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Abstract. On the space of positive definite matrices we consider dis-

tance functions of the form d(A,B) = [trA(A,B)− trG(A,B)]
1/2

, where
A(A,B) is the arithmetic mean and G(A,B) is one of the different versions
of the geometric mean. When G(A,B) = A1/2B1/2 this distance is ‖A1/2−
B1/2‖2, and when G(A,B) = (A1/2BA1/2)1/2 it is the Bures-Wasserstein
metric. We study two other cases: G(A,B) = A1/2(A−1/2BA−1/2)1/2A1/2,

the Pusz-Woronowicz geometric mean, and G(A,B) = exp
(

logA+logB
2

)

,

the log Euclidean mean. With these choices d(A,B) is no longer a metric,
but it turns out that d2(A,B) is a divergence. We establish some (strict)
convexity properties of these divergences. We obtain characterisations of
barycentres of m positive definite matrices with respect to these distance
measures.

1. Introduction

Let p and q be two discrete probability distributions; i.e. p = (p1, . . . , pn)
and q = (q1, . . . , qn) are n -vectors with nonnegative coordinates such that
∑

pi =
∑

qi = 1. The Hellinger distance between p and q is the Euclidean
norm of the difference between the square roots of p and q ; i.e.

d(p, q) = ‖√p−√
q‖2 =

[

∑

(
√
pi −

√
qi)

2
]1/2

=
[

∑

(pi + qi)− 2
∑√

piqi

]1/2

.

(1)
This distance and its continuous version, are much used in statistics, where it
is customary to take dH(p, q) = 1√

2
d(p, q) as the definition of the Hellinger

distance. We have then

dH(p, q) =
√

trA(p, q)− trG(p, q), (2)

where A(p, q) is the arithmetic mean of the vectors p and q, G(p, q) is their
geometric mean, and tr x stands for

∑

xi.

A matrix/noncommutative/quantum version would seek to replace the
probability vectors p and q by density matrices A and B ; i.e., positive
semidefinite matrices A,B with trA = trB = 1. In the discussion that fol-
lows, the restriction on trace is not needed, and so we let A and B be any
two positive semidefinite matrices. On the other hand, a part of our analysis
requires A and B to be positive definite. This will be clear from the context.
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We let P be the set of n×n complex positive definite matrices. The notation
A > 0 means that A is positive (semi) definite.

Here we run into the essential difference between the matrix and the scalar
case. For positive definite matrices A and B, there is only one possible arith-
metic mean, A(A,B) = (A + B)/2. However, the geometric mean G(A,B)
could have different meanings. Each of these leads to a different version of the
Hellinger distance on matrices. In this paper we study some of these distances
and their properties.

The Euclidean inner product on n × n matrices is defined as 〈A,B〉 =
trA∗B. The associated Euclidean norm is

‖A‖2 = (trA∗A)1/2 = (
∑

|aij|2)1/2.

Recall that the matrices AB and BA have the same eigenvalues. Thus
if A and B are positive definite, then AB is not positive definite unless A
and B commute. However, the eigenvalues of AB are all positive as they
are the same as the eigenvalues of A1/2BA1/2. Also every matrix with positive
eigenvalues has a unique square root with positive eigenvalues. If A,B are
positive definite, then we denote by (AB)1/2 the square root that has positive
eigenvalues. Since (AB)1/2 = A1/2(A1/2BA1/2)1/2A−1/2, the matrices (AB)1/2

and (A1/2BA1/2)1/2 are similar, and hence have the same eigenvalues.

The straightforward generalisation of (1) for positive definite matrices A,B
is evidently

d1(A,B) = ‖A1/2 − B1/2‖2 =
[

tr(A+B)− 2trA1/2B1/2
]1/2

. (3)

Another version could be

d2(A,B) =
[

tr(A+B)− 2tr(A1/2BA1/2)1/2
]1/2

=
[

tr(A+B)− 2tr(AB)1/2
]1/2

.
(4)

While it is clear from (3) that d1 is a metric on P, it is not obvious that
d2 is a metric. It turns out that

d2(A,B) = min ‖A1/2 − B1/2U‖2, (5)

where the minimum is taken over all unitary matrices U. It follows from
this that d2 is a metric. This is called the Bures distance in the quantum
information literature and the Wasserstein metric in the literature on optimal
transport. It plays an important role in both these subjects. We refer the
reader to [18] for a recent exposition, and to [12, 26, 28, 36] for earlier work.
The quantity F (A,B) = tr(A1/2BA1/2)1/2 is called the fidelity between the
states A and B. In the special case when A = uu∗, B = vv∗ are pure
states, we have F (A,B) = |u∗v| and d2(A,B) =

√
2(1− |u∗v|)1/2. For qubit

states this is the distance on the Bloch sphere.
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For various reasons, theoretical and practical, the most accepted definition
of geometric mean of A,B is the entity

A#B = A1/2(A−1/2BA−1/2)1/2A1/2. (6)

This formula was introduced by Pusz and Woronowicz [32]. When A and
B commute A#B reduces to A1/2B1/2. The mean A#B has been studied
extensively for several years and has remarkable properties that make it useful
in diverse areas. One of them is its connection with operator inequalities related
to monotonicity and convexity theorems for the quantum entropy. See Chapter
4 of [15] for a detailed exposition. Another object of interest has been the log
Euclidean mean L(A,B) defined as

L(A,B) = exp

(

logA+ logB

2

)

. (7)

This mean too reduces to A1/2B1/2 when A and B commute, and has been
used in various contexts [7], though it lacks some pleasing properties that A#B
has.

Thus it is natural to consider two more matrix versions of the Hellinger
distance, viz,

d3(A,B) = [tr(A+B)− 2tr(A#B)]1/2 , (8)

and

d4(A,B) = [tr(A+B)− 2trL(A,B)]1/2 . (9)

In view of what has been discussed, we may expect that d3 and d4 are metrics
on P. However, it turns out that neither of them obeys the triangle inequality.
Examples are given in Section 2. Nevertheless, this is compensated by the fact
that the squares of d3 and d4 both are divergences, and hence they can serve
as good distance measures.

