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ORTHOGONAL POLYNOMIALS ASSOCIATED WITH A

CONTINUED FRACTION OF HIRSCHHORN

GAURAV BHATNAGAR AND MOURAD E. H. ISMAIL

Dedicated to the memory of Dick Askey

Abstract. We study orthogonal polynomials associated with a continued
fraction due to Hirschhorn. Hirschhorn’s continued fraction contains as special
cases the famous Rogers–Ramanujan continued fraction and two of Ramanu-
jan’s generalizations. The orthogonality measure of the set of polynomials
obtained has an absolutely continuous component. We find generating func-

tions, asymptotic formulas, orthogonality relations, and the Stieltjes transform
of the measure. Using standard generating function techniques, we show how
to obtain formulas for the convergents of Ramanujan’s continued fractions,
including a formula that Ramanujan recorded himself as Entry 16 in Chapter
16 of his second notebook.

1. Introduction

The connection of continued fractions with orthogonal polynomials is well known.
Indeed, orthogonal polynomials made an appearance in the context of continued
fractions as early as 1894, in the work of Stieltjes [19, 20]. Our objective in this
paper is to study orthogonal polynomials associated to a continued fraction due
to Hirschhorn [12] (also considered by Bhargava and Adiga [6]). This continued
fraction is

1

1− b+ a +

b+ λq

1− b+ aq +

b+ λq2

1− b+ aq2 +

b+ λq3

1− b + aq3 + · · · , (1.1)

where we have changed a few symbols in order to fit the notation used by Andrews
and Berndt [3] in their edited version of Ramanujan’s Lost Notebook. Hirschhorn’s
continued fraction contains three of Ramanujan’s famous continued fractions. For
example, when one of a or b is 0, it reduces to continued fractions in the Lost
Notebook (see [3] and [5, Ch. 16]); when both a and b are 0 it is the Rogers–
Ramanujan continued fraction.

Some of the orthogonal polynomials arising from these special cases have been
studied before. A set of orthogonal polynomials corresponding to the b = 0 case
have been studied previously by Al-Salam and Ismail [1], and we study one more.
The orthogonality measure of the polynomials associated to Hirschhorn’s continued
fraction studied here has an absolutely continuous component, as opposed to the
discrete measure in [1].
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The techniques we use were developed by Askey and Ismail in their memoir [4].
These authors study classical orthogonal polynomials using techniques involving
recurrence relations, generating functions and asymptotic methods. They also used
a theorem of Nevai [18]. In addition, we apply a moment method developed by
Ismail and Stanton [16]. In the context of Ramanujan’s continued fractions, these
ideas have been applied previously by Al–Salam and Ismail [1] and Ismail and
Stanton [17].

The contents of this paper are as follows. In Section 2 we provide some back-
ground information from the theory of orthogonal polynomials. In Section 3, we
translate Hirschhorn’s continued fraction to a form suitable for our study. Further,
we apply Nevai’s theorem to compute a formula for the absolutely continuous com-
ponent of the measure of the orthogonal polynomials associated with Hirschhorn’s
continued fraction. In Section 4, we obtain another expression for this by invert-
ing the associated Stieltjes transform. In Section 5, we provide another solution
of the recurrence relation consisting of functions that are moments over a discrete
measure. In Section 6, we consider a continued fraction of Ramanujan obtained
by taking b = 0 in Hirschhorn’s continued fraction, where we obtain a discrete
orthogonality measure.

Finally, in Section 7, we show how to obtain formulas for the convergents of a
continued fraction. Such a formula was given by Ramanujan himself, who gave a
formula for the convergents of

1

1 +

λq

1 +

λq2

1 +

λq3

1 + · · · , (1.2)

the Rogers–Ramanujan continued fraction. His formula for its convergents appears
as Entry 16 in Chapter 16 of Ramanujan’s second notebook (see Berndt [5]).

To state Ramanujan’s formula, we require some notation. We need the q-rising
factorial (q; q)n, which is defined to be 1 when n = 0; and

(q; q)n = (1 − q)(1− q2) · · · (1 − qn),

for n a positive integer.
Next we have the q-binomial coefficient, defined as

[
n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

where n ≥ k are nonnegative integers. When n < k we take
[
n
k

]
q
= 0.

Ramanujan’s formula is as follows.

Nn

Dn
=

1

1 +

λq

1 +

λq2

1 +

λq3

1 + · · · +
λqn

1
, (1.3)

where

Nn =
∑

k≥0

qk
2+kλk

[
n− k

k

]

q

and

Dn =
∑

k≥0

qk
2

λk

[
n− k + 1

k

]

q

.

The sums Nn and Dn are finite sums. For example, the summand of Nn is 0 when
the index k is such that n− k < k.
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Unlike the work of Ramanujan, there will be no mystery about how such formulas
are discovered.

2. Background: From continued fractions to orthogonal

polynomials

If there is a continued fraction, then there is a three-term recurrence relation.
And if the recurrence relation is of the ‘right type’, it defines a set of orthogonal
polynomials. Such a recurrence relation is central to the study of the associated
orthogonal polynomials and examining it directs our study. The objective of this
section is to collate this background information from the theory of orthogonal
polynomials. We have used Chihara [10] and the second author’s book [13]. For
introductory material on these topics we recommend Andrews, Askey and Roy [2].

The right type of continued fraction is called the J-fraction, which is of the form

A0

A0x+B0 −
C1

A1x+B1 −
C2

A2x+B2 − · · · . (2.1)

The kth convergent of the J-fraction is given by

Nk(x)

Dk(x)
:=

A0

A0x+B0 −
C1

A1x+B1 − · · · −
Ck−1

Ak−1x+Bk−1
.

The following proposition shows how to compute the convergents of a continued
fraction.

Proposition 2.1 ([13, Th. 2.6.1, p. 35]). Assume that AkCk+1 6= 0, k = 0, 1, . . . .
Then the polynomials Nk(x) and Dk(x) are solutions of the recurrence relation

yk+1(x) = (Akx+Bk)yk(x)− Ckyk−1(x), for k > 0, (2.2)

with the initial values

D0(x) = 1, D1(x) = A0x+B0, N0(x) = 0, N1(x) = A0.

