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Abstract

In this paper, we consider Anderson type operators on a separable

Hilbert space where the random perturbations are finite rank and the

random variables have full support on R. We show that spectral multi-

plicity has a uniform lower bound whenever the lower bound is given on

a set of positive Lebesgue measure on the point spectrum away from the

continuous one. We also show a deep connection between the multiplic-

ity of pure point spectrum and local spectral statistics, in particular we

show that spectral multiplicity higher than one always gives non-Poisson

local statistics in the framework of Minami theory.

In particular for higher rank Anderson models with pure-point spec-

trum, with the randomness having support equal to R, there is a uniform

lower bound on spectral multiplicity and in case this is larger than one

the local statistics is not Poisson.

keywords: Spectral Theory, Random Operators, Perturbation Theory.
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1 Introduction

Random operators are an important field of study for various reasons. Over
the years much focus is given to a certain class of random operator like An-
derson tight binding model, continuum random Schrödinger operator, multi-
particle Anderson model and many others. Some of these models were initially
developed to study localization phenomenon and a lot of research is focused
on showing the existence of pure point spectrum and exponentially decaying
Green’s function.

The model considered in this paper is

Hω = H0 +
∑

n∈N
ωnPn. (1.1)

Typically one takes H0 to be the −∆ on L2(Rd) with possibly a vector potential
or a periodic background potential added and the adjacency operator on ℓ2(Zd)
with {ωn} independent random variables with {Pn}n a countable collection of
projections. In such a setting there are several questions relating to these
operators that are of interest. In the mid-fifties Anderson [1] proposed that
for large disorder the models on ℓ2(Zd) should exhibit localization. Several
rigorous results on localization followed from the early eighties starting with
the work of Fröhlich-Spencer [2] who formulated multi scale analysis. Some of
the papers on localization for large disorder are [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
and [14, 15, 16, 17]. For a comprehensive study of the subject we refer to any
of [18, 19, 20, 21, 22] and the references there.

The next set of questions concern the simplicity of the spectrum and in
this direction there are several papers starting from Simon [23], Jakšić-Last
[24, 25], Naboko-Nichols-Stolz [26], Mallick [27, 28, 29, 30, 31]. From these set
of papers, we now know that when the rank of Pn is one or for some special
cases of higher rank Pn, the singular spectrum is simple. In the papers [28, 32],
the authors show that there are non-trivial example of random operators where
the singular spectrum has non-trivial multiplicity.

Another set of questions of interest are the local spectral statistics and or
level spacing of the eigenvalues. The first rigorous work of Molchanov [33] led
later to the Minami Theory [34], which establishes a set of sufficient conditions
for the local spectral statistics to be Poisson. There are several papers on local
spectral statistics on discrete models such as [4, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45]. Dietlein and Elgart showed Minami like estimate and thereby showing
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Poisson local statistics at the spectral edge in case of random Schrödinger
operators in [46]. Their method involves a detailed analysis of the behavior of
clusters of eigenvalues possible in the spectrum.

Minami theory [34] involves looking at the region of complete exponential
localization and prove an inequality now known as the Minami estimate as part
of the proof to show the local statistics is Poisson. It was not clear how crucial
the Minami estimate is for determining the local statistics. Recently Hislop-
Krishna [47], showed that in all the above models exponential localization and
Wegner estimate together imply that the local spectral statistics, whenever it
exists, is always Compound Poisson. The Minami estimate assures us that the
Lévy measure associated with the limiting infinitely divisible distribution has
support at {1} ensuring that the distribution is Poisson. To state differently,
Minami estimate rules out the possibility of the limit points, of an array of
independent random variables that are usually constructed in the problem of
obtaining local statistics, having double points.

The work of Klein-Molchanov [48] showed that in the presence of exponen-
tial localization, Minami estimate implies that the point spectrum is simple
when Pn has rank one. The results of the two papers [48] and [47] raise an
interesting question of what the connection between spectral multiplicity and
the Minami estimate could be. Our motivation for this exposition is to address
this question. In this paper we consider general unperturbed operators and
finite rank Pn for the case when the distribution of the single site potential has
support equal to R. We have two very surprising results in this paper, the first
is that the spectral multiplicity of pure point spectrum in any set of positive
Lebesgue measure gives a lower bound for the spectral multiplicity everywhere
in the pure point spectrum. The second is that Minami estimate gives a suffi-
cient condition for the simplicity of pure point spectrum even in the case when
the rank of Pn is not one. To our knowledge, these results are new in this
generality. This result is not vacuous because Dietlein and Elgart [46] proved
Minami estimate in continuous case, though the expression they obtained is
similar to expression from Theorem 1.5. Another example is given after the
statement of Theorem 1.5.

The family of random operator we focus on here can be described as follows.
On a separable Hilbert space H the random operators we will focus on are of
the form given in equation (1.1), satisfying the following assumptions.

Hypothesis 1.1. We assume that H0 is an essentially self-adjoint operator
with its domain of definition denoted by D(H0), {Pn}n∈N is a countable collec-
tion of mutually orthogonal finite rank projections with

∑

n∈N
Pn = I.
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The real-valued random variables {ωn}n∈N are mutually independent and are
distributed with respect to the absolutely continuous distribution gn(x)dx, where
supp(gn) = R for each n ∈ N .