A smooth function Φ from P×P to the set of nonnegative real numbers,
R+ , is called a divergence if

(i) Φ(A,B) = 0 if and only if A = B.
(ii) The first derivative DΦ with respect to the second variable vanishes

on the diagonal; i.e.,

DΦ(A,X)|X=A = 0. (10)

(iii) The second derivative D2Φ is positive on the diagonal; i.e.,

D2Φ(A,X)|X=A(Y, Y ) > 0 for all Hermitian Y. (11)

See [4], Sections 1.2 and 1.3.

The prototypical example is the Euclidean divergence Φ(A,B) = ‖A −
B‖22. The functions d21(A,B) and d22(A,B) are also divergences. Another
well-known example is the Kullback-Leibler divergence [4]. A special kind
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of divergence is the Bregman divergence corresponding to a strictly convex
differentiable function ϕ : P → R. If ϕ is such a function, then

Φ(A,B) = ϕ(A)− ϕ(B)−Dϕ(B)(A− B), (12)

is called the Bregman divergence corresponding to ϕ. Not every divergence
arises in this way. In particular, d2H(p, q), the square of the Hellinger distance,
on probability vectors is not a Bregman divergence.

Now we describe our main results. We will show that both the functions

Φ3(A,B) = d23(A,B) and Φ4(A,B) = d24(A,B)

are divergences. We will show that Φ3 and Φ4 are jointly convex in the
variables A and B, and strictly convex in each of the variables separately.
One consequence of this is that for every m -tuple A1, . . . , Am in P and
positive weights w1, . . . , wm the minimisation problem

min
X>0

m
∑

j=1

wjd
2(X,Aj) (13)

has a unique solution when d = d3 or d4. When d = d1 the minimum in
(13) is attained at the 1/2 -power mean

Q1/2 =

(

m
∑

j=1

wjA
1/2
j

)2

. (14)

This is one of the much studied family of classical power means. When d = d2,
the minimiser in (13) is the Wasserstein mean [2, 18]. This is the unique
solution of the matrix equation

X =
m
∑

j=1

wj(X
1/2AjX

1/2)1/2. (15)

This mean has major applications in optimal transport, statistics, quantum
information and other areas. Means with respect to various divergences have
also been of interest in information theory. See e.g., [8, 30]. An inspection of
(14) and (15) shows a common feature. Both for d1 and d2 the minimiser in
(13) is the solution of the equation

X =
m
∑

j=1

wjG(X,Aj), (16)

where G is the version of the geometric mean chosen in the definition of d.
That is, G(A,B) = A1/2B1/2 in the case of d1, and G(A,B) = (A1/2BA1/2)1/2

in the case of d2. It turns out that this is also the case for d4 but not for d3.
When d = d3 the minimisation problem (13) has a unique solution X which
is also the solution of the matrix equation

X2 =
2

π

m
∑

j=1

wj

∞
∫

0

(

λX−1 + A−1
j

)−2 √
λdλ. (17)
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This, in general, is different from the solution of the matrix equation

X =
m
∑

j=1

wj(X#Aj). (18)

When d = d4, the problem (13) has a unique solution X which is also the
solution of the matrix equation

X =
m
∑

j=1

wjL(X,Aj). (19)

In the past few years there has been extensive work on the Cartan mean
(also known as Karcher or Riemann mean) of positive definite matrices. This
is the solution of the minimisation problem

min
X>0

m
∑

j=1

wjδ
2(X,Aj), (20)

where

δ(A,B) = ‖ log A−1/2BA−1/2‖2
is the Cartan metric on the manifold P .This mean from classical differential
geometry has found several important applications [9, 15, 16, 24, 29].

Our analysis of Φ4 leads to some interesting facts about quantum relative
entropy. We observe that the convex function ϕ(A) = tr (A logA− A) leads
to the Bregman divergence Φ(A,B) = trA(logA− logB)−tr(A−B), and the
log Euclidean mean is the barycentre with respect to this Bregman divergence.
As a related issue, we explore properties of barycentres with respect to general
matrix Bregman divergences, and point out similarities and crucial differences
between the scalar and matrix case.

Convexity properties of matrix Bregman divergences have been studied in
[11, 31], and matrix approximation problems with divergences in [23]. Means
with respect to matrix divergences are studied in [22]. In [35] Sra studied a
related distance function

δS(A,B) :=
[

log det
(A+B

2

)

− 1

2
(log detA+ log detB)

]1/2

and showed that this is a metric on P . Several parallels between this metric
and the Cartan metric are pointed out in [35].

2. Convexity and derivative computations

Inequalities for traces of matrix expressions have a long history. For the
different geometric means mentioned in Section 1, we know [17] that

tr(A#B) 6 trL(A,B) 6 tr(A1/2B1/2) 6 tr(AB)1/2. (21)
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It follows that

d23(A,B) > d24(A,B) > d21(A,B) > d22(A,B). (22)

Since d1 is a metric, this implies that d23(A,B) = 0 if and only if A = B.
The same is true for d24(A,B). Thus Φ3 and Φ4 satisfy the first condition in
the definition of a divergence. To prove Φ3 is a divergence we need to compute
its first and second derivatives. These results are of independent interest.

Proposition 1. Let A be a positive definite matrix. Let g be the map on P

defined as

g(X) = A#X.

Then the derivative of g is given by the formula

Dg(X)(Y ) =

∞
∫

0

(λ+XA−1)−1Y (λ+ A−1X)−1dν(λ), (23)

where dν(λ) = 1
π
λ1/2dλ.

Proof. We will use the integral representation

x1/2 =
1√
2
+

∞
∫

0

(

λ

λ2 + 1
− 1

λ+ x

)

dν(λ), (24)

where dν(λ) = 1
π
λ1/2dλ. See [14] p.143. Using this we see that the derivative

of the function X → X1/2 is the linear map

DX1/2(Y ) =

∞
∫

0

(λ+X)−1Y (λ+X)−1dν(λ), (25)

where Y is any Hermitian matrix. This shows that

Dg(X)(Y )

=

∞
∫

0

A1/2(λ+ A−1/2XA−1/2)−1A−1/2Y A−1/2(λ+ A−1/2XA−1/2)−1A1/2dν(λ)

=

∞
∫

0

(λ+XA−1)−1Y (λ+ A−1X)−1dν(λ).

