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ON THE LOCAL EIGENVALUE STATISTICS FOR RANDOM BAND

MATRICES IN THE LOCALIZATION REGIME

PETER D. HISLOP AND M. KRISHNA

Abstract. We study the local eigenvalue statistics ξNω,E associated with the eigenvalues of
one-dimensional, (2N + 1) × (2N + 1) random band matrices with independent, identically
distributed, real random variables and band width growing as Nα, for 0 < α < 1

2
. We consider

the limit points associated with the random variables ξNω,E[I ], for I ⊂ R, and E ∈ (−2, 2). For

Gaussian distributed random variables with 0 6 α < 1
7
, we prove that this family of random

variables has nontrivial limit points for almost every E ∈ (−2, 2), and that these limit points
are Poisson distributed with positive intensities. The proof is based on an analysis of the
characteristic functions of the random variables ξNω,E[I ] and associated quantities related to
the intensities, as N tends towards infinity, and employs known localization bounds of [14, 13],
and the strong Wegner and Minami estimates [13]. Our more general result applies to random
band matrices with random variables having absolutely continuous distributions with bounded
densities. Under the hypothesis that the localization bounds hold for 0 < α < 1

2
, we prove

that any nontrivial limit points of the random variables ξNω,E[I ] are distributed according to
Poisson distributions.
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1. Random band matrices: Statement of the problem and main results

A random band matrix (RBM) in one dimension, HN
L , of size 2N + 1 and band width

W := 2L+1, for an integer L = ⌊Nα⌋, with 0 6 α 6 1, is a (2N+1)×(2N+1) real, symmetric
matrix defined through its matrix elements as

〈ei,HN
L ej〉 =

1√
2L+ 1

{
ωij if |i− j| 6 L
0 if |i− j| > L

, (1.1)

with

−N 6 i, j 6 N.
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The results here also hold for periodic band matrices for which the norm in (1.1) is replaced
by periodic norm |i− j|1.

The real random variables ωij = ωji within the band are independent and identically
distributed (iid) up to symmetry. The random variables are assumed to have mean zero, vari-
ance one, and finite moments. These include the most common case of a Gaussian distribution
for which we assume ωij ∈ N (0, 1).

The normalization in (1.1) is chosen so that the variances σij := E{|〈ei,HN
L ej〉|2}, satisfy

L∑

j=−L

σij = 1 =

L∑

i=−L

σij.

That is, the sum of the variances in each row and in each column is equal to one.
We denote by {EN

j (ω)}Nj=N
the set of the 2N+1 eigenvalues of HN

ω . The local eigenvalue

statistics (LES) is defined with respect to the rescaled eigenvalues of HN
ω defined by Ẽj(ω) :=

N(EN
j (ω) − E0) for any E0 ∈ (−2, 2). The LES centered at E0 is the weak limit as N → ∞

of the process

ξNω (ds) :=
N∑

j=−N

δ(N(EN
j (ω)− E0)− s) ds. (1.2)

1.1. Density of states. For 0 < α < 1, the integrated density of states (IDS) for RBM is
given by the semi-circle law:

Nsc(E) =
1

2π

∫ E

−2

√
(4− s2)+ ds, E ∈ [−2, 2]. (1.3)

For α = 0, the IDS is not semi-circle but has a remainder behaving like O(W−1). These results
were proved by Bogachev, Molchanov, and Pastur [1], using the method of moments, and in

Molchanov, Pastur, and Khorunzhĭi [12], using Green’s functions. The proof for the case of
case of α = 1 is due to Wigner, and we refer the reader to [10]. The density of states function
(DOSf) is given by

nsc(E) =
1

2π

√
(4− E2)+, E ∈ [−2, 2]. (1.4)

For a measurable subset J ⊂ R, the semi-circle measure of J is denoted by

Nsc(J) =

∫

J

nsc(s) ds. (1.5)

1.2. Conjectures for the local eigenvalue statistics of RBM. There are two main con-
jectures about the behavior of the LES for RBM as the exponent α varies 0 6 α 6 1:

• Localization regime: 0 6 α < 1
2 and the LES at E ∈ (−2, 2) are given by a Poisson

point process with intensity measure nSC(E) ds, where nSC(s) is the density of the
semi-circle law.

• Delocalization regime: 1
2 < α 6 1 and the LES is that of the Gaussian orthogonal

ensemble (GOE).

These conjectures originated with the numerical studies in [6]. Analytical evidence for these
conjectures was presented in [7] based on the analysis of a related σ-model.