In the case of unbounded H0 for example the −∆ on L2(Rd) with its max-
imal domain D(H0), taking a countable basis in D(H0) and considering the
finite rank projections generated by them will satisfy the hypothesis. In case
of −∆, another method is to use smooth basis from L2([0, 1]d) and translate
them using Z

d action to get the desired result. Anderson tight binding model
and Anderson dimer/polymer models fall in this family of operators. We will
focus on the pure point spectrum away from the continuous spectrum. Our
theorems are valid for several non-ergodic operators, so to accommodate those
cases, we define

Σω =
⋂

B⊂N
#B<∞

⋂

n∈B







E ∈ R : lim
ǫ↓0

∥

∥

∥

∥

∥

∥

(

Hω +
∑

x∈B
λxPx −E − ιǫ

)−1

Pn

∥

∥

∥

∥

∥

∥

<∞

for almost all {λx}x∈B w.r.t. Lebesgue measure

}

,

and

Θp =
⋂

n∈N

{

E ∈ R : lim
ǫ↓0

∥

∥(Hω − E − ιǫ)−1Pn

∥

∥ <∞ a.s.

}

.

A discerning reader may note that the condition in the definition of Θp is
precisely the Simon-Wolff criterion for pure point spectrum for H +λP a.e. λ,
when P has rank one. For the Anderson model on the lattice, even for higher
rank cases, the Aizenman-Molchanov method can be used to prove localization
on R \ [−R,R] for large enough R under our assumptions on ωn. So for such
models, the set Θp has infinite Lebesgue measure under the Hypothesis (1.1).
Note that in the definition of Σω, we are considering perturbations by finitely
many projections because if

lim
ǫ↓0

∥

∥

∥

∥

∥

∥

(

Hω +
∑

x∈B
λxPx − E − ιǫ

)−1

Pn

∥

∥

∥

∥

∥

∥

<∞

for some E ∈ R and {λx}x, then above equation holds for almost all {λx}x
w.r.t. Lebesgue measure.

We define Hω
B = PBH

ωPB, where PB is the orthogonal projection given by
∑

n∈B Pn, for any subset B ⊂ N . With these definition in place we state a
principal result which is the following:
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Theorem 1.2. Consider the random operators Hω on a separable Hilbert space
H , given by equation (1.1), satisfying the Hypothesis (1.1). Assume further
that range(Pn) ⊂ D(H0) for every n ∈ N . Suppose there is a subset J ⊂
Θp, of positive Lebesgue measure and a K < ∞ such that the multiplicity of
eigenvalues of Hω is bounded below by K on J for a.e. ω. Then,

1. Then for every finite B ⊂ N , the multiplicity of any eigenvalue of the
operator Hω

B : PBH → PBH is bounded below by K for a.e. ω.

2. The multiplicity of Hω on Σω is bounded below by K for almost every ω.

Remark 1.3. A few comments are in order before we proceed further.

1. When H0 is unbounded and Pn satisfy the Hypothesis 1.1, it may still
happen that the Hω are not essentially self-adjoint. However there are
numerous examples where they are indeed self-adjoint.

2. The hypothesis supp(gn) = R is essential. This is demonstrated by follow-
ing example: On the Hilbert space ℓ2(Z×{1, · · · , 5}) consider the random
operator

(Hωu)n,m =

{

[un+1,m + un−1,m] + ωnun,m m = 1, 2
2[un+1,m + un−1,m] + ωnun,m m = 3, 4, 5

∀n ∈ Z, 1 ≤ m ≤ 5,

for u ∈ ℓ2(Z × {1, · · · , 5}), where {ωn}n∈Z are i.i.d random variables
following uniform distribution on [0, 1]. The projections

(Qiu)n,m =

{

un,i m = i
0 o.w

∀(n,m) ∈ Z× {1, · · · , 5},

commute with Hω and QiH
ωQi is the Anderson operator on ℓ2(Z×{i}),

so it has pure point spectrum. We notice that QiH
ωQi for i = 3, 4, 5 are

unitarily equivalent, so all the eigenvalues coincide. Hence the multiplic-
ity of Hω is three on the interval (3, 5). But on the interval (−2, 3), the
multiplicity is bounded below by 2, hence the conclusion of theorem 1.2
fails to hold. On other hand if we choose ωn to be i.i.d random variable
following some distribution g(x)dx with supp(g) = R, then using the fact
that the spectrum of Q1H

ωQ1 is dense in R, we see that the minimum
multiplicity of eigenvalues on a given interval is two.

We define the random variables,

ηB,J(ω) = Tr(EHω
B
(J)),
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for any interval J , where EHω
B

denotes the spectral projection for the operator
Hω

B.
Our main theorem has two remarkable consequences. The first is on the

multiplicity of the pure point spectrum if Minami estimate [34], namely,

P({ω : ηB,J(ω) ≥ 2}) ≤ C|B|2|J |2, (1.2)

holds for any finite B and the constant C independent of B, J .

Theorem 1.4. Consider the operators Hω satisfying the Hypothesis (1.1) and
let Hω

H ω
B

denote Hω restricted to the closed Hω-invariant subspace

H
ω
B = {f(Hω)φ : f ∈ Cc(R), φ ∈ PBH }.

Suppose that range(Pn) ⊂ D(H0) for all n ∈ N and there is a non-trivial
interval I ⊂ R and a finite B ⊂ N such that the Minami estimate (1.2) holds
for every subinterval J ⊂ I. Then the spectrum of Hω

H ω
B

in Σω is simple.

Another extension of Theorem 1.4 which is obtained by combining Theorem
1.2 with a result of Anish-Dolai [28, Lemma 4.1] is:

Theorem 1.5. Let Hω satisfy the conditions of Theorem 1.2. Suppose for a
non-trivial interval I ⊂ R and a, b > 0, the generalized Minami estimate

P(ω : ηB,J(ω) > K) ≤ C|B|a|J |1+b

is valid for all B ⊂ N and any subinterval J ⊂ I with a, b > 0 independent of
B, J . Then Σω has uniform multiplicity and multiplicity of σs(H

ω) is bounded
above by K.