This proves the proposition.

Theorem 2. Let DΦ3 and D2Φ3 be the first and the second derivatives of
Φ3. Then

DΦ3(A,A) = 0, (26)

D2Φ3(A,A)(Y, Y ) =
1

2
trY A−1Y. (27)

(In other words, the gradient of Φ3 at every diagonal point is 0 and the
Hessian is positive.)
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Proof. For a fixed A, let g be the map on P defined as g(X) = A#X.
When X = A, the expression in (23) reduces to

1

π

∞
∫

0

λ1/2

(1 + λ)2
dλY =

1

2
Y.

Recalling that Φ3(A,X) = tr(A+X)− 2trg(X), we see that

DΦ3(A,X)|X=A(Y ) = 0 for all Y.

This establishes (26). Next note that for the second derivative we have

D2Φ3(A,X)(Y, Z) = −2D2 (trg(X)) (Y, Z). (28)

From (23) we see that

D (tr g(X)) (Y )

=

∞
∫

0

tr(λ+XA−1)−1Y (λ+ A−1X)−1dν(λ)). (29)

By definition

D2(tr g(X))(Y, Z) =
d

dt
|t=0D(tr g(X + tZ))(Y ).

Hence, from (29) we see that D2(tr g(X))(Y, Z) is equal to

−
∞
∫

0

tr(λ+XA−1)−1ZA−1(λ+XA−1)−1Y (λ+ A−1X)−1dν(λ)

−
∞
∫

0

tr(λ+XA−1)−1Y (λ+ A−1X)−1A−1Z(λ+ A−1X)−1dν(λ). (30)

When X = A and Z = Y, this reduces to give

D2Φ3(A,A)(Y, Y ) =
2

π

∞
∫

0

λ1/2

(1 + λ)3
dλ trY A−1Y

=
1

2
trY A−1Y.

This proves (27).

Consider maps f defined on P and taking values in P or R++ (the set
of positive real numbers). We say that f is concave if for all X, Y in P and
0 6 α 6 1

f((1− α)X + αY ) > (1− α)f(X) + αf(Y ). (31)

It is strictly concave if the two sides of (31) are equal only if X = Y. A map
f from P× P into P or R+ is called jointly concave if for all X1, X2, Y1, Y2
in P and 0 6 α 6 1,

f((1− α)X1 + αY1, (1− α)X2 + αY2) > (1− α)f(X1, X2) + αf(Y1, Y2).
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It is a basic fact in the theory of the geometric mean that A#B is jointly
concave in A and B , see [5, 6]. However, it is not strictly jointly concave.

Indeed, even the function f(a, b) =
√
ab on R+ × R+ is not strictly jointly

concave (its restriction to the diagonal is linear). Our next theorem says that
in each of the variables separately, the geometric mean is strictly concave.

Theorem 3. For each A the function

f(X) = trA#X

is strictly concave on P. This implies that the function g(X) = A#X is also
strictly concave.

Proof. Suppose

tr

(

A#

(

X + Y

2

))

=
trA#X + trA#Y

2
.

We have to show that this implies X = Y. Rewrite the above equality as

tr

{

A#

(

X + Y

2

)

− A#X + A#Y

2

}

= 0.

By the concavity of A#X, the expression inside the braces is positive semi-
definite. The trace of such a matrix is zero if and only if the matrix itself is
zero. Hence

A#

(

X + Y

2

)

=
A#X + A#Y

2
.

Using the definition (6) this can be written as

A1/2

(

A−1/2X + Y

2
A−1/2

)1/2

A1/2 =
1

2
A1/2

(

A−1/2XA−1/2
)1/2

A1/2

+
1

2
A1/2(A−1/2Y A−1/2)1/2A1/2.

Cancel the factors A1/2 occurring on both sides, then square both sides, and
rearrange terms to get

A−1/2(X + Y )A−1/2 − (A−1/2XA−1/2)1/2(A−1/2Y A−1/2)1/2

−(A−1/2Y A−1/2)1/2(A−1/2XA−1/2)1/2 = 0.

This is the same as saying
[

(A−1/2XA−1/2)1/2 − (A−1/2Y A−1/2)1/2
]2

= 0.

The square of a Hermitian matrix Z is zero only if Z = 0. Hence, we have

(A−1/2XA−1/2)1/2 = (A−1/2Y A−1/2)1/2.

From this it follows that X = Y.
Finally, if X, Y are to elements of P such that g((X + Y )/2) = (g(X) +

g(Y ))/2 , taking traces on both sides, we have, f((X + Y )/2) = (f(X) +
f(Y ))/2. We have seen that this implies X = Y .
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As a consequence, we observe that

Φ3(A,B) = tr(A+B)− 2tr(A#B)

is jointly convex in A and B and is strictly convex in each of the variables
separately.

Now we turn to the analysis of Φ4 on the same lines as above. The
arguments we present in this case are quite different. From (22) we know that

Φ3(A,B) > Φ4(A,B) > Φ1(A,B).

We also know that

Φ3(A,A) = Φ4(A,A) = Φ1(A,A) = 0,

and
DΦ1(A,A) = DΦ3(A,A) = 0.

Together, these three relations lead to the conclusion that

DΦ4(A,A) = 0.

Thus Φ4 satisfies condition (10).

By a theorem of Bhagwat and Subramanian [13]

exp

(

1

m

m
∑

j=1

log Aj

)

= lim
p→0+

(

1

m

m
∑

j=1

Ap
j

)1/p

. (32)

One of the several remarkable concavity theorems of Carlen and Lieb, [20, 21]

says that the expression tr
(
∑

Ap
j

)1/p
is jointly concave in A1, . . . , Am, when

0 < p 6 1, and jointly convex when 1 6 p 6 2. Using equation (32) we
obtain from this the joint concavity of trL(A,B). As a consequence Φ4(A,B)
is jointly convex in A,B. Hence we have proved the following theorem.