LOCAL EIGENVALUE STATISTICS FOR RANDOM BAND MATRICES 3

One way to understand these conjectures is to note that according to the localization
bound in (1.13), the localization length for scale N behaves like ℓNloc = O(Nαµ). Consequently,
the ratio of the localization length to the overall scale is

κN :=
Nαµ

N
= Nαµ−1. (1.6)

For the assumed optimal value µ = 2, we see that this ratio κN → 0, if α < 1
2 , and κ → ∞, if

α > 1
2 . This is reminiscent of the critical behavior observed for the scaled disorder model of

1D random Schrödinger operators [9].
In this note, we prove that, under two hypotheses, a weaker version of the first con-

jecture is true. These hypotheses are satisfied for Gaussian random variables ωij. For other

distributions, our proof establishes the first conjecture only for 0 < α < 1
3 under the strong

Wegner estimate and the weak Minami estimate.
We mention related work of Shcherbina and Shcherbina [15] who proved that the LES for

the complex Gaussian Hermitian case and α < 1
2 could not be GUE by analyzing the second

mixed moment of the characteristic polynomial using the supersymmetric method.
The main problem of the LES for RBM in the localization phase is the determination

of the intensity of the limiting process. For an interval I ⊂ R, and an energy E ∈ (−2, 2), we
define

bN (I,E) := E

{
TrPHN

L

(
1

N
I + E

)}
. (1.7)

The intensity measure is given by the limit:

lim
N→∞

bN (I,E) = lim
N→∞

E

{
TrPHN

L

(
1

N
I + E

)}
. (1.8)

Although we strongly expect this limit to be nsc(E)|I|, so that the intensity measure of the
limiting process is nsc(E) ds, we have not succeeded in proving this under hypotheses [H1]
and [H2]. Instead, we prove that for any bounded interval I ⊂ R, there is a set of energies
E ∈ (−2, 2) of full measure for which the random variables ξNω,E[I] have limit points that
are Poisson distributed with a nontrivial intensity. These nontrivial intensities are the finite,
positive limit points of BI,E := {bN (I,E) | N ∈ N}. We define this set as LI,E := {0 <
p(I,E) < ∞ | p((I,E) is a limit point of BI,E}.
1.3. The main results. We first state our main result on RBM with real Gaussian random
entries.

Theorem 1.1. Let HN
L be a random band matrix as defined in (1.1), with entries that are

real, independent, Gaussian random variables ωij = ωji ∈ N (0, 1), and with band width 2L+1,
where L = ⌊Nα⌋, for 0 6 α < 1

7 . Then, for any interval I ⊂ R, there exists a set of energies

ΩI ⊂ (−2, 2) of full measure, so that for any E ⊂ ΩI , the set of random variables {ξNω,E [I], N ∈
N}, associated with the local eigenvalue statistics, has limit points that are Poisson distributed
random variables. In particular, the set of non-trivial intensities LI,E 6= ∅, for almost every
E ∈ (−2, 2).

The main new contribution is that the set {bN (I,E) | E ∈ ΩI , n ∈ N}, where bN (I,E)
is defined in (3.21), has at least one finite, positive limit point. Theorem 1.1 is a specific
application of our main theorems on local eigenvalue statistics for RBM in the localization
regime. In order to discuss the general case, we present two hypotheses and then discuss
models for which these hypotheses hold true.
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(1) strong Wegner and Minami estimates

[H1s]: The following estimates hold at any scale Ñ .
(a) [sW ] : For any bounded interval I ⊂ R, we have

E{TrχI(H
Ñ
L )} 6 C0|I|Ñ . (1.9)

(b) [sM ]: For any bounded interval I ⊂ R, we have

P{TrχI(H
Ñ
L ) > 2} 6 E{TrχI(H

Ñ
L )(TrχI(H

Ñ
L )− 1)}

6 CM (|I|Ñ )2. (1.10)

(2) weak Wegner and Minami estimates

[H1w]: The following estimates hold at any scale Ñ .
(a) [wW ] : For any bounded interval I ⊂ R, we have

E{TrχI(H
Ñ
L )} 6 C0|I|

√
WÑ. (1.11)

(b) [wM ]: For any bounded interval I ⊂ R, we have

P{TrχI(H
Ñ
L ) > 2} 6 E{TrχI(H

Ñ
L )(TrχI(H

Ñ
L )− 1)}

6 CM (|I|
√
WÑ)2. (1.12)

(3) Localization estimate

[H2]: For 0 6 µ 6 2, the following estimate holds. Given ρ > 0 and s ∈ (0, 1), there
exist finite constants Cρ,s > 0 and αρ,s > 0, so that for all j, k ∈ ΛN , there exists a
σ > 0 so that

E
{
|〈δj , (HN

ω − E)−1δk〉|s
}
6 Cρ,sN

sασe−αρ,s
|j−k|
Nαµ , (1.13)

for all E ∈ [−ρ, ρ].

Remarks 1.2. (1) The distinction between the weak and strong estimates in [H1s] and

[H1w] is the factor of
√
W ∼ N

α
2 . The weak estimates are obtained by spectral

averaging applied to the diagonal random variables (see, for example, [5]). The strong
estimates for Gaussian random variables are due to [13].