The generalized Minami estimate stated above usually shows up where K
is rank of projection. But there are special cases (such as [46]) where K <
rank(Pn). As a trivial example, consider H0 =

∑

n∈Z |δ2n〉 〈δ2n| and Pn =
|δ2n〉 〈δ2n| + |δ2n+1〉 〈δ2n+1| on the Hilbert space ℓ2(Z). It is easy to see that
the generalized Minami estimate holds (with K = 1) for any bounded interval
with large enough L. The reason generalized Minami estimate is important is
because it can show the absence of simple Poisson statistics for the model. It
was shown in [47] that complete exponential localization and Wegner estimate
are enough to conclude that limiting statistics in Minami theory [34] is always
Compound Poisson.

Suppose for each N ∈ N, Bk, k = 1, 2, . . . , mN , are disjoint regions and IN
are intervals such that mN → ∞, |IN | → 0, N → ∞, ∩N IN = {E} and
consider the array of independent random variables,

ηk,E,IN (ω) = Tr(EHω
Bk

(IN)), k = 1, 2, . . . , mN , N = 1, 2, . . . .
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Theorem 1.6. Consider the operators Hω as in theorem 1.2. Suppose there
exists a set J ⊂ Θp of positive Lebesgue measure in which the spectrum of Hω

is pure point and has spectral multiplicity bigger than one. Then for any E ∈ R

and any sequence of bounded interval IN as above, if the array {ηk,E,IN(ω), 1 ≤
k ≤ mN , N = 1, 2, 3, . . .} is asymptotically negligible, then the limit points
Xω,E of

∑mN

k ηk,E,IN (ω) are not a Poisson random variables.

Ideas of Proofs

The proof of above theorems are given in next section, however we quickly
go over the ideas involved in the proofs. An important part of the proof of
Theorem 1.2 is to studyH+λP for a finite rank projection P , since the operator
Hω can be re-written as (2.1). Then, the proof of Theorem 1.2 is divided into
four parts, with Lemma 2.2 and Lemma 2.5 addressing the spectrum of H+λP
only and the Corollary 2.4 and 2.6 use the lemmas to conclude the claims of
the Theorem 1.2.

In Lemma 2.2 we show that if the multiplicity of the spectrum of H + λP
is bounded below by K in some interval I for almost all λ, then the algebraic
multiplicity of eigenvalues of P (H − z)−1P (as a linear operator on PH ) is
bounded below by K for z ∈ C+. We then rewrite Hω as in (2.1) and use the
representation (2.4) of PB(H

ω − z)−1PB, to conclude that the multiplicity of
the spectrum of Hω

B is bounded below by K. This is the idea behind statement
(1) of Theorem 1.2, the details of the proof are in the Corollary 2.4.

We then concentrate on the converse, Lemma 2.5, namely if the algebraic
multiplicity of roots of the operator P (H−z)−1P (as a linear operator on PH )
is bounded below by K for z ∈ C+, then the multiplicity of the spectrum of
H + λP in

Ŝ = {E ∈ R : lim
ǫ↓0

∥

∥(H − E − ιǫ)−1P
∥

∥ <∞}

is bounded below by K. We then use the representation (2.1) for Hω and
Lemma 2.2 and Lemma 2.5 along with the fact that ∪B⊂NH ω

B is dense subset
of H , to get the lower bound on the multiplicity of spectrum for Hω in Σω.

The main reason for concentrating on the set Ŝ is because in this set, the
operator Hλ has pure point spectrum, and

dim(ker(Hλ − E)) = dim(I + λP (H − E − ι0)−1P ) a.e. E ∈ Ŝ

with respect to Lebesgue measure, which is shown in Lemma 2.1. Hence any
bound on the multiplicity of eigenvalues of P (H − z)−1P translate to a bound
on multiplicity of eigenvalues of Hλ and vice-versa in the region Ŝ

The proof of Theorem 1.4 follows all the above steps but is more concise
owing to the Minami estimate, which guarantees that the spectrum of Hω

B is
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simple over the interval I almost surely. Using the representation (2.4) we get
that the matrix PB(H

ω − z)−1PB (as a linear operator on PBH ) has simple
spectrum for ℑz ≫ 1. The discriminant for a polynomial with simple roots is
non-zero, so the discriminant for the polynomial (in x)

det(PB(H
ω − z)−1PB − xI),

which is the determinant of a Sylvester matrix whose entries are polynomial
of matrix element of PB(H

ω − z)−1PB, is an analytic function on C+. So the
eigenvalues of the matrix PB(H

ω − z)−1PB are simple for almost all z ∈ C+.
So following the steps of proof of Lemma 2.5 and Corollary 2.6 completes the
proof of the theorem. Similar approach also works for Theorem 1.5.

The proof of Theorem 1.4 is a special case of the technique developed in
Lemma 2.2 and Lemma 2.5. But it is easier to follow and provides an insight
for the steps involved in the proof of the Lemma 2.2 and Lemma 2.5.

2 Proofs of the Theorems

In this section we will work with a fixed finite subset B ⊂ N . Let {ni}|B|
i=1 be

an enumeration of B and let U be a real orthogonal matrix of the form

U =











1√
|B|

1√
|B|

· · · 1√
|B|

1√
|B|

u2,1 u2,2 · · · u2,|B|−1 u2,|B|
...

...
. . .

...
...

u|B|,1 u|B|,2 · · · u|B|,|B|−1 u|B|,|B|











.

Setting wi = etiU~ω, where ~ω = (ωn1
, · · · , ωn|B|

)t and ei = (0, · · · , 0, 1, 0, · · · , 0)t,
we have

w1 =
1

√

|B|
∑

n∈B
ωn.