Theorem 4. The function Φ4 is a divergence on P.

We have shown that Φ3 and Φ4 are divergences. But unlike Φ1 and Φ2

they are not the squares of metrics on P, i.e., d3 and d4 are not metrics.
The following two examples show that d3 and d4 do not satisfy the triangle
inequality.

Let

A =

[

2 5
5 17

]

, B =

[

13 8
8 5

]

, C =

[

5 3
3 10

]

.

Then d3(A,B) ≈ 5.0347 and d3(A,C) + d3(C,B) ≈ 4.6768. This example
is a small modification of one suggested to us by Suvrit Sra, to whom we are
thankful.

Let

A =

[

4 −7
−7 13

]

, B =

[

8 −2
−2 1

]

, C =

[

5 −4
−4 5

]

.

Then d4(A,B) ≈ 3.3349 and d4(A,C) + d4(C,B) ≈ 3.3146.
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Next we study some more properties of Φ4 , like its strict convexity in each
of the arguments, and its connections with matrix entropy. To put these in
context we recall some facts about Bregman divergence.

Let ϕ : R+ → R be a smooth strictly convex function and let

Φ(x, y) = ϕ(x)− ϕ(y)− ϕ′(y)(x− y), (33)

be the associated Bregman divergence. Then Φ is strictly convex in the vari-
able x but need not be convex in y. (See, e.g., [23] Section 2.2.)

Given x1, . . . , xm in R+, the minimiser

argmin
m
∑

j=1

1

m
Φ(xj, x), (34)

always turns out to be the arithmetic mean

x =
m
∑

j=1

1

m
xj,

independent of the mother function ϕ.

In fact, this property characterises Bregman divergences; see [23, 8]. We
can also consider the problem

argmin
m
∑

j=1

1

m
Φ(x, xj). (35)

In this case, a calculation shows that the solution is the quasi-arithmetic mean
(the Kolmogorov mean) associated with the function ϕ′. More precisely, the
solution of (35), which we may think of as the mean, or the barycentre, of the
points x1, . . . , xm with respect to the divergence Φ is

µΦ(x1, . . . , xm) = ϕ′−1

(

m
∑

j=1

1

m
ϕ′(xj)

)

. (36)

We wish to study the matrix version of the problems (34) and (35). Here we
run into a basic difference between the one-variable and the several-variables
cases. It is natural to replace the derivative ϕ′ in (36) by the gradient ∇ϕ
in the several-variables case. If ϕ is a differentiable strictly convex function
defined on an open interval I of R , then, its derivative ϕ′ is a strictly
monotone continuous function, and hence a homeomorphism from I to its
image ϕ′(I) . In particular, (ϕ′)−1 is defined. The appropriate generalisation
of these facts to the several-variable case requires the notion of a Legendre type
function.

Definition (Section 26 in [33] or Def. 2.8 in [10]). Suppose ϕ is a convex
lower-semicontinuous function from R

n to R ∪ {+∞} , and let dom f :=
{x ∈ R

n | ϕ(x) < +∞} . We say that ϕ is of Legendre type if it satisfies

(i) int domϕ 6= ∅ ,
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(ii) ϕ is differentiable on int domϕ ,
(iii) ϕ is strictly convex on int domϕ ,
(iv) limt→0+〈∇ϕ(x + t(y − x)), y − x〉 = −∞ , for all x ∈ bdry(dom(ϕ))

and y ∈ int domϕ .

If ϕ is of Legendre type, the gradient mapping ∇ϕ is a homeomorphism
from int domϕ to int domϕ⋆ , where ϕ⋆ denotes the Legendre-Fenchel con-
jugate of ϕ . See Theorem 26.5 in [33].

Lemma 5. If ϕ is of Legendre type, and Φ is the Bregman divergence asso-
ciated with ϕ , and a1, . . . , am ∈ int domϕ , then the function

x 7→
m
∑

j=1

Φ(x, aj)

achieves its minimum at a unique point, which belongs to int domϕ .

The proof is given in Appendix A. We shall apply this lemma in the
situation where ϕ is a convex function defined only on P and taking fi-
nite values on this set. The map ϕ trivially extends to a convex lower-
semicontinuous function defined on the whole space of Hermitian matrices—
set ϕ(X) := lim infY→X, Y ∈P ϕ(Y ) for X ∈ bdry(P) , and ϕ(X) = +∞ if
X 6∈ bdry(P) . We shall say that the original function ϕ defined on P is of
Legendre type if its extension is of Legendre type.

Theorem 6. Let ϕ be a differentiable strictly convex function from P to R,
and let Φ be the Bregman divergence corresponding to ϕ. Then:

(i) The minimiser in the problem

argminX∈P

m
∑

j=1

1

m
Φ(Aj, X), (37)

is the arithmetic mean
m
∑

j=1

1
m
Aj.

(ii) If, in addition, ϕ is of Legendre type, then the problem

argminX∈P

m
∑

j=1

1

m
Φ(X,Aj) (38)

has a unique solution, and this is given by

X = (∇ϕ)−1
(

m
∑

j=1

1

m
∇ϕ(Aj)

)

. (39)

(iii) If ψ is any differentiable strictly convex function from R++ to R

and Φ is the Bregman divergence on P corresponding to the func-
tion ϕ(X) := trψ(X) on P , then the solution of the minimisation
problem (38) is

X = (ψ′)−1
(

m
∑

j=1

1

m
ψ′(Aj)

)

. (40)
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Proof. (i). Since Φ is given by (12),
m
∑

j=1

1

m
Φ(Aj, X) =

m
∑

j=1

1

m
ϕ(Aj)− ϕ(X)−

m
∑

j=1

1

m
Dϕ(X)(Aj −X)

=
m
∑

j=1

1

m
ϕ(Aj)− ϕ(X)−Dϕ(X)

(

m
∑

j=1

1

m
Aj −X

)

=
m
∑

j=1

1

m
ϕ(Aj)− ϕ(X)−Dϕ(X)(A−X),

where A denotes the arithmetic mean
m
∑

j=1

1
m
Aj. Hence

m
∑

j=1

1

m
Φ(Aj, A) =

m
∑

j=1

1

m
ϕ(Aj)− ϕ(A).