Instead of (2.2), we consider a three term recurrence equation of the form

xyk(x) = yk+1(x) + αkyk(x) + βkyk−1(x), for k > 0, (2.3)

where αk is real for k ≥ 0 and βk > 0 for k > 0. This three-term recurrence can be
obtained from (2.2) by mildly re-scaling the functions involved.

Let the polynomials {Pk(x)} satisfy (2.3), with the initial values

P0(x) = 1 and P1(x) = x− α0.

We will also have occasion to consider the polynomials {P ∗
k (x)}, satisfying (2.3)

with the initial conditions P ∗
0 (x) = 0 and P ∗

1 (x) = 1. The P ∗
k (x) correspond to the

numerator and Pk(x) to the denominator of the associated J-fraction. Note that
both P ∗

k (x) and Pk(x) are monic polynomials, of degree k − 1 and k, respectively.
The next proposition shows that the Pk(x) are orthogonal with respect to a

measure µ.

Proposition 2.2 (Spectral Theorem [13, Th. 2.5.2]). Given a sequence {Pn(x)}
as above, there is a positive measure µ such that

∫ b

a

Pn(x)Pm(x)dµ(x) = β1β2 . . . βn · δmn.
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Some pertinent facts.

• If {αk} and {βk} are bounded, then the support of µ is bounded, and [a, b]
is a finite interval. In addition, the measure µ is unique.

• The interval [a, b] is called the ‘true interval of orthogonality’, and is a
subset of the convex hull of supp(µ). All the zeros of the set of polynomials
{Pk(x)} lie here; indeed, it is the smallest such interval.

• The measure µ could possibly have both discrete and an absolutely contin-
uous component. The orthogonality relation is then of the form
∫ b

a

Pn(x)Pm(x)µ′(x)dx +
∑

j

Pn(xj)Pm(xj)w(xj) = hnδmn,

where xj are the points where µ has mass w(xj), and hn > 0.
• (Blumenthal’s Theorem [10, Th. IV-3.5, p. 117] (rephrased)) If αk → α and
βk → 0, then the measure of the orthogonal polynomials defined by (2.3)
is purely discrete. However, if αk → α and βk → β > 0, then µ has an
absolutely continuous component.

Next, we have a proposition that shows the connection between the continued
fraction and the Stieltjes transform of the measure.

Proposition 2.3 (Markov, see [13, Th. 2.6.2]). Assume that the true interval of
orthogonality [a, b] is bounded. Then

lim
k→∞

P ∗
k (x)

Pk(x)
=

∫ b

a

dµ(t)

x− t
,

uniformly for x 6∈ supp(µ).

From here, we can use Stieltjes’ inversion formula (see [13, Eq. (1.2.9)]) to obtain
a formula for dµ. Let

X(x) =

∫ b

a

dµ(t)

x− t
, where x 6∈ supp(µ).

Then

µ(x2)− µ(x1) = lim
ǫ→0+

∫ x2

x1

X(x− iǫ)−X(x+ iǫ)

2πi
dx.

So µ′ exists at x, and we have [13, Eq. (1.2.10)]:

µ′(x) =
X(x− i0+)−X(x+ i0+)

2πi
. (2.4)

To summarize, each J-fraction is associated with a three-term recurrence re-
lation. The solutions of a (possibly scaled) three-term recurrence relation, under
certain conditions, are orthogonal polynomials. Both the numerator and denomi-
nator of the continued fraction satisfy the recurrence relation, with differing initial
conditions. The limit of their ratio, that is the value of the continued fraction, gives
a formula for the orthogonality measure of the denominator polynomials.

3. Hirschhorn’s Continued Fraction: computing the measure

In this section, we begin our study of the orthogonal polynomials associated
with Hirschhorn’s continued fraction. On examining the associated three-term re-
currence relation, we find that the associated denominator polynomials have an
orthogonality measure with an absolutely continuous component. Our goal in this
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section is to compute a formula for this, using a very useful theorem of Nevai [18].
Nevai’s theorem requires finding the asymptotic expression for the denominator
polynomials, for which we will use Darboux’s method.

We need some notation. The q-rising factorial (a; q)n is defined as

(a; q)n :=

{
1 for n = 0

(1− a)(1− aq) · · · (1− aqn−1) for n = 1, 2, . . . .

In addition

(a; q)∞ :=

∞∏

k=0

(1− aqk) for |q| < 1.

We use the short-hand notation

(a1, a2, . . . , ar; q)k := (a1; q)k(a2; q)k · · · (ar; q)k.
We now begin our study of Hirschhorn’s continued fraction by considering the

more general J-fraction

H(x) :=
1− b

x(1 − b) + a +

b+ λq

x(1 − b) + aq +

b+ λq2

x(1 − b) + aq2 + · · · (3.1)

Note that (1.1) is H(1)/(1 − b). On comparing with the form of the J-fraction in
(2.1) we find that

Ak = (1− b), Bk = aqk for k = 0, 1, 2, . . . and Ck = −(b+ λqk) for k = 1, 2, 3, . . . .

The corresponding three term recurrence relation is

yk+1(x) = (x(1 − b) + aqk)yk(x) + (b + λqk)yk−1(x), for k > 0. (3.2)

By Proposition 2.1, the numerator and denominator polynomials (denoted byNn(x)
and Dn(x)) satisfy (3.2) and the initial values

D0(x) = 1, D1(x) = x(1− b) + a,N0(x) = 0, N1(x) = 1− b.

On writing (3.2) in the form (2.3), we note that βk = −(b+ λqk) → −b, so if b < 0
the measure has an absolutely continuous component.

We use a theorem of Nevai [18, Th. 40, p. 143] (see [13, Th. 11.2.2, p. 294]) to
find the absolutely continuous component of the measure.

Proposition 3.1 (Nevai). Assume that the set of orthogonal polynomials {Pk(x)}
are as in Proposition 2.2. If

∞∑

k=1

(∣∣∣∣
√
βk −

1

2

∣∣∣∣+ |αk|
)

< ∞, (3.3)

then µ has an absolutely continuous component µ′ supported on [−1, 1]. Further,
if µ has a discrete part, then it will lie outside (−1, 1). In addition, the limiting
relation

lim sup
k→∞


Pk(x)

√
1− x2

√
β1β2 · · ·βk

−

√
2
√
1− x2

πµ′(x)
sin ((k + 1)ϑ− φ(ϑ))


 = 0 (3.4)

holds, with x = cosϑ ∈ (−1, 1). Here φ(ϑ) does not depend on k.