For f1 ∈ Cc(R) and f2 ∈ Cc(R
|B|−1), observe that

E
ω
[f1(w1)f2(w2, · · · , w|B|)]

=

∫

f1

(

1
√

|B|
∑

n∈B
ωn

)

f2





|B|
∑

i=1

u2,iωni
, · · · ,

|B|
∑

i=1

u|B|,iωni





|B|
∏

i=1

gni
(ωni

)dωni

=

∫





∫

f1(w1)

|B|
∏

i=1

gni





w1
√

|B|g
+

|B|
∑

j=2

uj,iwj



 dw1



 f2(w2, · · · , w|B|)

|B|
∏

i=2

dwi.
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Since supp(gn) = R we have
∏|B|

i=1 gni

(

w1√
|B|

+
∑|B|

j=2 uj,iwj

)

6= 0 for almost all

w1 for almost all w2, · · · , w|B|. Hence the conditional distribution of w1 given
w2, · · · , w|B| is absolutely continuous. Decomposing the operator Hω as

Hω = H0 +
∑

n∈N
ωnPn

= H0 +
∑

n∈N\B
ωnPn +

|B|
∑

j=2

wj





|B|
∑

i=1

uj,iPni



+
w1
√

|B|

(

∑

n∈B
Pn

)

, (2.1)

one can view w1 as a random variable with absolutely continuous distribution
depending on w2, · · · , w|B|.

With above observation, the result boils down to studying the multiplicity
problem for single perturbation. We only need to work with a fixed essentially
self-adjoint operator H on a separable Hilbert space H , and set

Hλ = H + λP

for some finite rank projection P . Defining the closed H-invariant subspace

HP = 〈f(H)φ : f ∈ Cc(R), φ ∈ PH 〉,

and observe that it is Hλ-invariant, so using Spectral theorem we have

(HP , Hλ) ∼= (L2(R, PEHλ
(·)P, PH ),MId),

where EHλ
is the spectral measure associated with the operator Hλ and MId

is given by
(MIdψ)(x) = xψ(x) ∀x ∈ R

for ψ : R → PH with compact support. Using functional calculus we have

P (Hλ − z)−1P =

∫

1

x− z
PEHλ

(dx)P ∀z ∈ C \ R,

and using [49, Theorem 6.1] we can retrieve the measure PEHλ
(·)P from

P (Hλ − z)−1P , where we view

P (Hλ − z)−1P : PH → PH z ∈ C \ R,

as a linear operator over a finite dimensional vector space PH . Denote

Gλ(z) = P (Hλ − z)−1P, & G(z) = P (H − z)−1P ∀z ∈ C \R,
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and
Gλ(E + ι0) = lim

ǫ↓0
Gλ(E + ιǫ) & G(E + ι0) = lim

ǫ↓0
G(E + ιǫ)

whenever the limit exists for E ∈ R. By general theory for matrix valued
Herglotz functions [49, Theorem 6.1], the set

S := {E ∈ R : G(E + ι0) exists and finite}

has full Lebesgue measure.

Lemma 2.1. On a separable Hilbert space H let H be a self-adjoint operator
and set Hλ = H + λP for λ ∈ R and a finite rank projection P . Set

HP = 〈f(H)φ : f ∈ Cc(R), φ ∈ PH 〉

to be the H-invariant subspace containing the space PH and

Ŝ = {E ∈ S : lim
ǫ↓0

∥

∥(H − E − ιǫ)−1P
∥

∥ exists and is finite}.

Then for any E ∈ Ŝ the linear map

P̃ : kerHP
(Hλ − E) → kerPH (I + λG(E + ι0))

defined by P̃φ = Pφ is well defined and is a bijection.

Proof. We first note that if lim
ǫ↓0

‖(H − E − iǫ)−1P‖ is not finite, then there

must be a vector in the ker(H−E) since the rank of P is finite, since the limit
always exists by monotone convergence theorem. Using the observation that
HP is Hλ-invariant for all λ, we will view H and Hλ as self-adjoint operators
on HP only. For E ∈ Ŝ, the map

P̃ : kerHP
(Hλ − E) → kerPH (I + λG(E + ι0)),

defined by P̃ φ = Pφ is well defined and linear. To see this let 0 6= φ ∈
kerHP

(Hλ − E), then,

(H + λP − E)φ = 0

⇒ φ+ λ(H − E − ιǫ)−1Pφ+ ιǫ(H −E − ιǫ)−1φ = 0 ∀ǫ > 0. (2.2)

But
lim
ǫ↓0

ιǫ(H − E − ιǫ)−1 = −EH({E}),

where EH is the spectral projection of H . Therefore if PEH({E})P 6= 0 then
we will have

G(E + ιǫ) = − 1

ιǫ
PEH({E})P + G̃(E + ιǫ),

10



where G̃(·) is also a matrix-valued Herglotz function. (Reason: By assumption
and by polarization consider a vector η such that 〈η, PEH({E})Pη〉 6= 0.
Then denoting the measure µ = 〈η, PEH({E})Pη〉, we have by Theroem [52,
Theorem 1.3.2(1)],

lim
ǫ→0

ǫℑ(〈η, G(E + iǫ)η〉) + µ({E}) = 0.

Since the real parts of G and G̃ are the same, the relation follows. )
This relation shows that the limǫ↓0G(E + ιǫ) does not exist. So using the

fact that E ∈ S, we get

lim
ǫ↓0

ιǫ(H − E − ιǫ)−1φ = 0.