Since ϕ is strictly convex, for every X 6= A

ϕ(A)− ϕ(X) > Dϕ(X)(A−X).

This implies that
m
∑

j=1

1

m
Φ(Aj, X) >

m
∑

j=1

1

m
Φ(Aj, A)

which shows that A is the unique minimiser of the problem (37).

(ii). Let Ψ be the map from P to R+ defined as

Ψ(X) =
m
∑

j=1

1

m
Φ(X,Aj).

Then

DΨ(X)(Z) = Dϕ(X)(Z)−
m
∑

j=1

1

m
Dϕ(Aj)(Z).

Lemma 5 shows that the minimum of the map Ψ on the set P is achieved at
some point X ∈ P , and by the first order optimality condition, DΨ(X) = 0 ,
showing that X satisfies (39).

(iii). If ψ is a differentiable convex function on R++ and Φ is the Breg-
man divergence corresponding to ϕ = trψ, then ∇ϕ(X) = ψ′(X). Hence,
to show that the minimisation problem (38) has a solution, it suffices to show
that the first order optimality condition

ψ′(X) =
m
∑

j=1

1

m
ψ′(Aj) (41)

is satisfied for some X in P . Since ψ is strictly convex, as noted above,
ψ′ is strictly increasing and is a homeomorphism from R++ to the interval
J := ψ′(R++) . The spectrum of each matrix ψ′(Aj) belongs to J , and so
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the spectrum of
m
∑

j=1

1
m
ψ′(Aj) also belongs to J , which implies that (41) is

solvable.

The assumption that ϕ is of Legendre type is not needed in the tracial case
(statement (iii)). Proposition 11 in Appendix B shows that this assumption
cannot be dispensed with in the case of statement (ii).

The much studied convex function

ϕ(x) = x log x− x, (42)

on R+ leads to the Bregman divergence

Φ(x, y) = x(log x− log y)− (x− y). (43)

This is called the Kullback-Leibler divergence. Since ϕ′(x) = log x, the solution
of the minimisation problem (35) in this case is

µΦ(x1, . . . , xm) = exp

(

1

m

m
∑

j=1

ϕ(xj)

)

=
m
∏

j=1

x
1/m
j ,

the geometric mean of x1, . . . , xm.

As a matrix analogue of (42) one considers the function on P defined as

ϕ(A) = tr(A logA− A). (44)

The associated Bregman divergence then is

Φ(A,B) = trA(logA− logB)− tr(A− B). (45)

(See [4], p.12). The quantity

S(A|B) = trA(logA− logB), (46)

is called the relative entropy and has been of great interest in quantum informa-
tion. Given A1, . . . , Am in P, their barycentre with respect to the divergence
Φ, i.e., the solution of the minimisation problem (38) is the log Euclidean
mean

L(A1, . . . , Am) = exp

(

1

m

m
∑

j=1

logAj

)

. (47)

It is also of interest to compute the variance of the points A1, . . . , Am with
respect to Φ, i.e., the minimum value of the objective function in (38). This
is the quantity

σ2
Φ =

m
∑

j=1

1

m
Φ(µΦ, Aj). (48)
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For the divergence Φ in (45), µΦ is the log Euclidean mean L given in (47).
So

σ2
Φ =

1

m

m
∑

j=1

Φ(L, Aj)

=
1

m

m
∑

j=1

[trL(logL − logAj)− tr(L − Aj)]

=
1

m
tr

{

m
∑

j=1

[

L
(

1

m

m
∑

k=1

logAk − logAj

)

− (L − Aj)

]}

= −trL+
1

m
tr

m
∑

j=1

Aj.

In other words

σ2
Φ = trA(A1, . . . , Am)− trL(A1, . . . , Am), (49)

the difference between the traces of the arithmetic and the log Euclidean means
of A1, . . . , Am.

In particular, the divergence Φ4(A,B) can be characterised using (49), as
the minimum value

min
X>0

[Φ(X,A) + Φ(X,B)] , (50)

where Φ is defined by (45). Using this characterisation we can show that the
function Φ4(A,B) is strictly convex in each of the variables separately. To this
end, we recall the following lemma of convex analysis, showing that the “mar-
ginal” of a jointly convex function is convex; compare with Proposition 2.22
of [34] where a similar result (without the strictness conclusion) is provided.

Lemma 7. Let f(x, y) be a jointly convex function which is strictly convex
in each of its variables separately. Suppose for each a, b

g(a, b) = min
x

[f(x, a) + f(x, b)] , (51)

exists. Then the function g(a, b) is jointly convex, and is strictly convex in
each of the variables separately.

Proof. Given a1, a2, b1, b2, choose x1 and x2 such that

g(a1, b1) = f(x1, a1) + f(x1, b1)

and

g(a2, b2) = f(x2, a2) + f(x2, b2).
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Then

g

(

a1 + a2
2

,
b1 + b2

2

)

6 f

(

x1 + x2
2

,
a1 + a2

2

)

+ f

(

x1 + x2
2

,
b1 + b2

2

)

6
1

2
[f(x1, a1) + f(x2, a2) + f(x1, b1) + f(x2, b2)]

=
1

2
[g(a1, b1) + g(a2, b2)] .

This shows that g is jointly convex. Now we show that it is strictly convex in
the first variable.

Let a1, a2, b be any three points with a1 6= a2. Choose x1 and x2 such
that

g(a1, b) = f(x1, a1) + f(x1, b)

and

g(a2, b) = f(x2, a2) + f(x2, b).

