokey (1989)), we show that T has exactly one �xed point V RAN that

solves the Policymaker�s problem.

Now, let us examine the optimal stopping rule. After observing the signal, based on

the updated posterior [rt; st]; the expected payo¤ is:

maxfptR� I; L; �EtV
RAN
t+1 (rt; st)g

In order to solve for the RAN optima, let us de�ne:

Fj(rt; st) = based on [rt; st]; the maximum expected value if experimentation stops at j � t

= Et

�
�j�tmaxfpjR� I; Lg �

j�1P
s=t

�s�tKs

�
(37)

De�ne At as the set of posterior beliefs [rt; st] such that stopping at period t is

weakly better than stopping at period t+ 1:

At = f(rt; st)jFt � Ft+1g t = 1; 2; ::

we show that At s form a monotone sequence.

Lemma 11. If Ft(rt; st) � Ft+1(rt; st); then Ft+1(rt; st) � Ft+2(rt; st), i.e., A1 �

A2 � :: [11 An , hence the region where stopping immediately is optimal forms a

monotone sequence.

Proof. Suppose Ft(rt; st) � Ft+1(rt; st):

If the posterior belief at t is such that

(rt; st) 2 �H

; i:e:

ptR� I > L

then

Ft(rt; st) = ptR� I

If (rt; st) is such that at t
th period, after observing either St = sH or St = sL;

pt+1R� I > L; then for all j;

Ft+j(rt; st) = �
j

"
ptR� I �

t+jX

s=t+1

Ks

#
� Ft

so the result follows.
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If (rt; st) is such that at t
th period, after observing St = sH ; pt+1jHR � I > L and

after observing St = sL; pt+1jLR� I < L;

Ft+1(rt; st) = �[�t+1(pt+1R� I) + (1� �t+1)L�Kt+1]

� ptR� I

() (1� �)�t+1(pt+1jHR� I)

� �(1� �t+1)[L+ pt+1jLR� I]�Kt+1] (38)

then,

Ft+2(rt; st) = Et
�
�2maxfpt+2R� I; Lg � �

2Kt+2 � �Kt+1

�

Thus,

Ft+2(rt; st)� Ft+1(rt; st)

= Et
�
�2maxfpt+2R� I; Lg � �

2Kt+2

�
� �[�t+1(pt+1R� I) + (1� �t+1)L]

� �

2
64
��t+2�t+1(pt+2jHHR� I) + 2�(1� �t+1)�t+2(pt+2jLHR� I)

+�(1� �t+1)(1� �t+2)L

�[�t+1(pt+1R� I) + (1� �t+1)L]

3
75� �2Kt+2

= �

2
66664

��t+2�t+1(pt+2jHHR� I) + 2�(1� �t+1)�t+2(pt+2jLHR� I)

+�(1� �t+1)(1� �t+2)L

��t+2�t+1(pt+2jHHR� I)� (1� �t+2)�t+1(pt+2jLHR� I)

�(1� �t+1)L

3
77775
� �2Kt+2

= �

2
64
(1� �t+1)�t+2(pt+2jLHR� I)(2� � 1)

�(1� �)�t+2�t+1(pt+2jHHR� I)

�(1� �t+1)(1� �t+2)(1� �)L

3
75� �2Kt+2

= �

2
64
(1� �t+1)�t+2(pt+2jLHR� I)�

�(1� �)�t+1(pt+1jHR� I)

�(1� �t+1)(1� �t+2)(1� �)L

3
75� �2Kt+2

� �

2
64
��(1� �t+1)((pt+1jH � pt+2jLH)R� I)

�L(1� �)(1� �t+1)(1� �t+2)

�Kt+1

3
75� �2Kt+2 (using 38)

� 0

Similarly, we can prove for the case when (rt; st) 2 �L:

Proof of Proposition 4. By Lemma 11, Ats form a monotone sequence, the

�One-stop ahead� rule is optimal, i.e., if stopping the experimentation process today

is better than continuing experimenting for exactly one more period, then it is always
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optimal to stop today (Chow, Robbins, Siegmund (1971)). Using that, we obtain the

optimal stopping rule, given in Proposition 1. The optimal stopping rules are found by

equating Ft and Ft+1.