Combining the above equation and (2.2) we have

lim
ǫ↓0

φ+ λ(H − E − ιǫ)−1Pφ = 0,

which implies Pφ ∈ kerPH (I + λG(E + ι0)). The map is one-one because, if
Pφ = 0 for some 0 6= φ ∈ kerHP

(Hλ − E), then

(H + λP − E)φ = 0 ⇒ (H − E)φ = 0

⇒ 〈ψ, f(H)φ〉 = f(E) 〈ψ, φ〉 = 0 ∀f ∈ Cc(R), ψ ∈ PH ,

which implies φ ⊥ HP , giving a contradiction.
Now for the inverse of the map, define

Q : kerPH (I + λG(E + ι0)) → kerHP
(Hλ − E)

by Qφ = (H−E−ι0)−1φ. By the definition of Ŝ the element Qφ ∈ HP for any
φ ∈ PH and E ∈ Ŝ. Let 0 6= ψ = Qφ for some φ ∈ kerPH (I + λG(E + ι0)).
This choice leads us to :

ψ : = Qφ = (H − E − i0)−1Pφ = (H − E − iǫ)−1Pφ+ ψǫ,

where ‖ψǫ‖ = o(1),

(Hλ −E)ψ = (H − E − iǫ)ψ + λPψ + iǫψ

= Pφ+ (H −E − iǫ)ψǫ + λPψ + iǫψ

= Pφ+ (H −E − iǫ)ψǫ + λG(E + i0)φ+ o(1).

Therefore

P (Hλ − E)ψ = Pφ+ P (H − E − iǫ)ψǫ + λG(E + i0)φ+ o(1). (2.3)
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Let range(P ) = 〈f1, . . . , fm〉, then using the fact that range(P ) ⊂ D(H0), we
have

〈fj, (H − E − iǫ)ψǫ〉 = 〈(H −E + iǫ)fj , ψǫ〉 = o(1).

Therefore P (H − E − iǫ)−1ψǫ = o(1). Substituting equation (2.3) and using
the condition that φ ∈ kerPH (I + λG(E + i0)),

P (Hλ −E)ψ = Pφ+ λG(E + i0)φ = 0,

hence Qφ ∈ kerHP
(Hλ − E). The injectivity of the map Q follows from

PQφ = P (H − E − ι0)−1φ = G(E + ι0)φ = −1

λ
φ.

This completes the proof of lemma because −λQ is the inverse of the map P̂ .

In the following Lemma, we regard Hλ as an operator on HP .

Lemma 2.2. Let H,Hλ and Ŝ be defined as in Lemma 2.1, and let J be a
subset of Ŝ of positive Lebesgue measure. . Suppose any eigenvalue of Hλ in
J has multiplicity at least K ≥ 1 for almost all λ. Then all the roots of the
polynomial (in x)

Fz(x) = det(G(z)− xI),

have multiplicity bounded below by K, for almost all z ∈ C+.

Remark 2.3. Note that since σc(H) 6= R, the measure tr(PEH(·)) is not
equivalent to Lebesgue measure, so using F. and M. Riesz theorem [25, Theorem
2.2], we get that tr(G(z)) 6= 0 for z ∈ C

+.
Note that even if σ(H) ∩ J = φ, the proof of Lemma 2.1 shows that for λ

in ∪E∈J{− 1
x
: x ∈ σ(G(E + ι0))} we have

σ(Hλ) ∩ J 6= φ.

So the hypothesis is not vacuous.

Proof. Since the subset J is contained inside Ŝ, we can apply Lemma 2.1 and
claim

dim(kerHP
(Hλ − E)) = dim(kerPH (I + λG(E + ι0))) ∀E ∈ J.

Now using above observation for any E ∈ J and the hypothesis of the
lemma, we get that the geometric multiplicity of spectrum for G(E + ι0) is at
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least K for almost all E in J . In algebraic terms this implies that all the roots
of the polynomial (in x)

FE(x) = det(G(E + ι0)− xI)

has multiplicity bounded below by K for almost all E in J .
Now for z ∈ C+, consider the polynomial (let N = rank(P ))

Fz(x) = det(G(z)− xI) =
N
∑

i=0

ai(z)x
i,

and define

Gz(x) = gcd

(

Fz(x),
dFz

dx
(x)

)

=
∑

i

pi(z)x
i,

where following Euclid’s algorithm we get that pi are rational polynomials of
{aj}j. Now consider

F̃z(x) =
Fz(x)

Gz(x)
=
∑

i

qi(z)x
i,

where qi are rational polynomial of {aj}j and {pj}j. Since pj are rational
polynomials of {ak}k, we can view qi to be rational polynomial of {ak}k only.

First notice that each root of Fz is a root of F̃z, and each root of F̃z has
multiplicity one. So if all the roots of the polynomial Fz(x) has multiplicity
at least K, then (F̃z(x))

K divides Fz(x) as a polynomial of x. So define the
reminder

Rz(x) = reminder(Fz(x), (F̃z(x))
K) =

∑

i

ri(z)x
i,

which following division algorithm tells us that ri are rational polynomial of
{aj}j and {qj}j. Since qj are rational polynomial of {ak}k, we can view ri as
rational polynomial of {ak}k only. We are only interested in numerator of ri
(as a rational polynomial in {ak}k) which will be denoted by r̃i. Note that r̃i
are defined for z ∈ C+ (because they are polynomial of {ak}k which are defined
for z ∈ C+). Now using the fact that all the roots of FE(x) has multiplicity
bounded below byK, we have r̃i(E+ι0) = 0 for almost all E ∈ J for all i. Since
J has non-zero Lebesgue measure, using the Privalov Uniqueness Theorem [50,
page 552], we conclude that ri ≡ 0, ∀ i for z ∈ C

+, which means

Rz(x) = 0 ∀z ∈ C
+.