Two cases arise. If x1 = x2 = x, then

f

(

x1 + x2
2

,
a1 + a2

2

)

= f

(

x,
a1 + a2

2

)

<
1

2
[f(x, a1) + f(x, a2)] ,

because of strict convexity of f in the second variable. This implies that

g

(

a1 + a2
2

, b

)

<
1

2
[f(x, a1) + f(x, a2) + f(x, b) + f(x, b)]

=
1

2
[g(a1, b) + g(a2, b)] .

If x1 6= x2, then by strict convexity of f in the first variable,

f

(

x1 + x2
2

, b

)

<
1

2
[f(x1, b) + f(x2, b)] ,

and by joint convexity of f

f

(

x1 + x2
2

,
a1 + a2

2

)

6
1

2
[f(x1, a1) + f(x2, a2)] .

Adding the last two inequalities we get

g

(

a1 + a2
2

, b

)

<
1

2
[g(a1, b) + g(a2, b)] .

Thus g(a, b) is strictly convex in the first variable, and by symmetry it is so
in the second variable.

Theorem 8. For each A, the function f(X) = Φ4(X,A) is strictly convex
on P.
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Proof. One of the fundamental, and best known, properties of the relative
entropy S(A|B) is that it is jointly convex function of A and B. (See, e.g.,
Section IX.6 in [14].) It is also known that if ϕ is strictly convex function on
R+, then the function trϕ(X) is strictly convex on P. (See, e.g., Theorem
4 in [19].) It follows from this that S(A|B) is strictly convex in each of the
variables separately. Combining these properties of S(A|B), Lemma 7 and the
characterisation of Φ4(A,B) as the minimum value in (50) we obtain Theorem
8.

It might be pertinent to add here that the question of equality in the joint
convexity inequality

S

(

A1 + A2

2

∣

∣

B1 +B2

2

)

6
S(A1|B1) + S(A2|B2)

2
, (52)

has been addressed in [25] and [27]. In [27] Jencova and Ruskai show that the
equality holds in (52) if and only if

log(A1 + A2)− log(B1 +B2) = logA1 − logB1

= logA2 − logB2.

On the other hand, Hiai et al [25] show that equality holds in (52) if and only
if

(B1 +B2)
−1/2(A1 + A2)(B1 +B2)

−1/2 = B
−1/2
1 A1B

−1/2
1

= B
−1/2
2 A2B

−1/2
2 .

We are thankful to F. Hiai for making us aware of these results.

3. Barycentres

If f is a convex function on an open convex set, then a critical point of
f is the global minimum of f. If f is strictly convex, then f can have at
most one such critical point. In this section we show that for d = d3 and d4,
the objective function in (13) has a critical point, and hence in both cases the
problem (13) has a unique solution.

Theorem 9. When d = d3, the minimum in (13) is attained at a unique
point X which is the solution of the matrix equation (17)

X2 =
2

π

m
∑

j=1

wj

∞
∫

0

(

λX−1 + A−1
j

)−2 √
λdλ.

This minimiser is the 1/2 -power mean Q1/2 given by (14) if Q1/2 commutes
with every Aj. In particular, the minimiser is Q1/2 if

(i) all Aj ’s commute, or
(ii) Q1/2 = I.

Proof. For a fixed positive definite matrix A, define the map GA as

GA(X) = A#X.



17

By Proposition 1, we have

DGA(X)(Y ) =

∞
∫

0

(λ+XA−1)−1Y (λ+ A−1X)−1dν(λ).

The objective function in (13) is

f(X) =
m
∑

j=1

wjΦ3(X,Aj).

Using the definition of Φ3 we have

Df(X)(Y ) = tr

(

Y − 2
m
∑

j=1

wjDGAj
(X)(Y )

)

.

Then using the above expression for DGAj
(X) we see that

Df(X)(Y ) = tr



Y − 2
m
∑

j=1

wj

∞
∫

0

(λ+XA−1
j )−1Y (λ+ A−1

j X)−1dν(λ)





= tr







I − 2
m
∑

j=1

wj

∞
∫

0

(

(λ+XA−1
j )(λ+ A−1

j X)
)−1

dν(λ)



Y



 .

At the last step above we use the cyclicity of the trace function. Hence the
critical point of f is the matrix X0 if and only if X0 satisfies the matrix
equation

I = 2
m
∑

j=1

wj

∞
∫

0

(

(λ+XA−1
j )(λ+ A−1

j X)
)−1

dν(λ). (53)

Taking congruence with X on both sides we see that (53) is equivalent to
(17).

We now show that there exists a positive definite matrix X0 that satisfies
(17). Let α, β > 0 such that αI 6 Aj 6 βI for all j = 1, . . . ,m, and let
K be the compact set K = {X ∈ P(n) : αI 6 X 6 βI}. Define the map
F : K → P(n) as

F (X) =



2
m
∑

j=1

wj

∞
∫

0

(λX−1 + A−1
j )−2dν(λ)





1/2

.

Since X,Aj ∈ K, (λ + 1)α−1 > (λX−1 + A−1
j ) > (λ + 1)β−1. Thus we have

α2/(λ+ 1)2 6 (λX−1 +A−1
j )−2 6 β2/(λ+ 1)2. We know that

∫∞
0

dν(λ)/(λ+

1)2 = 1/2. This gives F (X) ∈ K. By the Brouwer fixed point theorem, we
get that F has a fixed point X0 in K. This fixed point X0 is the solution
of (17).
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Suppose Q1/2 commutes with every Aj, 1 6 j 6 m. We show that Q1/2

satisfies (17). Differentiating (24) we get

1

2
x−1/2 =

∞
∫

0

1

(λ+ x)2
dν(λ). (54)

Using Q1/2A
−1
j = A−1

j Q1/2 in (53) and using (54) we get

I = Q
1/2
1/2Q

−1/2
1/2 =

m
∑

j=1

wj

(

A
1/2
j Q

−1/2
1/2

)

=
m
∑

j=1

wj

(

AjQ
−1
1/2

)1/2

= 2
m
∑

j=1

wj

∞
∫

0

(

λ+ A−1
j Q1/2

)−2
dν(λ)

= 2
m
∑

j=1

wj

∞
∫

0

(

(λ+Q1/2A
−1
j )(λ+ A−1

j Q1/2)
)−1

dν(λ).