Remark. The interval [−1, 1] need not be the true interval of orthogonality.
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We first modify the recurrence relation (3.2) so that the hypothesis of Proposi-
tion 3.1 is satisfied. Let

Pk(x) :=
yk(γx)

γk(1− b)k
,

where γ will be determined shortly. Next, divide (3.2) by γk+1(1 − b)k+1 to see
that Pk(x) satisfies the recurrence

xPk(x) = Pk+1(x)−
aqk

γ(1− b)
Pk(x)−

b+ λqk

γ2(1 − b)2
Pk−1(x).

Recall that b < 0. We now choose

γ2 = − 4b

(1− b)2

to find that the recurrence reduces to

xPk(x) = Pk+1(x) + cqkPk(x) +
1

4

(
1 + λqk/b

)
Pk−1(x), (3.5)

with c = −a/2
√
−b.

Motivated by the above considerations, we consider the polynomials defined by
(3.5) with the initial conditions P0(x) = 1 and P1(x) = x− c, so that Pk(x) satisfy
the three-term recurrence (2.3) with αk = cqk, βk =

(
1 + λqk/b

)
/4.

A short calculation shows that the conditions for Proposition 3.1 are satisfied.
Assume that 0 < |q| < 1. Then for k large enough, we can see using the mean value
theorem that

∣∣∣∣
√
βk −

1

2

∣∣∣∣+ |αk| =
∣∣∣∣
1

2

(
1 + λqk/b

)1/2 − 1

2

∣∣∣∣ + |cqk|

≤ C

∣∣∣∣
λqk

4b

∣∣∣∣+ |cqk|

for some constant C. Thus
∞∑

k=1

(∣∣∣∣
√
βk − 1

2

∣∣∣∣+ |αk|
)

< ∞.

The choice of γ is now transparent.
The idea is to compare the asymptotic expression for Pk(x) with (3.4) to deter-

mine the formula for µ′(x). For this purpose we will use Darboux’s method, which
can be stated as follows.

Proposition 3.2 (Darboux’s Method (see [13, Th. 1.2.4])). Let f(z) and g(z) be
analytic in the disk {z : |z| < r} and assume that

f(z) =

∞∑

k=0

fkz
k, g(z) =

∞∑

k=0

gkz
k, |z| < r.

If f − g is continuous on the closed disk {z : |z| ≤ r} then

fk = gk + o
(
r−k

)
.

With these preliminaries, we now proceed with our first result, the orthogonality
relation for Pk(x).
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Theorem 3.3. Let q be real satisfying 0 < |q| < 1, c ∈ R, and 1 + λqk/b > 0.
Let Pk(x) be a set of polynomials defined by (3.5) satisfying the initial conditions
P0(x) = 1 and P1(x) = x− c. Then we have the orthogonality relation:

∫
Pn(x)Pm(x)dµ =

1

4n
(−λq/b; q)nδmn,

where µ has an absolutely continuous component, and

µ′(x) =
2

π

(−λq/b; q)∞
|R|2

√
1− x2

for x ∈ (−1, 1), (3.6)

with

R =
−1

i sinϑ

∞∑

m=0

(
−λqeiϑ/2bc; q

)
m

(q, qe2iϑ; q)m
(−2c)meimϑq(

m
2 ), (3.7)

and x = cosϑ. Further, if µ has a discrete part, it will lie outside (−1, 1).

Remarks.

(1) We can take x = cosϑ and write the part of the integral where µ has an
absolutely continuously component as follows:

2(−λq/b; q)∞
π

∫ 1

−1

Pn(x)Pm(x)√
1− x2|R|2

dx =
2(−λq/b; q)∞

π

∫ π

0

Pn(cosϑ)Pm(cosϑ)

|R|2 dϑ.

(2) The denominator polynomials we considered in Section 2 are related to
Pk(x) as follows:

Pk(x) =
Dk(γx)

γk(1− b)k
.

Proof. We have already seen that the hypothesis for Nevai’s theorem are satisfied.
To use Darboux’s method to find the formula for Pk(x), we require its generating

function. Let P (t) denote the generating function of Pk(x), that is,

P (t) :=

∞∑

k=0

Pk(x)t
k.

Multiply (3.5) by tk+1 and sum over k ≥ 0 to find that

P (t) =
1

1− xt+ t2/4
− ct(1 + λtq/4bc)

1− xt+ t2/4
P (tq).

We change the variable by taking

x =
eiϑ + e−iϑ

2
(= cosϑ)

so

1− xt+ t2/4 = (1− eiϑt/2)(1− e−iϑt/2)

= (1− αt)(1 − βt).

Using α and β we can write the q-difference equation for P (t) in the form

P (t) =
1

(αt, βt; q)1
− ct(1 + λtq/4bc)

(αt, βt; q)1
P (tq)

=
∞∑

k=0

(−λtq/4bc; q)k
(αt, βt; q)k+1

(−ct)kq(
k
2),
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by iteration. So we obtain

P (t) =
∞∑

k=0

(−λtq/4bc; q)k
(eiϑt/2, e−iϑt/2; q)k+1

(−ct)kq(
k
2). (3.8)

Next we use Darboux’s method to find an asymptotic expression for Pk(x), where
x = cosϑ. The terms in the denominator are

(1− eiϑt/2)(1− eiϑtq/2) · · · (1− e−iϑt/2)(1− eiϑtq/2) · · · .
The poles are at

t = 2e−iϑ, 2e−iϑ/q, 2e−iϑ/q2, . . . ; and t = 2eiϑ, 2eiϑ/q, 2eiϑ/q2 . . . .

Since 0 < |q| < 1, the poles nearest to t = 0 are at t = 2e−iϑ and t = 2eiϑ. We
consider

Q(t) :=

∞∑

m=0

(
−λqeiϑ/2bc; q

)
m

(q, qe2iϑ; q)m

(−2ceiϑ)mq(
m

2 )

1− e2iϑ
1

1− t
2e

−iϑ
(3.9)

and observe that P (t)−Q(t) has a removable singularity at t = 2eiϑ. Similarly, the
we consider the conjugate

Q(t) =

∞∑

m=0

(
−λqe−iϑ/2bc; q

)
m

(q, qe−2iϑ; q)m

(−2ce−iϑ)mq(
m
2 )

1− e−2iϑ

1

1− t
2e

iϑ
(3.10)

and note that P (t) − Q(t) has a removable singularity at t = 2e−iϑ. Thus we see
that

P (t)−Q(t)−Q(t)

is continuous in |t| ≤ 2. Thus Darboux’s method can be used to find the formula
for Pk(x). Writing

Q(t) =
∞∑

k=0

Qkt
k

we see that
Pk(x) = Qk +Qk + o(2−k).