Hence all the roots of Fz(x) have multiplicity bounded below by K.
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With the lemma in place, part (1) of Theorem 1.2 boils down to writing the
resolvent G(z) in a certain way and taking the limit ℑz → ∞. This is done in
the following corollary to prove the result.

Corollary 2.4. Let Hω be defined by (1.1) and J satisfies the hypothesis of
theorem 1.2. For any finite subset B ⊂ N , if range(PB) ⊂ D(H0) then the
multiplicity of any eigenvalue of the operator

PBH
ωPB : PBH → PBH

is bounded below by K almost surely.

Proof. Using the fact that Hω can be written as (2.1), defining

Hω,λ = Hω + λPB,

and by the definition of Θp, we have

∥

∥(Hω −E − ι0)−1PB

∥

∥ <∞ a.e E ∈ J

for almost all ω. Hence we can use the lemma 2.2 and get that the roots of the
polynomial (in x)

F ω
z (x) = det(PB(H

ω − z)−1PB − xI)

has multiplicity bounded below by K, for almost all ω and z ∈ C+.
Now using the resolvent equation for Hω and H̃ω, where

H̃ω = PBH
ωPB + (I − PB)H

ω(I − PB),

we can write (viewed as an operator on PBH )

PB(H
ω − z)−1PB

=
[

PBH
ωPB − zPB − PBH0(I − PB)(H̃

ω − z)−1(I − PB)H0PB

]−1

. (2.4)

(To get this relation we write Hω = H̃ω + K, and using resolvent equation
twice we have

(Hω − z)−1 = (H̃ω − z)−1 + (H̃ω − z)−1K(H̃ω − z)−1

+ (Hω − z)−1K(H̃ω − z)−1K(H̃ω − z)−1.

Then take the last term to the left to get

(Hω−z)−1
[

I −K(H̃ω − z)−1K(H̃ω − z)−1
]

=
[

I + (H̃ω − z)−1K
]

(H̃ω−z)−1.
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Since action of H̃ω preserves PBH and (PBH )⊥ and K = PBH0(I − PB) +
(I − PB)H0PB, once we multiply PB from left and right in above expression,
we are left with

G(z)
[

PB − PBK(H̃ω − z)−1K(H̃ω − z)−1PB

]

= PB(H̃
ω − z)−1PB.

We get the expression (2.4) by using above expression and the fact that PB(H̃
ω−

z)−1PB is same as (PBH
ωPB − z)−1.)

So we conclude that the algebraic multiplicity of eigenvalues of the matrix

PBH
ωPB − PBH0(I − PB)(H̃

ω − z)−1(I − PB)H0PB

is at least K for almost all ω and z ∈ C+. Using the fact that (I − PB)H0PB

and PBH0(I − PB) are finite rank operator hence bounded and

∥

∥

∥
(H̃ω − z)−1

∥

∥

∥
≤ 1

ℑz ∀z ∈ C
+,

there exists Cω,B such that

∥

∥

∥
PBH0(I − PB)(H̃

ω − z)−1(I − PB)H0PB

∥

∥

∥
<
Cω,B

ℑz .

Denoting D = PBH
ωPB and C(z) = PBH0(I − PB)(H̃

ω − z)−1(I − PB)H0PB,
we have the multiplicity of each root of the polynomial (in x)

det(D + C(z)− xI)

is bounded below by K for almost all z ∈ C
+. Set

ǫ = min{|E1 −E2| : E1, E2 ∈ σ(D) & E1 6= E2},

then for ℑz > 3Cω,B

ǫ
, we have

‖(D + C(z)− E)φ‖ = ‖C(z)φ‖ < ǫ

3
‖φ‖ ,

where E ∈ σ(D) and φ ∈ PBH be the corresponding eigenvector, so we
conclude that D+C(z) has an eigenvalue in the ball {w ∈ C : |w−E| < ǫ/3}.
On other hand for any eigenvalue Ez of D+C(z) for ℑz > 3Cω,B

ǫ
, let φz be the

corresponding eigenvector for Ez, then

‖(D −Ez)φz‖ = ‖(D + C(z)− Ez)φz − C(z)φz‖ ≤ ǫ

3
‖φz‖ ,

so there is a unique eigenvalue of D in the ball {e ∈ C : |e− Ez| < ǫ
3
}.
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Let {Ez
i }i be an enumeration of the eigenvalues of D+C(z) for ℑz > 3Cω,B

ǫ
,

then
det(D + C(z)− xI) =

∏

i

(Ez
i − x)n

z
i

where nz
i is the algebraic multiplicity of the eigenvalue Ez

i . Since all the roots
of the polynomial det(D+C(z)−xI) has multiplicity bounded below by K, we
have nz

i ≥ K. Using the convergence of Ez
i to an eigenvalue of D as ℑz → ∞

and
det(D + C(z)− xI)

ℑz→∞−−−−→ det(D − xI)

we get that that all the eigenvalues of D have algebraic multiplicity bounded
below by K. Since D is self-adjoint, we have the equality between algebraic
and geometric multiplicity, hence proving the corollary.

For the second part of theorem 1.2, we first need to obtain the claim for
Hω-invariant subspaces H ω

P . This is done in the following lemma.

Lemma 2.5. Let H,Hλ be defined as in Lemma 2.1. Suppose that the roots of
the polynomial (in x)

det(G(z)− xI)

have multiplicity at least K for almost all z ∈ C+. Then the multiplicity of all
the eigenvalues in Ŝ of Hλ restricted to HP is at least K for almost all λ with
respect to Lebesgue measure.