If ptR� I � L;

Ft(rt; st) = Ft+1(rt; st)

yields the equation:

�H1rt + �H2st = �H3 (39)

and if ptR� I < L; we obtain:

�S1rt + �S2st = �S3 (40)

where:

�H1 = R[1� �(2�G � �U )] + �2K(I + L)(�G � �U )

�H2 = R[1� ��U ] + �2K(I + L)(�U � �B)

�H3 = 2I + 2K�(1� �B(I + L))

�S1 = �[R(2�G � �U )� 2K(I + L)(�G � �U )]

�S2 = �[R�U � 2K(I + L)(�U � �B)]

�S3 = 2L(1� �) + 2K��B(I + L)

Under the parametric assumption 2, if 2�G � �U <
1
� ; the two equations 39 and 40

yield downward sloping straight lines.

Proof of Proposition 5. Since �L 6= �; the project is liquidated even after being

patented in that region.

The optimal stopping region for the Policymaker is:

�S = f(rt; st)j�S1rt + �S2st < �S3g

where:

�S1 = �[R(2�G � �U )� 2K(I + L)(�G � �U )]

�S2 = �[R�U � 2K(I + L)(�U � �B)]

�S3 = 2L(1� �) + 2K��B(I + L)

For the partnership, the analogous region is:

�CS = f(rt; st)j�t <
2

L
g

At rt = st; we can see the point on �S1rt+�S2st = �S3 is rS = sS =
L(1��)+K(I+L)��B

�R�G��K(I+L)(�G��B)
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and the point on �t =
2
L is r

C
S = s

C
S =

2
L
��B

�G��B
: Even for � = 1; since R > I; it is always

the case that (rCS ; s
C
S ) lies to the right of (rS ; sS): Thus, �S � �

C
S :
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APPENDIX B: AMBIGUITY FRAMEWORK

Denote the space of consequences as X ; which is a separable metric space with a

topology that can be given by a metric making it complete. Let Cb(X ) denote the set of

bounded, continuous functions on X with the supnorm topology, and �(X ) be a weak�

closed and separable, convex subset of the dual space of Cb(X ): Let K�(X ) be the set

of non-empty, compact, convex subsets of �(X ) with the Hausdor¤ metric.

Then, a weak� continuous rational preference relation on K�(X ) is a complete, transi-

tive relation, �; such that for all B 2 K�(X ); the sets fA : A � Bg and fB : B � Ag are

open. The continuous linear preferences satisfy the Independence axiom given below.

Axiom 1. (Independence) For all A;B;C 2 K�(X ); and all � 2 (0; 1); A � B if

and only if �A+ (1� �)C � �B + (1� �)C:

Then, the representation theorem shows that a continuous rational preference rela-

tion on K�(X ) satis�es Axiom 1 if and only if it can be represented by a continuous

linear functional.

Theorem 1 (Representation Theorem: Dumav and Stinchcombe, 2013). A

continuous rational preference relation on K�(X ) satis�es Axiom 1 if and only if it can

be represented by a continuous linear functional L : K�(X ) ! R.

Using this representation theorem, we can de�ne the value of ambiguous information

analogous to the risky case.

In a risky case, for an expected utility maximizing decision maker, the information

they will have when making a decision can be encoded in a posterior distribution,

� 2 �(X ). The value of � is

Vu(�) = max
a2A

Z
u(a; x)d�(x); where u : A�X ! R:

In risky case, a prior is a point p 2 �(X ), and an information structure is a dilation

of p, that is, a distribution, Q 2 �(�(X)), such that

Z
�dQ(�) = p:

The value of the information structure is given by

Vu(Q) :=

Z

�(X )

Vu(�)dQ(�)

An information structure Q dominates Q0 if for all u, Vu(Q) � Vu(Q
0):

Analogously, for vNM utility maximizing decision maker facing an ambiguous prob-

lem, the information they will have when making a decision can be encoded in a set of

posterior distributions, B 2 K�(X ):
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The value of B is

VU (B) = max
a2A

U(�a �B)

where U : A�K�(X ) ! R is a continuous linear functional on compact convex subsets

of �(A�X ) of the form �a �B (where �a is point mass on a).