The geometric series implies that

Qk =
e−i(k+1)ϑ

2k+1(−i) sinϑ

∞∑

m=0

(
−λqeiϑ/2bc; q

)
m

(q, qe2iϑ; q)m
(−2c)meimϑq(

m

2 )

and

Qk =
ei(k+1)ϑ

2k+1i sinϑ

∞∑

m=0

(
−λqe−iϑ/2bc; q

)
m

(q, qe−2iϑ; q)m
(−2c)me−imϑq(

m

2 ).

We denote by R the part of Qk that is independent of k. That is, let

R :=
−1

i sinϑ

∞∑

m=0

(
−λqeiϑ/2bc; q

)
m

(q, qe2iϑ; q)m
(−2c)meimϑq(

m

2 )

and write it in a form
R = |R|eiφ.

It is clear that φ is independent of k (though it depends on ϑ). Now using this
notation we have the asymptotic formula for Pk(x):

Pk(x) ∼ Qk +Qk =
|R|
2k

sin
(
(k + 1)ϑ− φ+

π

2

)
. (3.11)
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Now that we know the asymptotic formula for Pk(x) we can compare with (3.4)
and obtain the expression for the measure µ′. To do so, we informally write (3.4)
as

Pk(x)
√

µ′(x)√
β1β2 · · ·βk

∼
√

2

π

sin ((k + 1)ϑ− φ(ϑ))

(1 − x2)1/4
.

Note that

β1β2 · · ·βk =
1

4k
(−λq/b; q)k.

Comparing (3.11) with the above, we find that

µ′(x) =
2(−λq/b; q)∞
π
√
1− x2|R|2

where x = cosϑ. In this manner, we have obtained an expression for µ′ from Nevai’s
theorem. This completes the proof. �

Remarks. We can take the special cases λ = 0 and a = 0 in (1.1) and obtain analo-
gous results for the corresponding special cases of Hirschhorn’s continued fractions.
The special case a = 0 is a continued fraction considered by Ramanujan in his Lost
Notebook, see [3, Entry 6.3.1(iii)]. However, if we take b = 0, µ does not have an
absolutely convergent component. We consider this case in Section 6.

4. The Stieltjes Transform

We now recall Proposition 2.3 which says that the continued fraction is given,
for x 6∈ supp(µ), by the Stieltjes transform of the measure µ. In this section, we
provide the evaluation of the continued fraction. In addition, we invert the Stieltjes
transform using (2.4), and obtain an alternate expression for µ′.

Recall the notation P ∗
k (x) for the polynomials satisfying (3.5) with initial condi-

tions P ∗
0 (x) = 0 and P ∗

1 (x) = 1. The polynomials Pk(x) satisfy the same recurrence
with the initial conditions P0(x) = 1 and P1(x) = x − c. We need to compute, for
x 6∈ supp(µ),

X(x) = lim
k→∞

P ∗
k (x)

Pk(x)
. (4.1)

Again we will appeal to Darboux’s theorem. However, this time the computation
of the formula is not for x ∈ (−1, 1) but for x ∈ C \ supp(µ).

Note that since x = cosϑ,

e±iϑ = x±
√
x2 − 1.

We choose a branch of
√
x2 − 1 in such a way that
√
x2 − 1 ∼ x, as x → ∞,

so that
∣∣e−iϑ

∣∣ <
∣∣eiϑ

∣∣ for x in the upper half plane, and
∣∣eiϑ

∣∣ <
∣∣e−iϑ

∣∣ for x in the

lower half plane. We use the notation ρ1 = e−iϑ and ρ2 = eiϑ.

Theorem 4.1. Let X(x) be the continued fraction in (4.1). Let ρ1 and ρ2 be as
above. Let F and G be defined as follows:

F (ρ) =
∞∑

m=0

(−λqρ/2bc; q)m
(q, qρ2; q)m

(−2cρ)mq(
m+1

2 ),
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and

G(ρ) =

∞∑

m=0

(−λqρ/2bc; q)m
(q, qρ2; q)m

(−2cρ)mq(
m

2 ).

Then X(x) converges for all complex numbers x 6∈ (−1, 1), except possibly a finite
set of points, and is given by

X(x) = 2ρ
F (ρ)

G(ρ)
,

where ρ is given by:

ρ =





ρ1, if Im(x) > 0, or x > 1 (x real)

ρ2, if Im(x) < 0, or x < −1 (x real)

1, if x = 1,

−1, if x = −1.

Proof. We first compute asymptotic formulas for P ∗
k (x) and Pk(x) in the upper half

plane. It is not difficult to see that the generating function of P ∗
k (x) is given by

P ∗(t) =
t

(1− ρ1t/2)(1− ρ2t/2)

∞∑

k=0

(−λtq/4bc; q)k
(ρ1qt/2, ρ2qt/2; q)k

(−ct)kq(
k+1

2 ). (4.2)

When x is in the upper half-plane, the singularity nearest the origin is at t = 2ρ1.
Let Q∗(t) be the series

Q∗(t) =
2ρ1

(1− ρ21)(1 − ρ2t/2)

∞∑

m=0

(−λqρ1/2bc; q)m
(q, qρ21; q)m

(−2cρ1)
mq(

m+1

2 ).

Then P ∗(t)−Q∗(t) has a removable singularity at t = 2ρ1. By Darboux’s method,
we have

P ∗
k (x) ∼

2ρ1ρ
k
2

2k(1− ρ21)

∞∑

m=0

(−λqρ1/2bc; q)m
(q, qρ21; q)m

(−2cρ1)
mq(

m+1

2 ) =
2ρ1ρ

k
2

2k(1− ρ21)
F (ρ1).

Similarly, considering the generating function of Pk(x) when x is in the upper half
plane, we find that

Pk(x) ∼
ρk2

2k(1− ρ21)

∞∑

m=0

(−λqρ1/2bc; q)m
(q, qρ21; q)m

(−2cρ1)
mq(

m
2 ) =

ρk2
2k(1− ρ21)

G(ρ1).