(2) With regard to the localization bound [H2], since we want exponential decay outside
of the band width for |j− k| ≈ N , we must have αµ < 1. If we assume that [H2] holds
for µ = 2, then we must have α < 1

2 , the conjectured regime of localization.
(3) The localization bound (1.13) was proven to hold in [14] for a family of random variables

with an absolutely continuous density and satisfying other conditions. Unfortunately,
the proof in these cases only guarantees the existence of µ > 0 and σ > 0. For the
case of N (0, 1)-Gaussian random variables, Schenker proved that the estimate holds
for some µ 6 8 and σ = 1

2 . This means that the exponent 0 6 α < 1
8 . This result was

improved in [13, Theorem 4] to some µ 6 7 so that 0 6 α < 1
7 . The localization bound

is believed to hold up to the critical exponent α = 1
2 .
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Not much is known about the nature of LES even for the range 0 < α < 1
7 , for which

the localization bound has been proven ([13, 14]). The analysis of the characteristic exponents
in section 2, and of the intensity in section 3, together with the results of [13, 14], form the
basis of Theorem 1.1 that may be paraphrased as: Consider real random band matrices with
Gaussian distributed random entries as in (1.1), and with band widths growing as Nα, for
0 < α < 1

7 . For any interval I ⊂ R, there is a set of energies ΩI ⊂ (−2, 2) of full measure
such that :

(1) All nontrivial limit points of the random variables {ξNω,E[I] | N ∈ N} are Poisson
distributed;

(2) For each energy E ∈ ΩI , there are nontrivial, Poisson distributed limit points of
{ξNω,E [I] | N ∈ N}.

Nontriviality means that the limit point is random variable with a finite, nonzero characteristic
exponent.

In the two main theorems below, we show how characterizations of the LES may be
derived from various assumptions. For example, we believe that the localization bound should
hold in the natural range 0 6 α < 1

2 . Assuming this, we prove that the results paraphrased
above hold for α in this natural range.

We begin with a theorem that is rather general and which applies under the weakest
possible hypotheses: The weak Wegner estimate [H1w], the weak Minami estimate [H1w], and
the localization bound [H2]. This result states that the nontrivial limit points of the random
variables {ξNω,E [I] | N ∈ N} are distributed according to Poisson distributions. Theorem 1.3 is

similar to our result [8, Theorem 5.1] on the LES for random Schrödinger operators on L2(Rd).

Theorem 1.3. Let HN
L be a random band matrix with band width 2L+ 1 as defined in (1.1)

with L = ⌊Nα⌋, for 0 6 α 6 1. Then, the weak Wegner estimate [H1w] and the weak Mi-
nami estimate [wM1] both hold. We assume the localization estimate [H2] for µ = 2 and
0 < α < 1

2 . Then, for each E ∈ (−2, 2), all the nontrivial limit points of the random vari-

ables {ξNω,E [I] | N ∈ N} are distributed according to Poisson distributions with characteristic
exponents having the form

Ψ(t) = (eit − 1)p∗1(I),

where the measures p∗1(I), defined in terms of the local array {ηp,Nk

ω,E } (see section 1.4), are the
nontrivial limit points of the family

{N1−β
P{η1,Nω,E [I] = 1};N ∈ N}.

The weak Wegner and Minami estimates for RBM follow easily from spectral averaging
over the diagonal entries and standard methods. The only limitation on the width comes from
the localization bounds. In the following corollary, we strengthen Theorem 1.3 using what is
presently known concerning the localization bounds from [13, 14].

Corollary 1.1. If the real random variables in the RBM (1.1) are Gaussian distributed and
0 < α < 1

7 , then the assumptions of Theorem 1.3 hold. Consequently, the nontrivial limit

points of {ξNω,E [I] | N ∈ N} are distributed according to Poisson distributions. More generally,
if the random variables are distributed with a bounded density, then there exists a nonzero
0 < α0 <

1
2 , so that the assumptions and results of Theorem 1.3 hold for 0 < α < α0.

Theorem 1.3 and its corollary do not state the existence of any nontrivial limit points.
Upon strengthening the hypotheses, our second main result is the following theorem.
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Theorem 1.4. Let HN
L be a random band matrix with band width 2L+ 1 as defined in (1.1)

with L = ⌊Nα⌋, for 0 6 α 6 1. Let I ⊂ R be a bounded interval. We assume the strong
Wegner and strong Minami estimates of [H1s], and the localization estimate [H2] for µ = 2
and 0 < α < 1

2 . Then, there exists a set ΩI ⊂ (−2, 2), depending on I, with |ΩI | = 4,

such that for fixed E ∈ ΩI , the random variables {ξNω,E [I] | N ∈ N} have non-trivial Poisson-
distributed limit points and the intensity of the corresponding Poisson distribution is given by
lim supN bN (I,E) > 0, where bN (I,E) is defined in (3.1). In particular, each finite, positive
limit point of the set {bN (I,E) | E ∈ ΩI , n ∈ N} is the intensity of a Poisson distributed
random variable that is a limit point of the set {ξNω,E[I] | N ∈ N}.

