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Abstract. A basic theorem in linear algebra says that if the eigenvalues and the diagonal

entries of a Hermitian matrix are ordered as λ1 ≤ λ2 ≤ · · · ≤ λn and a1 ≤ a2 ≤ · · · ≤ an,

respectively, then λ1 ≤ a1. We show that for some special classes of Hermitian matrices

this can be extended to inequalities of the form λk ≤ a2k−1, k = 1, 2, ..., ⌈n
2
⌉.
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Let A be an n × n complex Hermitian matrix. The eigenvalues and the diagonal

entries of A are real numbers, and we enumerate them in increasing order as

λ1 ≤ λ2 ≤ · · · ≤ λn,

and

a1 ≤ a2 ≤ · · · ≤ an,

respectively. Various inequalities relating these two n-tuples are known and are much

used in matrix analysis. For example, we have

λ1 ≤ a1 and λn ≥ an. (1)

These are subsumed in the majorization relations due to I. Schur: for 1 ≤ k ≤ n

k
∑

j=1

λj ≤

k
∑

j=1

aj, (2)

with equality when k = n. This is a complete characterization of two n-tuples that

could be the eigenvalues and diagonal entries of a Hermitian matrix. In general, there

are no further relations between individual λj and ak. However, for large and interesting

subsets of Hermitian matrices, it might be possible to find such extra relations. In [1]

the authors consider eigenvalues of matrices associated with graphs. Let G be a simple

weighted graph on n vertices and let A be the signless Laplacian matrix associated with

G. Then, it is shown in [1] that λ2 ≤ a3. This result is extended to other classes in

[3]. One of these is the class P of Hermitian matrices whose off-diagonal entries are

nonnegative. (In particular, this includes symmetric entrywise nonnegative matrices.) It

is shown in [3] that if A ∈ P, then λ2 ≤ a3.

In this note we consider, in addition the class P, another class I consisting of Her-

mitian matrices all whose off-diagonal entries are purely imaginary. We show that the

inequality λ2 ≤ a3 is valid for A ∈ I as well. The proof we give works for both the

classes P and I. Then we show that much more is true for the class I. We show that

in this case the inequality λn−1 ≥ an−2 also holds. Further, for all 1 ≤ k ≤ ⌈n
2
⌉ we have

λk ≤ a2k−1. We construct examples to show that neither of these results is true for the

class P.

Theorem 1. Let A be an n× n Hermitian matrix whose off-diagonal entries are either

all nonnegative real numbers or all purely imaginary numbers. Then
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λ2 ≤ a3. (3)

In case the off-diagonal entries are all purely imaginary, we also have

λn−1 ≥ an−2. (4)

For the second class of matrices in Theorem 1, we can go further:

Theorem 2. Let A be an n × n Hermitian matrix whose off-diagonal entries are all

purely imaginary. Then, for 1 ≤ k ≤ ⌈n
2
⌉,

λk ≤ a2k−1 and λn−k+1 ≥ an−2k+2. (5)

We remark that in both (1) and (5) the second inequality follows from the first by

considering −A in place of A. Similarly (4) follows from (3). The argument cannot be

used for the class P.

Our proofs rely upon two basic theorems of matrix analysis. Let λj (A), 1 ≤ j ≤ n,

denote the eigenvalues of a Hermitian matrix enumerated in the increasing order. Weyl’s

inequality says that if A and B are two n× n Hermitian matrices, then

λj (A+B) ≤ λj (A) + λn (B) , 1 ≤ j ≤ n. (6)

Cauchy’s interlacing principle says that if Ar is an r × r principal submatrix of A, then

λj (A) ≤ λj (Ar) , 1 ≤ j ≤ r. (7)

See Chapter III of [2] for this and other facts used here.

Proof of Theorem 1. If P is a permutation matrix, then the increasingly ordered

eigenvalues and diagonal entries of PAP T are the same as those of A. So, for simplicity,

we may assume that the diagonal entries of A are in increasing order. Let

A3 =







a11 a12 a12

a12 a22 a23

a13 a23 a33







be the top-left 3× 3 submatrix of A. (Note ajj = aj is our notation.) Decompose

A3 = D3 +M3 (8)
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where D3 is the diagonal part and M3 the off-diagonal part of A3. By Weyl’s inequality

λ2 (A3) ≤ λ2 (M3) + λ3 (D3) = λ2 (M3) + a3. (9)

Note that detM3 = 2Re a12a23a13. So, under the hypothesis of Theorem 1, detM3 ≥ 0.

We also have trM3 = 0. These two conditions imply that we must have λ2 (M3) ≤ 0.

For, if λ3 (M3) ≥ λ2 (M3) > 0, then the condition trM3 = 0 forces λ1 (M3) to be negative.

But this is impossible if detM3 ≥ 0. So, from (9) we see that λ2 (A3) ≤ a3. Then, by the

interlacing principle (7), we have λ2 (A) ≤ a3. �

Here we should observe that the only property of M3 we used was that detM3 ≥ 0.

Thus the conclusion of Theorem 1 is valid for some other matrices not included in the

classes P or I.

Proof of Theorem 2. Let Ar be the top r × r principal submatrix of A. Decompose

Ar as

Ar = Dr +Mr

where Dr is diagonal and Mr off-diagonal. The matrix iMr is a real skew-symmetric

matrix. So, the nonzero eigenvalues of iMr are purely imaginary and occur in conjugate

pairs. Thus the nonzero eigenvalues of Mr occur in ± pairs. This shows that

λk (Mr) ≤ 0 for 1 ≤ k ≤ ⌈
r

2
⌉. (10)

Now let 1 ≤ k ≤ ⌈n
2
⌉. Using, successively, the interlacing principle, Weyl’s inequality

and (10), we get

λk (A) ≤ λk (A2k−1) ≤ λk (M2k−1) + a2k−1 ≤ a2k−1.

�

We now give two examples to show why for the case of matrices with nonnegative

off-diagonal entries we have to be content just with inequality (3). Let A be the 4 × 4

matrix

A =











0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0











.

The 4× 4 matrix E all whose entries are equal to one has eigenvalues (4, 0, 0, 0). So the

matrix A = E− I has eigenvalues (3,−1,−1,−1). Thus λ3 = −1, and the inequality (4)

does not hold in this case.
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Let B be the 5× 5 matrix

B =

















0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

















.

Then B = S2 + S3, where S is the shift matrix

S =

















0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

















.

The eigenvalues of S are the fifth roots of 1. Using this one readily sees that the eigen-

values of B are 2, 2 cos 2π
5

and 2 cos 4π
5
, the first of these with multiplicity one and the

latter two with multiplicities two each. In particular, λ3 > 0 and the assertion λ3 ≤ a5

in the first inequality (5) does not hold in this case.
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