Thus for x in the upper half-plane, we find that

X(x) = lim
k→∞

P ∗
k (x)

Pk(x)
= 2ρ1

F (ρ1)

G(ρ1)
.

The same calculation works when x is real, and x > 1.
When x is in the lower half-plane, since t = 2ρ2 is the singularity nearest to the

origin, a similar calculation yields

X(x) = lim
k→∞

P ∗
k (x)

Pk(x)
= 2ρ2

F (ρ2)

G(ρ2)
.

This is also valid for real values of x such that x < −1.
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For x = 1, we find that the generating function for P ∗
k (1) is given by

P ∗(t) =
t

(1− t/2)2

∞∑

k=0

(−λtq/4bc; q)k
(qt/2; q)k

2 (−ct)kq(
k+1

2 ).

The singularity nearest the origin is at t = 2. The dominating term of the compar-
ison function is given by

Q∗(t) =
2

(1− t/2)2

∞∑

m=0

(−λq/2bc; q)m
(q, q; q)m

(−2c)mq(
m+1

2 ).

(The singular part of P ∗(t) has an additional term of the form A/(1 − t/2), but
that does not contribute to P ∗

k (1).) Darboux’s method yields

P ∗
k (1) ∼

2(k + 1)

2k

∞∑

m=0

(−λq/2bc; q)m
(q, q; q)m

(−2c)mq(
m+1

2 ) =
2(k + 1)

2k
F (1).

Similarly, we find that

Pk(1) ∼
(k + 1)

2k
G(1),

and so

X(1) = 2
F (1)

G(1)
,

as required. The computation at x = −1 is similar.
In the above, we cannot have G(ρ) = 0. Replace F and G by

(
qρ2; q

)
∞
F and(

qρ2; q
)
∞
G. Now G is an entire function so has only finitely many zeros in any

bounded set. The zeros of this modified G are the mass points of the discrete part
of the measure. For a further explanation of why there may be a finite set of points
outside of (−1, 1) where X(x) does not converge, see the remarks at the end of the
section. �

On inverting the Stieltjes Transform using (2.4), we have another formula for
the absolutely continuous component of the orthogonality measure.

Theorem 4.2. Let µ′ be given by (3.6) and let F and G be as in Theorem 4.1.
Then, for x ∈ (−1, 1), we have

µ′(x) =
1

πi

(
ρ2

F (ρ2)

G(ρ2)
− ρ1

F (ρ1)

G(ρ1)

)
.

Proof. From Theorem 4.1, it follows that in the upper half-plane,

X(x+ i0+) = lim
k→∞

P ∗
k (x)

Pk(x)
= 2ρ1

F (ρ1)

G(ρ1)
,

where now x is a real number in (−1, 1). Similarly, we have

X(x− i0+) = lim
k→∞

P ∗
k (x)

Pk(x)
= 2ρ2

F (ρ2)

G(ρ2)
.

The theorem now follows from (2.4). �

Remarks. Before closing this section, we make a few remarks concerning the dis-
crete part of the measure µ. Recall that Nevai’s theorem says that the discrete part
of the measure will lie outside (−1, 1). Let X(x) = F/G represent the continued
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fraction, with F and G entire functions (as above). Assume that x0 is an isolated
mass point of weight m0. Then X(x) is of the form

X(x) =
F

G
=

∫
dµ(t)

x − t

=

∫ 1

−1

µ′dt

x− t
+

m0

x− x0
+ terms from other isolated mass points.

Thus X(x) has a simple pole at x0 with residue equal to m0. Since the measure is
positive, the residue m0 is positive.

(1) This implies that the mass points of the discrete part of the measure occur
at the poles of the continued fraction X(x) outside (−1, 1). Since supp(µ)
is bounded, we can only have a finite number of such points.

(2) We can show that the zeros of F (x) interlace with the zeros of G(x). The
poles of X(x) occur at the zeros of G. If the pole is at x = ρ, we have

m =
F (ρ)

G′(ρ)
> 0.

Thus, F and G′ have the same sign. Now at two successive zeros of G(x),
the sign of G′(x) will be different. And thus the sign of F (x) changes at
two successive zeros of G(x). This implies that F has a zero between two
successive zeros of G.

Unfortunately, we are unable to compute the zeros of G from our formulas, and
thus cannot say much more about the discrete part of the measure.

5. Solutions of the recurrence that are moments

Recall the definition of the q-integral:
∫ b

a

f(t)dqt := b(1− q)
∞∑

n=0

qnf(bqn)− a(1− q)
∞∑

n=0

qnf(aqn).

In this section we find a solution pk(x) of (3.5) of the form

pk(x) =

∫ t2

t1

tkf(t)dqt, (5.1)

following a technique developed by Ismail and Stanton in [14, 15, 16].
We will use the integration by parts formula
∫ b

a

f(t)g(qt)dqt =
1

q

∫ b

a

g(t)f(t/q)dqt+
1− q

q

(
ag(a)f(a/q)− bg(b)f(b/q)

)
. (5.2)

This formula follows from the definition of the q-integral.
We will require the notation of basic hypergeometric series (or rφs series). This

series is of the form

rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

]
:=

∞∑

k=0

(a1, a2, . . . , ar; q)k
(q, b1, b2, . . . , bs; q)k

(
(−1)kq(

k

2)
)1+s−r

zk.

When r = s+ 1, the series converges for |z| < 1. See Gasper and Rahman [11] for
further convergence conditions for these series.
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Theorem 5.1. Let |λq/b| < 1. With x = cosϑ, we define pk(x) as the q-integral

pk(x) :=
4(−i sinϑ)

(1− q)

(
2ceiϑ, 2ce−iϑ; q

)
∞

(q, e2iϑ, e−2iϑ; q)∞

×
∫ 1

2
eiϑ

1
2
e−iϑ

tk
(
2qeiϑt, 2qe−iϑt,−λq/4bct; q

)
∞

(4ct, q/4ct; q)∞
dqt. (5.3)

Then pk(x) satisfies the recurrence relation (3.5).
Further, let |λq/2bc| < 1. Then, for Im(x) ≥ 0, we have

pk(x) =
eikϑ

(
2ce−iϑ; q

)
k

(
− λq

2bce
−iϑ; q

)
∞

2k
(

q
2ce

−iϑ; q
)
∞

2φ1

[
−bq−k/λ, 0
q1−keiϑ/2c

; q,− λq

2bc
e−iϑ

]
(5.4a)

and, for Im(x) ≤ 0, we have

pk(x) =
e−ikϑ

(
2ceiϑ; q

)
k

(
− λq

2bce
iϑ; q

)
∞

2k
(

q
2ce

iϑ; q
)
∞

2φ1

[
−bq−k/λ, 0
q1−ke−iϑ/2c

; q,− λq

2bc
eiϑ
]
. (5.4b)

Remarks.