We recall that a stronger result for the α = 0 fixed band width case was obtained in
[5]. The local point process ξNω,E converges to a Poisson point process with intensity measure

n∞,W (E) ds, where n∞,W is the density of states given by n∞,W (I) = nsc(I) + O(W−1) for
any interval I ⊂ R. Since the band width is independent of N , the strong and weak Wegner
and Minami estimates are the same and a basic localization bound holds at all energies. The
stronger result for α = 0 is due to the fact that much more can be proved about the convergence
of the density of states nN in this case.

Another immediate corollary follows if we replace the strong Minami estimate [H1s] by
the weak Minami estimate [H1w]. The constraint on α is due to the condition α + β < 1 in
(2.12) and condition (3) in Remark 4.1.

Corollary 1.2. We assume the strong Wegner estimate of [H1s], the weak Minami estimate
of [H1w], and the localization bound [H2] with µ = 2. Then the results of Theorem 1.4 hold
for 0 < α < 1

3 .

Finally, we give a sufficient condition for the Poisson distribution of the limit points of
ξNω,E[I] if we only use hypotheses [H1w] and [H2]. We do not know how to prove the necessary
estimates in order to establish a finite, nonvanishing intensity, under these weaker conditions.

Proposition 1.1. Let HN
L be a random band matrix with band width 2L+1 as defined in (1.1)

with L = ⌊Nα⌋, for 0 6 α 6 1. We assume the hypotheses [H1w], the weak Wegner and the
weak Minami estimates, and the localization estimate [H2] for µ = 2 and 0 < α < 1

3 . Let I ⊂ R

be a bounded interval and E ∈ (−2, 2). Then, the random variables {ξNω,E[I] | N ∈ N} have

non-trivial Poisson-distributed limit points provided lim supN NβP{η1,Nω,E [I] = 1} > 0 and finite.

The intensity of the corresponding Poisson distribution is given by lim supN bN (I,E) > 0,
where bN (I,E) is defined in (3.1).

1.4. Brief outline of the proof. The localization hypothesis [H2] is used to recast the
problem in terms of an array of independent random variables. As usual, we divide the set
{−N,−N +1, . . . ,−1, 0, 1, . . . , N − 1, N} into subsets of length 2⌊Nβ⌋+1, for 0 < α < β < 1.
We always assume 2N +1 is divisible by 2⌊Nβ⌋. We label each subset of size 2⌊Nβ⌋+1-points
by p = 1, 2, . . . , Nβ , where Nβ := (2N + 1)(2⌊Nβ⌋+ 1)−1.

We associate a RBM Hp,N
L , of width W = 2⌊Nα⌋ + 1, for each such p. Using the

eigenvalues of Hp,N
L we construct the local eigenvalue statistics ηN,p

ω,E as in (1.2) using the

scaling by N . The process ζNω,E is a superposition of independent processes ηN,p
ω,E . We assume

that α < 1
2 . If the weak Minami estimate is used, we further assume that α+ β < 1.

The proof consists of the following steps. These steps are an adaptation of the arguments
of [8] to the RBM models. We fix a bounded interval I ⊂ R and E ∈ (−2, 2).
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(1) The localization bound [H2] implies that the family of random variable ζNω,E[I] =
∑

p η
N,p
ω,E[I] has the same limit points as ξNω,E[I]. As a consequence, the limit points

of ζω,E [I] and ξω,E[I] are infinitely-divisible random variables. These are described by
their characteristic functions.

(2) The Minami estimate, either weak [H1w] or strong [H1s], guarantees that the distri-
butions of the limit points of the local random variables ζNω,E[I] have no double points.
This determines the form of the characteristic exponents. If the associated intensity is
non-zero, then the limit points are Poisson distributed.

(3) The strong Wegner estimate [H1s] guarantees that some of the limit points of ζNω,E[I],

and consequently of ξNω,E[I], are Poisson distributed with positive intensity.

1.5. Contents. In section 2, we describe the characteristic functions associated with the ran-
dom variables ζNω,E[I]. We use the Wegner and Minami estimates in order to describe the form
of the characteristic exponent. The corresponding intensity of the distribution is studied in
detail in section 3. We prove that the intensity is positive for the distribution of at least some
of the limit points, establishing Theorem 1.4. Section 4 presents the main steps of the proof
of the equality of the limit points of ζω,E[I] and ξω,E[I].