Proof. Following the steps from the proof of Lemma 2.2, we can construct the
function Rz(x) from the polynomial (in x)

Fz(x) = det(G(z)− xI)

and conclude that the algebraic multiplicity of the eigenvalues for G(E+ ι0) is
bounded below by K for almost all E ∈ R with respect to Lebesgue measure.
Hence the set

S̃ = {E ∈ S : algebraic multiplicity of any eigenvalue of

G(E + ι0) is bounded below by K}

satisfies Leb(S \ S̃) = 0.
Next using Lemma 2.1 we have

dim(kerHP
(Hλ − E)) = dim(kerPH (I + λG(E + ι0))) ∀E ∈ Ŝ.
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Using the equation

〈

ψ,ℑP (H − E − ιǫ)−1Pψ
〉

= ǫ
∥

∥(H − E − ιǫ)−1ψ
∥

∥

2 ∀ψ ∈ PH ,

and the fact that ℑG(E + ι0) ≥ 0, we conclude that

ℑG(E + ι0) = 0 ∀E ∈ Ŝ,

so G(E + ι0) is a self-adjoint matrix, hence the geometric and algebraic multi-
plicity of its eigenvalues coincide. So the lemma is concluded by the fact that
on the Ŝ ∩ S̃ the multiplicity of an eigenvalues of Hλ is at least K and using
Spectral Averaging, (whereby if A,B are self-adjoint operators on H and Mλ

the operator of multiplication by λ in L2(R), then the spectral measures of
A⊗ I +Mλ ⊗B on L2(R)⊗H , associated with vectors in the range of B are
always absolutely continuous for positive bounded operators B, see for example
Krishna-Stollmann [53], from which it follows that), we have

PEHλ
(Ŝ \ S̃)P = 0 a.e λ,

so the multiplicity eigenvalues of Hλ in Ŝ is bounded below by K for almost
all λ.

Now the proof of second part of Theorem 1.2 is a consequence of lemma
2.2 and 2.5 along with a density argument.

Corollary 2.6. Let Hω be defined as (1.1) and assume that it satisfies the
hypothesis of the Theorem 1.2 on the set J ⊂ Θp with the lower bound on the
multiplicity given by K. Then the multiplicity of any eigenvalue in Σω for the
operator Hω is bounded below by K for almost all ω.

Proof. The proof is done for an increasing family of Hω-invariant Hilbert sub-
spaces, the theorem then follows by a density argument. Let {ni}i∈N be an
enumeration of N and define

Hω,λ
N = Hω +

N
∑

i=1

λiPni
,

and set QN =
∑N

i=1 Pni
. Denote

H
ω
N = 〈f(Hω)φ : f ∈ Cc(R), φ ∈ QNH 〉,
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and let Qω
N : H → H ω

N be the canonical projection onto H ω
N . For any

ψ ∈ QNH we have

〈

φ, eιtH
ω,λ
N ψ

〉

=
〈

φ, eιtH
ω

ψ
〉

+ ι
N
∑

i=1

λi

∫ t

0

〈

φ, eι(t−s)Hω

Pni
eιsH

ω,λ
N ψ

〉

ds

=
〈

e−ιtHω

φ, ψ
〉

+ ι

N
∑

i=1

λi

∫ t

0

〈

e−ι(t−s)Hω

φ, Pni
eιsH

ω,λ

N ψ
〉

ds

= 0 ∀t ∈ R

for φ ∈ (H ω
N )⊥, i.e H

ω
N is also Hω,λ

N -invariant. Following the decomposition
of (2.1) we have a change of variables from λ1, · · · , λN to η1, · · · , ηN using an
orthogonal matrix such that

Hω,λ
N = Hω +

N
∑

i=2

ηi

(

N
∑

j=1

uj,iPni

)

+
η1√
N
QN

where η1 =
1√
N

∑N

i=1 λi. So writing

Hω,η
N = Hω +

N
∑

i=2

ηi

(

N
∑

j=1

uj,iPni

)

,

we have Hω,λ
N = Hω,η

N + η1√
N
QN . To distinguish the variable η1 denote

Hω,η,κ
N = Hω,η

N + κQN .

Since J ⊂ Θp, the definition of Θp implies

∥

∥(Hω,η,κ
N −E − ι0)−1QN

∥

∥ <∞ a.e E ∈ J,

for almost all ω, η, κ. Hence using the lemma 2.2 for Hω,η,κ
N , we conclude that

all the roots of the polynomial (in x)

det(QN(H
ω,η
N − z)−1QN − xI)

have multiplicity at least K, where QN (H
ω,η
N − z)−1QN is viewed as a linear

operator on QNH . With this observation, hypothesis of lemma 2.5 is satisfied.
So we conclude that the multiplicity of spectrum of Hω,η,κ

N restricted to H
ω
N

(which is Hω,η,κ
N -invariant) in

Ŝω,η = {E ∈ R : QN(H
ω,η
N −E − ι0)−1QN exists and finite, and
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∥

∥(Hω,η
N − E − ι0)−1QN

∥

∥ <∞}

is bounded below by K, for almost all κ. Since the second condition on the set
Ŝω,η is precisely the Lemma 2.1 criterion for pure point spectrum, we have

Leb(Σω,η \ Ŝω,η) = 0,

where Σω,η is same as Σω̃ where ω̃ is such that H ω̃ = Hω,η
N .