This proves the second statement of the theorem. If (i) holds, it follows from
(14) that Q1/2 commutes with Aj ’s. The same is trivially true if (ii) holds.

Theorem 10. When d = d4 the minimum in (13) is attained at a unique
point X which satisfies the matrix equation (19)

X =
m
∑

j=1

wjL(X,Aj).

Proof. Start with the integral representation

log x =

∞
∫

0

(

λ

λ2 + 1
− 1

λ+ x

)

dλ, x > 0.

This shows that for all X > 0 and all Hermitian Y we have

D(logX)(Y ) =

∞
∫

0

(λ+X)−1Y (λ+X)−1dλ.

For a fixed A, let

g(X) =
1

2
(logA+ logX).

Then

Dg(X)(Y ) =
1

2

∞
∫

0

(λ+X)−1Y (λ+X)−1dλ. (55)
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The log Euclidean mean L(A,X) = eg(X). So, by the chain rule and Dyson’s
formula (see [14] p. 311), we have

DL(A,X)(Y ) =

1
∫

0

e(1−t)g(X)Dg(X)(Y )etg(X)dt.

This shows that

D(trL(A,X))(Y ) = tr

1
∫

0

e(1−t)g(X)Dg(X)(Y )etg(X)dt

= tr
[

eg(X)Dg(X)(Y )
]

,

using the cyclicity of trace. Using (55) and the cyclicity once again, we obtain

D(trL(A,X))(Y ) =
1

2
tr

∞
∫

0

(λ+X)−1eg(X)(λ+X)−1Y dλ

=
1

2
tr





∞
∫

0

(λ+X)−1L(A,X)(λ+X)−1dλ



Y.

Hence, for the function

Φ4(A,X) = d24(A,X) = tr(A+X)− 2trL(A,X),

we have

DΦ4(A,X)(Y )

= tr



I −
∞
∫

0

(λ+X)−1L(A,X)(λ+X)−1dλ



Y.

The objective function in (13) is

f(X) =
m
∑

j=1

wjΦ4(Aj, X).

So, we have

Df(X)(Y )

= tr



I −
∞
∫

0

(λ+X)−1Z(λ+X)−1dλ



Y, (56)

where

Z =
m
∑

j=1

wjL(Aj, X).
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This shows that Df(X) = 0 if and only if
∞
∫

0

(λ+X)−1Z(λ+X)−1dλ = I. (57)

Choose an orthonormal basis in which X = diag(x1, . . . , xn), and let Z =
[

zij
]

in this basis. Then the condition (57) says that
∞
∫

0

zij
(λ+ xi)(λ+ xj)

dλ = δij for all i, j.

This shows that Z is diagonal, and

1

zii
=

∞
∫

0

1

(λ+ xi)2
dλ =

1

xi
.

Thus X = Z =
m
∑

j=1

wjL(Aj, X), as claimed.

We should also show that the equation (19) has a unique solution. Let
α, β be positive numbers such that αI 6 Aj 6 βI for all 1 6 j 6 m. Let K
be the compact convex set K = {X ∈ P : αI 6 X 6 βI}. The function logX
is operator monotone. So for all X in K we have logαI 6 logX 6 log βI.
Hence L(X,Aj) is in K for all 1 6 j 6 k. This shows that the function

F (X) =
m
∑

j=1

wjL(X,Aj) maps K into itself. By Brouwer’s fixed point theorem

F has a unique fixed point X in K. This X is a solution of (19) and therefore
must be unique.

Finally, we remark that in the case of d1, the barycentre is given explicitly
by the formula (14). For d2, d3, d4 it has been given implicitly as solution of
the equations (15),(17),(19), respectively. When m = 2 and w1 = w2 = 1/2 ,
the solution of (15) is the Wasserstein mean of A1 and A2 defined as

1

4

(

A1 + A2 + (A1A2)
1/2 + (A2A1)

1/2
)

.

See [18].
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Appendix A. Proof of Lemma 5

We make a variation of the proof of Theorem 3.12 in [10], dealing with a
related problem (the minimisation of Φ over a closed convex set).
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Since ϕ is of Legendre type, Theorem 3.7(iii) of [10] shows that for all a ∈
int domϕ , the map x 7→ Φ(x, a) is coercive, meaning that lim‖x‖→∞Φ(x, a) =
+∞ . A sum of coercive functions is coercive, and so the map

Ψ(x) :=
m
∑

j=1

1

m
Φ(x, aj)

is coercive. The infimum of a coercive lower-semicontinuous function on a
closed non-empty set is attained, so there is an element x̄ ∈ clo int domϕ
such that infx∈clo int domϕ Φ(x) = Φ(x̄) < +∞ . Suppose that x̄ belongs to
the boundary of int domϕ . Let us fix an arbitrary z ∈ int domϕ , and let
g(t) := Ψ((1− t)x̄+ tz) , defined for t ∈ [0, 1) . We have

g′(t) = 〈∇ϕ((1− t)x̄+ tz)−
m
∑

j=1

1

m
∇ϕ(aj), z − x̄〉 .

Using property (iv) of the definition of Legendre type functions, we get that
limt→0+g

′(t) = −∞ , which entails that g(t) < g(0) = Ψ(x̄) for t small
enough. Since (1− t)x̄+ tz ∈ int domϕ for all t ∈ (0, 1) , this contradicts the
optimality of x̄ . So x̄ ∈ int domϕ , which proves Lemma 5.

Appendix B. Examples

In the last statement of Theorem 6, dealing with tracial convex functions,
we required ϕ to be differentiable and strictly convex on P . In the second
statement, dealing with the non tracial case, we made a stronger assumption,
requiring ϕ to be of Legendre type. We now give an example showing that
the Legendre condition cannot be dispensed with. To this end, it is convenient
to construct first an example showing the tightness of Lemma 5.