2. Properties of the characteristic functions of ζNω,E[I]

We follow the approach of [8, section 5] in order to obtain an expression for the charac-
teristic function of the limit point random variables corresponding to ζNω,E[I]. We recall from

section 1.4 that the local process ζNω,E is a superposition of independent processes ηN,p
ω,E, for

p = 1, . . . , Nβ . The characteristic exponent ΨN (t) of the random variable ζNω,E[I] is defined by

E{eitζNω,E
[I]} =: eΨN (t). (2.1)

The characteristic function has the form

E{eitζNω,E [I]} = Π
Nβ

p=1 E{eitη
p,N
ω,E

[I]}

= e
∑Nβ

p=1 logE{e
itη

p,N
ω,E

[I]
}, (2.2)

where Nβ := (2N + 1)(2⌊Nβ⌋+ 1)−1 ∈ N, for 0 < α < 1
2 and 0 < α < β < 1. We expand the

logarithm as
∣∣∣log

[
E{eitη

p,N
ω,E

[I] − 1}+ 1
]∣∣∣ =

∣∣∣E{eitη
p,N
ω,E

[I] − 1}
∣∣∣

+O
(∣∣∣E{eitη

p,N
ω,E

[I]} − 1
∣∣∣
2
)
. (2.3)

There are two possible estimates:

• The weak Wegner estimate [H1w] implies that
∣∣∣E{eitη

p,N
ω,E

[I] − 1}
∣∣∣ 6 tE{ηp,Nω,E[I]}

6 tN
α
2
+β−1. (2.4)



8 P. D. HISLOP AND M. KRISHNA

which vanishes as N → ∞ under the condition α + β < 1. This also justifies the
expansion (2.3) as

Nβ∑

p=1

∣∣∣E{eitη
p,N
ω,E

[I]} − 1
∣∣∣
2
6

N

Nβ
· N

α+2β

N2
=

Nα+β

N
, (2.5)

which also vanishes.
• The strong Wegner estimate [H1s] implies that

∣∣∣E{eitη
p,N
ω,E

[I] − 1}
∣∣∣ 6 tE{ηp,Nω,E[I]}

6 tNβ−1. (2.6)

which vanishes as N → ∞ under the condition 0 < β < 1. This also justifies the
expansion (2.3) as

Nβ∑

p=1

∣∣∣E{eitη
p,N
ω,E

[I]} − 1
∣∣∣
2
6

N

Nβ
· N

2β

N2
=

Nβ

N
, (2.7)

which also vanishes.

Consequently, in either case, we can write the characteristic function as

E{eitζNω,E
[I]} = e

∑Nβ
p=1 E{e

itη
p,N
ω,E

[I]
−1}, (2.8)

up to vanishing terms. Because of this, and the homogeneity in p, we may assume that the
characteristic exponent ΨN (t) of ζNω,E[I] has the form

ΨN (t) = NβE{(eitη
1,N
ω,E

[I] − 1)}. (2.9)

To complete the analysis of the limiting characteristic exponent, we write

ΨN (t) = NβE{(eitη
1,N
ω,E

[I] − 1)}

= Nβ

∞∑

j=1

(eitj − 1)P{η1,Nω,E [I] = j}. (2.10)

We note that the general result, Theorem 1.3, requiring only the weak Wegner estimate of
[H1w], follows from this expression. Furthermore, the conditions that guarantee the vanishing
of the expression in (2.5), that is, 0 6 α + β < 1 and α < β, require that α < 1

2 . This shows

that α < 1
2 is a natural condition for the limit points to be described by a Poisson distribution.

Proceeding with the proof of Theorem 1.4, we use the Minami estimates of [H1]. Writing
∞∑

j=1

(eitj − 1)P{η1,Nω,E [I] = j} = (eit − 1)P{η1,Nω,E [I] = 1}+
∞∑

j=2

(eitj − 1)P{η1,Nω,E [I] = j}, (2.11)

the contribution in (2.10) coming from the second term in (2.11) may be bounded

• Using the weak Minami estimate [H1w],

Nβ

∣∣∣E{(eitη
1,N
ω,E

[I] − 1)χ
η
1,N
ω,E

[I]>2
}
∣∣∣ 6 2NβP{η1,Nω,E [I] > 2}

6 2|I|2Nα+β−1, (2.12)

which vanishes as N → ∞ as α+ β < 1, or
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• Using the strong Minami estimate [H1s],

Nβ

∣∣∣E{(eitη
1,N
ω,E

[I] − 1)χ
η
1,N
ω,E

[I]>2
}
∣∣∣ 6 2NβP{η1,Nω,E [I] > 2}

6 2|I|2Nβ−1, (2.13)

which vanishes as N → ∞ as β < 1.

Consequently, in either case we have

lim
N→∞

ΨN (t) = (eit − 1)p1(I), (2.14)

where

p1(I) := lim
N→∞

NβP{η1,Nω,E[I] = 1}, (2.15)

provided the limit exists. The existence of this limit will be studied in the next section.