Hence we conclude that for almost all λ, the multiplicity of the operator
Hω,λ

N restricted on the invariant subspace H ω
N is bounded below byK. This also

implies that the multiplicity of the operator Hω restricted onto the invariant
subspace H

ω
N is bounded below by K for almost all ω. This follows because

{ωni
}Ni=1 are independent of {ωn}n∈N\{ni:1≤i≤N}. Now using the inclusion H ω

N ⊆
H ω

N+1 for all N which is implied by our hypothesis 1.1 on Pn„ the subspace

H̃
ω :=

⋃

N∈N
H

ω
N

is Hω-invariant subspace of H . By above argument it is clear that the mul-
tiplicity of spectrum, in Σω for Hω restricted on closure of H̃ ω, is bounded
below by K. We get the conclusion of the corollary by observing that H̃ ω is
dense in H because of QN → I strongly.

Proof of Theorem 1.2 :

By hypothesis of the theorem, the hypothesis of Corollary 2.4 is satisfied
hence part (1) of the theorem is proved. For the second part, Corollary 2.6
gives the proof of the statement.

Proof of Theorem 1.4:

By the definition of Σω, our Lemma 2.1 and the comment at the beginning
of the proof of Lemma 2.1 together with the Hω invariance of H

ω
B imply that

Hω
H ω

B
has no continuous component of spectrum in Σω. We then start with a

proof of simplicity of the spectrum of Hω
B in I. To this end take I = [a, b] and

set

IN,n =

[

a+
b− a

N
n, a +

b− a

N
(n+ 2)

]

, n ∈ {0, · · · , N − 2}, N ∈ N.

Then, using the Minami estimate we have for each N ∈ N,

P({ω : ∃E ∈ I ∩ σ(Hω
B) such that E has multiplicity higher than one})

≤ P(
{

ω : ηB,IN,n
(ω) ≥ 2 for some n ∈ {0, · · · , N − 2}

}

)
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≤
N−2
∑

n=0

P(ηB,IN,n
) ≤ 4C|B|2|I|2

N
,

which converges to zero as N → ∞.
Following the steps involved in obtaining (2.1), we can write

Hω
B = H ω̃

B + wPB,

where w = 1
|B|
∑

n∈B ωn and w is real random variable with an absolutely
continuous distribution, depending on ω̃, having non-zero density at all points.

Since Hω
B is an operator on PBH and PB acts as the identity operator on

PBH , we have σ(H ω̃
B + wPB) = w + σ(H ω̃

B). Combining these two facts we
see that any eigenvalues of σ(H ω̃

B) ∩ (I −w) is almost surely simple for almost
all w. Since ∪w∈RI − w = R, we conclude that σ(H ω̃

B) has simple spectrum.
Since Hω

B −H ω̃
B is a multiple of identity, we conclude that Hω

B also has simple
spectrum a.e. ω, let us denote this set of full measure to be ΩB.

It remains to show that the simplicity of spectrum of Hω
B implies the sim-

plicity of eigenvalues of PB(H
ω−z)−1PB, as a linear operator on PBH for a.e.

ω.
The simplicity of the spectrum of PB(H

ω − z)−1PB follows if we show that
the discriminant ∆ω(z) of the polynomial

F ω
z (x) = det(PB(H

ω − z)−1PB − xI)

is non-vanishing. Now, ∆ω(z) can be written as the determinant of the Sylvester
matrix of F ω

z and it’s derivative, which is are analytic functions of z in C
+.

Since Hω
B has simple spectrum, using the representation (2.4) for PB(H

ω −
z)−1PB we conclude that ∆ω(z) 6= 0 for ℑz ≫ 1, which implies that ∆ω(z) 6= 0
for almost all z ∈ C+. Hence, by Privalov uniqueness theorem [50, page 552],

lim
ǫ↓0

∆ω(E + ιǫ) 6= 0 a.a E ∈ R,

which gives the simplicity of spectrum of PB(H
ω −E − ι0)−1PB for almost all

E. So using Lemma 2.1 we conclude that the operator Hω,λ
B restricted on the

invariant subspace H ω
B on the set Σω has simple spectrum.

So using the fact that H ω
B is Hω,λ

B -invariant, we get the simplicity of spec-
trum of H ω̃ in Σω̃ on the subspace H ω̃

B for almost all ω̃.

Proof of Theorem 1.5:

By using argument from the proof of theorem 1.4, we conclude that the
multiplicity of the spectrum for Hω

B is bounded above by K. Hence using the
decomposition (2.4) of PB(H

ω − z)−1PB and following the argument of the
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corollary 2.4 we conclude that the multiplicity of any roots of the polynomial
(in x)

Fz(x) = det(PB(H
ω − z)−1PB − xI)

is bounded above by K for almost all z ∈ C+ almost surely, where PB(H
ω −

z)−1PB is viewed as a linear operator on PBH for any finite B ⊂ N . So
using [28, Theorem 1.1] we conclude that the maximum multiplicity of Hω is
bounded above by K. This completes the proof of the theorem.

Proof of Theorem 1.6:

The assumption that the spectral multiplicity in J ⊂ R \ Σc is bigger than
one implies that the spectral multiplicity of σ(Hω

B) is bigger than one for any
finite B ⊂ N , by Theorem 1.2. Therefore for any finite subset B ⊂ N , and
any interval I ⊂ R, we have

P({ω : ηB,ω(J) = 1}) = 0,

showing that

P({ω : ηk,E,IN (ω) = 1}) = 0, ∀k ≤ mN , ∀ N ∈ N.

Therefore, if {ηωk,E,IN
} is a uniformly asymptotically negligible array of random

variables, (see [51, Section 11.2], then Theorem 11.2 of [51], applied to random
variables, shows that the limit

Xω,E = lim
N→∞

mN
∑

k=1

ηωk,E,IN

with the convergence in distribution, is not a Poisson random variable. The
proof of [47, theorem 5.1], also gives an alternative proof of the Theorem.
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