Need for the Legendre condition in Lemma 5. Let us fix N > 3 , let
e = (1, 1)⊤ ∈ R

2 ,

L =

(

N − 1 −2
−2 N − 1

)

(58)

and consider the affine transformation g(x) = e + Lx . Let a = (N, 0)⊤ ,
b = (0, N)⊤ , and

ā := g−1(a) =
1

N2 − 2N − 3

(

N2 − 2N − 1
N − 1

)

,

b̄ := g−1(b) =
1

N2 − 2N − 3

(

N − 1
N2 − 2N − 1

)

.

Observe that ā, b̄ ∈ R
2
++ since N > 3 .

Consider now, for p > 1 , the map ϕ(x) := ‖x‖pp = |x1|p+ |x2|p defined on

R
2 and ϕ̄(x) = ϕ(g(x)) . Observe that ϕ is strictly convex and differentiable.

Let Φ̄ denote the Bregman divergence associated with ϕ̄ , and let Ψ̄(x) :=
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a

b

e

u

C

The example illustrated. The point u is the unconstrained min-
imum of the sum of Bregman divergences Ψ(x) := Φ(x, a) +
Φ(x, b) associated with ϕ(x) = xp1 + xp2 , here p = 1.2 . Level
curves of Ψ are shown. The minimum of Ψ on the simplicial
cone C is at the unit vector e . An affine change of variables
sending C to the standard quadrant, and a lift to the cone of
positive semidefinite matrices leads to Proposition 11

1
2
(Φ̄(x, ā) + Φ̄(x, b̄)) . We claim that 0 is the unique point of minimum of Ψ̄

over R
2
+ . Indeed,

∇Ψ̄(x) = L⊤(∇ϕ(g(x)))− 1

2

(

L⊤(∇ϕ(a)) + L⊤(∇ϕ(b))
)

,

from which we get

∇Ψ̄(0) = L(p(1−Np−1/2)e) = (N − 3)p(1−Np−1/2)e .

It follows that ∇Ψ̄(0) ∈ R
2
++ if p > 1 is chosen close enough to 1 , so that

1−Np−1/2 > 0 . Then, since Ψ̄ is convex, we have

Ψ̄(x)− Ψ̄(0) > 〈∇Ψ̄(0), x〉 > 0, for all x ∈ R
2
+ \ {0} (59)

showing the claim.
Consider now the modification ϕ̂ of ϕ̄ , so that ϕ̂(x) = ϕ̄(x) for x ∈

R
2
+ , and ϕ̂(x) = +∞ otherwise. The function ϕ̂ is strictly convex, lower-

semicontinuous, and differentiable on the interior of its domain, but not of
Legendre type, and the conclusion of Lemma 5 does not apply to it.

The geometric intuition leading to this example is described in the figure.

Need for the Legendre condition in Theorem 6. We next construct
an example showing that the Legendre condition in the second statement of
Theorem 6 cannot be dispensed with. Observe that the inverse of the linear
operator L in (58) is given by

L−1 =
1

N2 − 2N − 3

(

N − 1 2
2 N − 1

)

.

In particular, it is a nonnegative matrix.
We set τ = ( 0 1

1 0 ) , and consider the “quantum” analogue of L , i.e.,

T (X) = (N − 1)X − 2τXτ .
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Then,

T−1(X) =
1

N2 − 2N − 3

(

(N − 1)X + 2τXτ
)

is a completely positive map leaving P invariant. The analogue of the map g
is

G(X) = I + T (X)

where I denotes the identity matrix.
We now consider the map ϕ(X) := ‖X‖pp = tr(|X|p) defined on the space

of Hermitian matrices. The function ϕ is differentiable and strictly convex,
still assuming that p > 1 . We set Ā := diag(ā) ∈ P , B̄ := diag(b̄) ∈ P , and
now define Φ̄ to be the Bregman divergence associated with ϕ̄ := ϕ ◦G . Let

Ψ̄(X) :=
1

2

(

Φ̄(X, Ā) + Φ̄(X, B̄)
)

.

We then have the following result.

Proposition 11. The minimum of the function Ψ̄ on the closure of P is
achieved at point 0 . Moreover, the equation

∇ϕ̄(X) =
1

2
(∇ϕ̄(Ā) +∇ϕ̄(B̄)) (60)

has no solution X in P .

Proof. From [3] (Theorem 2.1) or [1] (Theorem 2.3), we have

d

dt
|t=0 tr |X + tY |p = pRe tr |X|p−1U∗Y

where X = U |X| is the polar decomposition of X . In particular, if X is
diagonal and positive semidefinite,

∇ϕ(X) = pXp−1 .

Then, by a computation similar to the one in the scalar case above, we get

∇Ψ̄(0) = (N − 3)p(1−Np−1/2)I ∈ P .

We conclude, as in (59), that

Ψ̄(X)− Ψ̄(0) > 〈∇Ψ̄(0), X〉 > 0, for all X ∈ cloP \ {0} ,

where now 〈·, ·〉 is the Frobenius scalar product on the space of Hermitian
matrices. It follows that 0 is the unique point of minimum of Ψ̄ on cloP .

Moreover, if the equation (60) had a solution X ∈ P , the first order
optimality condition for the minimisation of the function Ψ̄ over P would
be satisfied, showing that Ψ̄(Y ) > Ψ̄(X) for all X ∈ P , and by density,
Ψ̄(0) > Ψ̄(X) , contradicting the fact that 0 is the unique point of minimum
of Ψ̄ over cloP .

Note added to the second version: In the earlier version of this paper
posted on January 5, 2019 that appeared in Letters in Mathematical Physics,
109, (2019) 1777-1804, , we made an unfortunate error. Theorem 9 in that
version wrongly claimed that for the case d = d3 the solution of the minimisa-
tion problem (13) is also the solution of the matrix equation (18). The mistake
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in the statement and in the proof has been pointed in J. Pitrik and D. Vi-
rosztek, Quantum Hellinger distances revisited, arXiv: 1903.10455v3. In this
paper some more general divergence functions are considered, the barycentre
equations are derived, and an example is given to show that the solution to
the matrix equations (17) and (18) need not be the same.
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