3. Intensity of the distribution of the limit points of ζNω,E[I]

The main result of this section is the calculation of the intensity of the limiting Poisson
distribution for the limit points of the random variables ξNω,E[I], for any interval I ⊂ R. We
begin with two lemmas. As discussed in section 1, the calculation of the limit:

p1(I) = lim
N→∞

E

{
TrPHN

L

(
1

N
I + E

)}
, (3.1)

is essential for proving the convergence of the local point process ξNω,E to a Poisson point
process. Although we do not calculate this limit here, we prove the existence of positive limit
points of the sequence defined on the right side of (3.1).

To relate this calculation to the result (2.15) of section 2, we note that the analog of

(3.1) for the array of random variables {ηp,Nω,E [I]} is given by

lim
N→∞

Nβ∑

p=1

E

{
TrP

H
p,N
L

(
1

N
I + E

)}
. (3.2)

The weak Minami estimate [H1w] implies the following :

Nβ∑

p=1

E

{
TrP

H
p,N
L

(
1

N
I +E

)}
= NβP{η1,Nω,E [I] = 1}+O(Nα+β−1), (3.3)

whereas the strong Minami estimate [H1s] yields O(Nβ−1), so we see that the limit in (2.15)
is equivalent to the limit in (3.2). The localization hypothesis [H2] implies in turn that the
limits in (3.2) and (3.1) are the same, if they exist, and that they have the same limit points.

Lemma 3.1. For any bounded interval I ⊂ R, and E ∈ (−2, 2), we define

bN (I,E) := E

{
TrPHN

L

(
1

N
I + E

)}
. (3.4)

Then, for any interval J ⊂ (−2, 2), we have

lim
N→∞

∫

J

bN (I,E) dE = |I|Nsc(J) > 0, (3.5)

where Nsc is the semi-circle DOSm defined in (1.5).
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Proof. 1. The local density of states measure µN (ℓDOSm) is defined by

µN (I) :=
1

2N + 1
E

{
TrPHN

L
(I)

}
, (3.6)

for measurable subsets I ⊂ R. The Wegner estimate [H1] implies that µN is absolutely
continuous with respect to Lebesgue measure and its density nN , the local density of states
function (ℓDOSf), satisfies

µN (I) =

∫

I

nN(s) ds. (3.7)

By a change of variables, we write bN , defined in (3.4), in terms of the ℓDOSf:

bN (I,E) = NµN

(
1

N
I + E

)
=

∫

I

nN

( x

N
+ E

)
dx. (3.8)

2. We choose any interval J ⊂ (−2, 2) and integrate bN over J :
∫

J

bN (I,E) dE =

∫

J

dE

∫

I

dx nN

( x

N
+ E

)
. (3.9)

Since nN is smooth, and the integrals are over bounded sets, the order of integration may be
exchanged and we define

bN (x, J) :=

∫

J

nN

( x

N
+E

)
dE. (3.10)

We now study the limit of bN (x, J) as N → ∞. It follows from the work of [12] that for
0 < α 6 1,

lim
N→∞

µN (J) = Nsc(J). (3.11)

(For the α = 0 case, there is an O(W−1)-correction to the semi-circle law.)
3. Given any ǫ > 0, for any 0 < M < ∞, there exists Nǫ,M so that for any N > Nǫ,M , we
have |x/N | < ǫ, for any x ∈ [−M,M ]. For J = [c, d], and for any x ∈ [−M,M ], a change of
variables in (3.10) results in the bounds

∫ d−ǫ

c+ǫ

nN(s) ds 6 bN (x, J) =

∫

x
N
+J

nN (s) ds 6

∫ d+ǫ

c−ǫ

nN (s) ds. (3.12)

It follows from (3.11) that

lim
N→∞

∫ d−ǫ

c+ǫ

nN(s) ds = Nsc([c+ ǫ, d− ǫ]), (3.13)

and similarly for the upper bound in (3.12). Consequently, for any x ∈ [−M,M ], relations
(3.11)-(3.13) imply that

Nsc([c+ ǫ, d− ǫ]) 6 lim inf
N→∞

bN (x, J) 6 lim sup
N→∞

bN (x, J) 6 Nsc([c− ǫ, d+ ǫ]). (3.14)

Hence, since (3.14) holds for any ǫ > 0, we have the pointwise limit

lim
N→∞

bN (x, J) = Nsc(J), (3.15)

for any x ∈ [−M,M ].
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4. We next prove that the set of function {bN (x, J) | x ∈ [−M,M ]} is uniformly bounded in
N . As follows from (3.12), that for N > Nǫ,M ,

∫ d−ǫ

c+ǫ

nN (s) ds 6 inf
x∈[−M,M ]

bN (x, J) 6 sup
x∈[−M,M ]

bN (x, J) 6

∫ d+ǫ

c−ǫ

nN (s) ds. (3.16)