(1) The ratio pk(x)/p0(x), is a solution of (3.5) with value 1 at k = 0.
(2) When b = −λ, the 2φ1 in (5.4a) (and (5.4b)) terminates, and we find that

p0(x) = 1 and p1(x) is a polynomial of degree 1. Indeed, we see that
p1(x) = x − c, so the initial conditions will match those satisfied by the
denominator polynomials Pk(x) (with b = −λ) considered in Section 3. In
that case, our calculations are a special case of the calculations in Ismail
and Stanton [14] in their proof of Theorem 2.1(B).

Proof. For now, we call our solution gk(x) and assume it satisfies (5.1). We will
show how one can guess f(t), and the limits t1 and t2. From the recurrence relation
(3.5), we must have

x

∫ t2

t1

tkf(t)dqt =

∫ t2

t1

tk+1f(t)dqt+ c

∫ t2

t1

(qt)kf(t)dqt

+
1

4

∫ t2

t1

tk−1f(t)dqt+
λq

4b

∫ t2

t1

(qt)k−1f(t)dqt

=

∫ t2

t1

tk (tf(t) + f(t)/4t)dqt+

∫ t2

t1

tk (cf(t/q)/q + λf(t/q)/4bt)dqt, (5.5)

where we use (5.2) and assume that

f(t1/q) = 0 = f(t2/q)

in the last step. Now (5.5) will be satisfied if

f(t)
(
x− t− 1/4t

)
= f(t/q)

(
c/q + λ/4bt

)
, (5.6)

or

f(t) =
−b(1− αt)(1 − βt)

λ(1 + 4bct/λ)
f(tq),
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where α and β are such that

1− 4qxt+ 4q2t2 = (1− αt)(1 − βt).

For convenience we change the variable by taking

x = cosϑ =
eiϑ + e−iϑ

2
so

α = 2qeiϑ and β = 2qe−iϑ.

Now if we find a function h(t) such that

h(t) =
−b

λ
h(tq), (5.7)

then we can write f as

f(t) =
(αt, βt; q)∞

(−4bct/λ; q)∞
h(t).

To find an h(t) which satisfies (5.7), we turn to the elliptic theta factorials,
defined for z 6= 0 and |q| < 1 as follows:

θ(z; q) := (z, q/z; q)∞.

Note the quasiperiodicity property

θ(z; q)

θ(zq; q)
= −z.

This suggests that we can take h(t) of the form

h(t) =
θ(At; q)

θ(Bt; q)

so that

h(t)

h(tq)
=

A

B
.

We postpone the selection of A and B until later, but assume that

A

B
=

−b

λ
,

so that (5.7) is satisfied.
Thus, with A and B as above, we find a solution f(t) of (5.6) given by

f(t) =

(
2qeiϑt, 2qe−iϑt, At, q/At; q

)
∞

(−4bct/λ,Bt, q/Bt; q)∞
. (5.8)

It remains to find t1 and t2. If we take

t1 =
1

2
e−iϑ, t2 =

1

2
eiϑ

we will find that
f(t1/q) = 0 = f(t2/q).

In this manner, we obtain an expression for a solution of the recurrence relation
(3.5) in the form (5.1):

gk(x) =

∫ 1
2
eiϑ

1
2
e−iϑ

tk
(
2qeiϑt, 2qe−iϑt, At, q/At; q

)
∞

(−4bct/λ,Bt, q/Bt; q)∞
dqt. (5.9)
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We will specify A and B shortly.
Using the definition of the q-integral, and some elementary algebraic manipula-

tions, we obtain another expression for gk(x):

gk(x) = (1− q)
ei(k+1)ϑ

2k+1

(
q, qe2iϑ, A2 e

iϑ, 2q
A e−iϑ; q

)
∞(

− 2bc
λ eiϑ, B

2 e
iϑ, 2q

B e−iϑ; q
)
∞

×
∞∑

n=0

(
− 2bc

λ eiϑ; q
)
n

(q, qe2iϑ; q)n

(−λqk+1

b

)n

− (same term with ϑ 7→ −ϑ).

Now using the rφs notation, and collecting common terms, we can write this as

gk(x) = (1− q)
ei(k+1)ϑ

2k+1

(
q, qe2iϑ, A

2 e
iϑ, 2q

A e−iϑ; q
)
∞(

− 2bc
λ eiϑ, B

2 e
iϑ, 2q

B e−iϑ; q
)
∞

×
(

2φ1

[
− 2bc

λ eiϑ, 0
qe2iϑ

; q,−λqk+1

b

]

− e−2i(k+1)ϑ

(
qe−2iϑ,− 2bc

λ eiϑ, A2 e
−iϑ, 2qA eiϑ, B

2 e
iϑ, 2qB e−iϑ; q

)
∞(

qe2iϑ,− 2bc
λ e−iϑ, A2 e

iϑ, 2q
A e−iϑ, B

2 e
−iϑ, 2qB eiϑ; q

)
∞

· 2φ1

[
− 2bc

λ e−iϑ, 0
qe−2iϑ ; q,−λqk+1

b

])
. (5.10)

Next, we wish to examine whether the term in the brackets can be simplified by
using a transformation formula. Indeed, on scanning the list of transformations
in Gasper and Rahman, one finds in [11, Eq. (III.31)] a promising candidate. We
take a 7→ −2bceiϑ/λ, b → 0, c 7→ qe2iϑ and z 7→ −λqk+1/b in this transformation
formula to obtain:

2φ1

[
− 2bc

λ eiϑ, 0
qe2iϑ

; q,−λqk+1

b

]

− e−2i(k+1)ϑ

(
qe−2iϑ,− λq

2bce
iϑ, 2ceiϑ, q

2ce
−iϑ; q

)
∞(

qe2iϑ,− λq
2bce

−iϑ, 2ce−iϑ, q
2ce

iϑ; q
)
∞

2φ1

[
− 2bc

λ e−iϑ, 0
qe−2iϑ ; q,−λqk+1

b

]

=

(
e−2iϑ; q

)
∞(

− λq
2bce

−iϑ, 2cqke−iϑ; q
)
∞

1φ1

[
−λqeiϑ/2bc
q1−keiϑ/2c

; q,
q1−ke−iϑ

2c

]
. (5.11)

Now, comparing (5.11) and the two terms inside the bracket in (5.10), we see that we
should choose B = 4c and thus, since A/B = −b/λ, we must choose A = −4bc/λ.