A set-valued prior is a set A 2 K�(X );and an information structure is a distribution,

Q 2 �(K�(X )), such that Z

K�(X)

BdQ(B) = A:

Then, the value of the information structure Q is given by

VU (Q) :=

Z

K�(X)

VU (B)dQ(B):

As above, an information structure Q dominates Q0 if for all U; VU (Q) � VU (Q
0):

This framework follows the standard Bayesian approach and models information

structures as dilations. By contrast, previous work has limited the class of priors, A,

and then studied a special class of dilations of each p 2 A. The set of A for which this

can be done is non-generic in both the measure theoretic and the topological sense, and

the problems that one can consider are limited to ones in which the decision maker will

learn only that the true value belong to some E � X :

In this approach, A is expressed as a convex combination of/integral of B�s in K�(X );

and this is what makes the problem tractable and brings about dynamic consistency.

In a two-consequence case which will be considered in this paper, this approach

simpli�es to representing preferences as linear functionals in a simplex. If X = fGood;

Badg; then K�(X ) is the class of non-empty closed, convex subsets of the probabilities

represented as a simplex:

K�(X ) = f[p� r; p+ r] : 0 � p� r � p+ r � 1g:

In this case, continuous linear functionals on the convex sets of probabilities must

be of the form

U([a; b]) = u1a+ u2b

for u1;u2 2 R:

Rewriting [a; b] as [p� r; p+ r]; where p = a+b
2 and q = b�a

2 yields

U([p� r; p+ r]) = (u1 + u2)p� (u1 � u2)r = p� vr

with v = u1 � u2 measuring the trade-o¤ between risk and ambiguity, v > 0 represents

ambiguity averse attitude.

Graphically, a set-valued prior [a; b] can be represented as a point in the simplex T

with three vertices, (0; 0) representing Bad state, (1; 1) representing Good state and the
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new epistemic state \Unknowable� represented by the vertex (0; 1): Each [a; b] has a

unique representation as

(a; b) = w1;1(1; 1) + w0;1(0; 1) + (1� w1;1 � w0;1)(0; 0)

solving,

w1;1 = a;w0;1 = b� a;w0;0 = 1� b:

Thus, the prior [a; b] assigns weight a on (1; 1); 1� b on (0; 0) and b� a on the state

(0; 1), i. e. , according to the decision maker, the evidence is thoroughly inconclusive

with probability (b� a).

In this setting, a signal is a dilation of the prior which enables Bayesian updating

of the weights on each vertex of T: For example, if a binary signal s 2 fs1; s2g; Pr(s =

s1jGood) = �1;1; Pr(s = s1jBad) = �0;0 and Pr(s = s1jUnknowable) = �0;1; then the

decision maker with prior [a; b] updates his prior after observing s1 as follows:

Pr(Goodjs1) =
�1;1a

�1;1a+ �0;0(1� b) + �0;1(b� a)

Pr(Badjs1) =
�0;0(1� b)

�1;1a+ �0;0(1� b) + �0;1(b� a)

Pr(Unknowablejs1) =
�0;1(b� a)

�1;1a+ �0;0(1� b) + �0;1(b� a)

Hence, posterior

[a0; b0]js=s1 =

�
�1;1a

�1;1a+ �0;0(1� b) + �0;1(b� a)
; 1�

�0;0(1� b)

�1;1a+ �0;0(1� b) + �0;1(b� a)

�

In this paper we use this framework to model ambiguous decision making in the

innovation process.
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