As above, computing liminf and limsup over N > Nǫ,M , we obtain

Nsc([c+ ǫ, d− ǫ]) 6 lim inf
N

{
sup

x∈[−M,M ]
bN (x, J)

}

6 lim sup
N

{
sup

x∈[−M,M ]
bN (x, J)

}

6 Nsc([c− ǫ, d+ ǫ]), (3.17)

and similarly for infx∈[−M,M ] bN (x, J). Since (3.17) holds for all ǫ > 0, we obtain the result

lim
N→∞

{
sup

x∈[−M,M ]
bN (x, J)

}
= Nsc(J). (3.18)

The uniform boundedness of of the set {bN (x, J) | x ∈ [−M,M ]} follows from this.
5. A consequence of the pointwise convergence (3.15) and the uniform boundedness of
{bN (x, J) | x ∈ K}, for any compact subset K ⊂ R, is that for any bounded interval I ⊂ R,
the Lebesgue Dominated Convergence Theorem implies that

lim
N→∞

∫

I

dx

∫

J

dE nN

( x

N
+ E

)
= |I|Nsc(J). (3.19)

From (3.9), this means that

lim
N→∞

∫

J

bN (I,E) dE = |I|Nsc(J) =

∫

I

dx

∫

J

dE nsc(E). (3.20)

�

In order to prove the existence of subsequences {Nk} so that bNk
(I,E) has a positive

limit, we need control over the local density of states function nN (E), In the proof of the
following lemma, we use the strong Wegner estimate [H1s]. This is the only place where this
strong estimate is used.

Lemma 3.2. Assume the strong Wegner estimate of [H1s]. For almost every E ∈ (−2, 2),
depending on I, there exists a sequence Nk(E) → ∞ so that

lim
k→∞

bNk(E)(I,E) =: h(I,E) > 0. (3.21)

Proof. By the strong Wegner estimate of [H2], it follows that there exists a finite C0 > 0 so
that ‖nN‖∞ 6 C0, for all integers N > 0. As a consequence, for all E ∈ (−2, 2), we have

bN (I,E) =

∫

I

nN

( x

N
+ E

)

= N

∫

I
N
+E

nN (u) du

6 C0|I|. (3.22)



12 P. D. HISLOP AND M. KRISHNA

We proved in Lemma 3.1, (3.5), that for any interval J ⊂ (−2, 2), we have

lim
N→∞

∫

J

dE bN (I,E) = Nsc(J)|I| > 0. (3.23)

We now suppose that lim supN bN (I,E) = 0, for any interval J ⊂ (−2, 2). Applying the reverse
Fatou inequality to (3.23), we obtain

0 < Nsc(J)|I| = lim sup
N

∫

J

dE bN (I,E) 6

∫

J

dE lim sup
N

bN (I,E) = 0, (3.24)

a contradiction. Hence, lim supN bN (I,E) > 0 and finite, for almost every E ∈ (−2, 2), and
there exists a subsequence so that (3.21) holds. �

Hence, each finite, positive limit point h(I,E) = lim supN bN (I,E) is the intensity of the

Poisson distribution of a limit point of the set of random variables {ξNk(E)
ω,E [I] | N ∈ N} for

almost every E ∈ (−2, 2).

4. Localization: Equality of the limit points of ζNω,E[I] and ξNω,E[I]

We sketch the proof of the key result of localization

lim
N→∞

E{ξNω,E[f ]− ζNω,E[f ]} = 0, (4.1)

for real test function f . Following Minami [11, section 2], it suffices to prove (4.1) for functions
f(x) = Im(x − z)−1, for Im z > 0. This leads to the consideration of the imaginary parts of

the Green’s functions RN (z) := (HN
L − z)−1 and Rp,N(z) := (Hp,N

L − z)−1.
As above, we construct an array of independent point processes as follows. We choose

0 < α < β < 1, with 0 < α < 1
2 , and, if the weak Minami estimate is used, α + β < 1. We

partition the set of integers 〈−N,N〉 := [−N,N ] ∩ Z into non-overlapping ordered subsets
Iβ,N (p) containing 2⌊Nβ⌋+ 1 points:

〈−N,N〉 =

Nβ⋃

p=1

Iβ,N (p)

= 〈−N,−N + (2⌊Nβ⌋)〉 ∪ 〈−N + (2⌊Nβ⌋) + 1,−N + 2(2⌊Nβ⌋)〉
Nβ⋃

p=3

〈−N + (p − 1)(2⌊Nβ⌋) + 1,−N + p(2⌊Nβ⌋)〉 (4.2)

and where Nβ := 2N+1
2⌊Nβ⌋+1

, assumed to be an integer, is the number of these disjoint subsets.