Next, we obtain (5.4a). First we assume that Im(x) ≥ 0 or Im(ϑ) ≤ 0, so that
|e−iϑ| ≤ 1. Applying (5.11), we find that (5.10) reduces to

gk(x) = (1− q)
ei(k+1)ϑ

2k+1

(
q, qe2iϑ, e−2iϑ; q

)
∞(

2ceiϑ, q
2ce

−iϑ, 2cqke−iϑ; q
)
∞

× 1φ1

[
−λqeiϑ/2bc
q1−keiϑ/2c

; q,
q1−ke−iϑ

2c

]
.
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We can rewrite the 1φ1 on the right hand side using a special case of the transfor-
mation formula as a 2φ1 sum. The transformation we use is [11, Eq. (III.4)]:

2φ1

[
a, b
c
; q, z

]
=

(az; q)∞
(z; q)∞

2φ2

[
a, c/b
c, az

; q, bz

]
. (5.12)

We use the a 7→ 0, b 7→ −bq−k/λ, c 7→ q1−keiϑ/2c, z 7→ −λqe−iϑ/2bc case of (5.12)
and some elementary computations to write our solution of (3.5) as follows.

gk(x) = (1− q)
eikϑ

(
2ce−iϑ; q

)
k

2k+2(−i sinϑ)

(
q, e2iϑ, e−2iϑ,− λq

2bce
−iϑ; q

)
∞(

2ceiϑ, 2ce−iϑ, q
2ce

−iϑ; q
)
∞

× 2φ1

[
−bq−k/λ, 0
q1−keiϑ/2c

; q,− λq

2bc
e−iϑ

]
.

Finally, we divide through by some of the factors that do not depend on k, and
obtain the solution pk(x) given in (5.4a). Dividing (5.9) by these same factors, and
inserting the values of A and B, we obtain the q-integral representation (5.3).

To obtain (5.4b), we consider the case Im(x) ≤ 0, replace ϑ by −ϑ, and apply
the transformations as above. Alternatively, we use a Heine transformation [11,
Eq. (III.2)]. This completes the proof. �

6. The special case when b = 0

In this section we consider the special case b = 0 of (3.2). Observe that other
special cases which lead to Ramanujan’s continued fractions (when a = 0 or λ = 0)
can be treated as special cases of our work earlier in this paper. But when b =
0, Blumenthal’s theorem tells us that the measure has no absolutely continuous
component, and is purely discrete. Thus this case has to be considered separately.

When b = 0, the continued fraction is

R(x) =
1

x+ a+

λq

x+ aq +

λq2

x+ aq2 + · · · . (6.1)

When x = 1, it reduces to Ramanujan’s continued fraction, given by the b = 0 case
of (1.1). The corresponding three-term recurrence relation is

yk+1(x) = (x+ aqk)yk(x) + λqkyk−1(x), for k > 0. (6.2)

By Proposition 2.1, the numerator and denominator polynomials (denoted byQ∗
k(x)

and Qk(x), respectively) satisfy (6.2) and the initial values

Q0(x) = 1, Q1(x) = x+ a; Q∗
0(x) = 0, Q∗

1(x) = 1.

We require 0 < |q| < 1 (with q real), a ∈ R, and λ < 0 to apply Proposition 2.2.
Previously, Al–Salam and Ismail [1] had considered a very similar recurrence

relation

Uk+1 = x(1 + aqk)Uk − λqk−1Uk−1, for k > 0,

with U0 = 1, U1 = x(1 + a).
We denote the generating function of Qn(x) by Q(t) and of Q∗

n(x) by Q∗(t). The
generating functions are as follows.

Q(t) =

∞∑

k=0

(−λtq/a; q)k
(xt; q)k+1

(at)kq(
k

2),
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and

Q∗(t) = t
∞∑

k=0

(−λqt/a; q)k
(xt; q)k+1

(at)kq(
k

2)+k.

To obtain explicit expressions of the numerator and denominator polynomials,
we need to extract the coefficient of powers of t. We need the q-binomial theorem
in the form [11, Ex. 1.2(vi)]

(at; q)k =
∑

j≥0

[
k

j

]

q

(−1)jq(
j
2)(at)j . (6.3)

In addition, we require the following special case of the q-binomial theorem (cf. [11,
Eq. 1.3.2]) valid for |at| < 1:

1

(at; q)k+1

=

∞∑

m=0

[
m+ k

k

]
(at)m. (6.4)

Using these, we find that Q(t) can be written as

Q(t) =
∑

j,k,m≥0

[
k

j

]

q

[
k +m

k

]

q

ak−jxmλjq(
k
2)+(

j
2)+jtj+k+m.

From here, we take the coefficient of tn to obtain an expression for Qn(x). We see
that

Qn(x) =
∑

j,k≥0

[
k

j

]

q

[
n− j

k

]

q

ak−jxn−j−kλjq(
k
2)+(

j
2)+j

=
∑

j≥0

[
n− j

j

]

q

(−a/x; q)n−j

(−a/x; q)j
λjxn−2jqj

2

, (6.5)

where we obtain the last equality by summing the inner sum using (6.3). Note that
the first of these sums expresses Qn(x) as a polynomial in x of degree n, since the
indices satisfy k + j ≤ n.

Similarly, Q∗
n(x) can be written as

Q∗
n(x) =

∑

j≥0

[
n− j − 1

j

]

q

(−a/x; q)n−j

(−a/x; q)j+1

λjxn−2j−1qj
2+j . (6.6)

From Proposition 2.2 and the comments on Blumenthal’s theorem, we have the
following orthogonality relation.