The local eigenvalue point process associated with the local RBM Hp,N
L and the subset Iβ,N(p)

is denoted by ηp,Nω,E .
We make the following definitions:

• The end points of the ordered set Iβ,N (p) are I±β,N (p), with I−β,N (p) < I+β,N(I).

• The boundary of Iβ,N (p) is defined by ∂Iβ,N (p) := {j ∈ Iβ,N(p) | dist(j, Iβ,N (p)±) 6
Nα}.

• The interior of Iβ,N (p) is defined by IntIβ,N (p) := {j ∈ Iβ,N(p) | dist(j, ∂Iβ,N (p) >

Nµα logN δ)}, where δ > 0 will be chosen below.
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Note that |IntIβ,N (p)| = O(Nβ), and |∂Iβ,N (p)| = O(Nα), and

dist(IntIβ,N (p), ∂Iβ,N (p)) = O(Nµα logN δ)

.

Remark 4.1. The various scales determined by the exponents α, β, µ satisfy the relations:

(1) 0 6 α < 1
2 , and α < β to insure that Nα < Nβ;

(2) 0 < α + β < 1, using the weak Wegner estimate, see (2.5), or 0 < β < 1, using the
strong Wegner estimate, see (2.7);

(3) αµ < β < 1 to ensure exponential decay from (1.13) and that Nµα logN δ < Nβ.

For the conjectured optimal value µ = 2, and working with only the weak assumptions [H1w],
the conditions are 2α < β < 1 and α + β < 1 (see (2.12)). These are satisfied if we require
that α < 1

3 and 2
3 < β < 1. If we use the strong assumptions, we may take α < 1

2 .

With the choice of f(x) = Im(x − z)−1, for Im z > 0, the difference in (4.1) is bounded
as

1

2N + 1

∣∣∣∣∣∣
ImTrRN (z)−

Nβ∑

p=1

ImTrRN,p(z)

∣∣∣∣∣∣
6 AN (z) +BN (z), (4.3)

where

AN (z) :=
1

2N + 1

Nβ∑

p=1




∑

j∈Iβ,N(p)\IntIβ,N (p)

[ImGN (j, j; z) + ImGN,p(j, j; z)]


 , (4.4)

and

BN (z) :=
1

2N + 1

Nβ∑

p=1

∑

j∈IntIp,N (I)




∑

〈k,ℓ〉∈∂Iβ,N (p)

|GN,p(j, k; z)||ωkℓ||GN,p(ℓ, j; z)|


 . (4.5)

We estimate AN (z) using a priori bounds on the matrix elements of the resolvents:

E{AN (z)} 6
1

2N + 1

(
N

Nβ

)
(Nαµ logN δ) [E{| ImGN (j, j; z)|} + E{| ImGN,p(j, j; z)|}]

= O
(
Nαµ logN δ

Nβ

)
, (4.6)

which vanishes as N → ∞.
Turning to the second term BN (z), we have

E{BN (z)
s
2 } 6

1

2N + 1

Nβ∑

p=1

∑

j∈IntIp,N (I)




∑

〈k,ℓ〉∈∂Iβ,N (p)

E{|GN,p(j, k; z)|
s
2

∣∣∣∣
ωkℓ

N
α
2

∣∣∣∣

s
2

|GN,p(ℓ, j; z)|
s
2}


 .

(4.7)
We use the Cauchy-Schwarz inequality to bound the expectation:

E{|GN,p(j, k; z)|
s
2 |ωkℓ|

s
2 |GN,p(ℓ, j; z)|

s
2} 6 E{|GN,p(j, k; z)|s}

1
2E{|ωkℓ|s|GN,p(ℓ, j; z)|s}

1
2}

6 E{|GN,p(j, k; z)|s}
1
2E{|ωkℓ|2s}

1
4E{|GN,p(ℓ, j; z)|2s}

1
4 }

6 N
sα
2 e−κp,sN

−αµ|j−k|E{|ωkℓ|2s}
1
4E{|GN,p(ℓ, j; z)|2s}

1
4 .

(4.8)
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We have assumed that the moments of the random variables are bounded, and it follows from
(1.13) that the resolvent satisfies the bound

E{|GN,p(ℓ, j; z)|2s}
1
4 6 C1N

sσ, (4.9)

for a constant C1 > 0 independent of N and z ∈ C
+, and for s < 1

2 , so that we obtain

E{BN (z)
s
2} 6 C1N

sα
4
+sσ−β

∑

j∈IntIβ,N(1)




∑

〈k,ℓ〉∈∂Iβ,N (1)

e−κ1,s
|j−k|
Nαµ




6 C1N
α
8
+σ

2
−βNβNαµ

[
1

Nκ1,sδ
− e−Nβ−αµ

]
. (4.10)

This vanishes as N → ∞ provided we choose δ > κ−1
1,s[α

(
1
8 + µ

)
+ σ

2 ] and β > αµ. The

remainder of the proof follows as in the proof of Minami in [11, section 2].
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