Theorem 6.1. Suppose q is real with 0 < q < 1, a ∈ R, and λ < 0. Let Qn(x) be
given by (6.5). Then we have the orthogonality relation

∫ ∞

−∞

Qn(x)Qm(x)dµ = (−λ)nq(
n+1

2 )δmn,

where µ is a purely discrete positive measure.

Next we find asymptotic formulas for the denominator and numerator polyno-
mials, from the formulas for Qn(x) and Q∗

n(x) above. We find that, for a fixed x,
as n → ∞,

Qn(x) ∼ xn(−a/x; q)∞ 0φ1

[
−

−a/x
; q,

λq

x2

]
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and

Q∗
n(x) ∼ xn−1(−aq/x; q)∞ 0φ1

[
−

−aq/x
; q,

λq2

x2

]
.

Thus, the Stieltjes transform of µ is given by

∫ ∞

−∞

dµ(t)

x− t
=

1

(x+ a)

0φ1

[
−

−aq/x
; q,

λq2

x2

]

0φ1

[
−

−a/x
; q,

λq

x2

] ,

for x 6∈ suppµ.

7. Formulas for the convergents

In this section, we show how to obtain formulas for the convergents analogous
to Ramanujan’s Entry 16, which was highlighted in the introduction. We derive a
formula given by Hirschhorn [12], and then take special cases corresponding to two
of Ramanujan’s continued fractions. We have recast Hirschhorn’s original approach
in terms of Proposition 2.1 in order to make it transparent how such formulas can
be found. For some further examples, see Bowman, Mc Laughlin and Wyshinski [9].

We will require the notation of the q-multinomial coefficients, defined as
[

n

k1, k2, . . . , kr

]

q

=
(q; q)n

(q; q)k1
(q; q)k2

· · · (q; q)kr
(q; q)n−(k1+k2+···+kr)

where n, k1, k2, . . . , kr are positive integers and n ≥ k1 + k2 + · · · + kr. When
n < k1 + k2 + · · ·+ kr, we take the q-multinomial coefficient to be 0. When r = 1,
then these reduce to the q-binomial coefficients.

We first consider (1.1). Denote by Y (t), D(t) and N(t) the generating functions
of yk(x), Dk(x) and Nk(x) respectively. Multiply (3.2) by tk+1 and sum over k ≥ 0
to find that

(1− x(1 − b)t− bt2)Y (t) = y0 + ty1 − xt(1 − b)y0 − aty0 + at(1 + λqt/a)Y (tq),

where we have used y0 = y0(x) and y1 = y1(x) to denote the initial values of yk(x).
Thus, the generating function of Dn(x) satisfies the q-difference equation

D(t) =
1

1− x(1 − b)t− bt2
+

at(1 + λtq/a)

1− x(1 − b)t− bt2
D(tq).

Let α and β be such that

1− (1− b)xt− bt2 = (1− αt)(1 − βt). (7.1)

Using α and β we can write the q-difference equation for D(t) in a form that it can
be iterated easily. As before, we obtain the generating function

D(t) =

∞∑

k=0

(−λtq/a; q)k
(αt, βt; q)k+1

(at)kq(
k
2).

Similarly, we obtain the generating function of the numerators

N(t) = t(1− b)

∞∑

k=0

(−λtq/a; q)k
(αt, βt; q)k+1

(at)kq(
k
2)+k.

Notice that the x is hidden implicitly in α and β.
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To obtain explicit formulas for the convergents, we need to find expressions for
Nn(x) and Dn(x) when x = 1. Note that when x = 1 in (7.1), then α = 1 and
β = −b.

We use (6.3) and (6.4) to find that D(t) with α = 1, β = −b becomes

D(t) =
∑

j,k,l,m≥0

[
k

j

]

q

[
k + l

k

]

q

[
k +m

k

]

q

ak−j(−b)lλjq(
k

2)+(
j

2)+jtj+k+l+m.

We now take the coefficient of tn (so restrict the sum to n = j + k+ l+m) to find
that

Dn(1) =
∑

j,k,l≥0

[
k

j

]

q

[
k + l

k

]

q

[
n− j − l

k

]

q

ak−j(−b)lλjq(
k
2)+(

j
2)+j

=
∑

j,k,l≥0

[
k + l

j, l

]

q

[
n− j − l

k

]

q

ak−j(−b)lλjq(
k
2)+(

j
2)+j .

Similarly, we find that

Nn(1) = (1− b)
∑

j,k,l≥0

[
k + l

j, l

]

q

[
n− j − l − 1

k

]

q

ak−j(−b)lλjq(
k
2)+k+(j2)+j .

We divide Nn+1(1) by (1 − b)Dn+1(1) to obtain Hirschhorn’s formula [12]:

Nn+1(1)

(1− b)Dn+1(1)
=

1

1− b+ a +

b+ λq

1− b+ aq + · · ·+
b+ λqn

1− b+ aqn
. (7.2)

Taking n → ∞ and invoking the two summations (6.3) and (6.4) we obtain Hirschhorn’s
formula for his infinite continued fraction as a ratio of two sums, under the condition
|b| < 1.

From (7.2) we can take special cases b = 0, a = 0 or both to obtain results
related to Ramanujan’s continued fractions. The first special case we consider is
from the lost notebook [3, Entry 6.3.1(iii)]

1

1− b +

b+ λq

1− b +

b+ λq2

1− b +

b+ λq3

1− b + · · · .

This is obtained by taking a = 0 in (1.1). Here is our formula for the convergents
of (7.4). We have,

N ′
n

D′
n

=
1

1− b +

b+ λq

1− b +

b+ λq2

1− b +

b+ λq3

1− b + · · · +
b+ λqn

1− b
, (7.3)

where the numerator and denominator polynomials of the (n+1)th convergent are
given by:

N ′
n =

∑

k,j≥0

qk
2+kλk

[
k + j

k

]

q

[
n− k − j

k

]

q

(−b)j

and

D′
n =

∑

k,j≥0

qk
2

λk

[
k + j

k

]

q

[
n− k − j + 1

k

]

q

(−b)j .

When b = 0, this immediately reduces to (1.3), Ramanujan’s Entry 16. Upon
taking n → ∞, we obtain Ramanujan’s continued fraction evaluation, given in
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Andrews and Berndt [3, Entry 6.2.1(iii)]. We define

g(b, λ) :=
∞∑

k=0

λkqk
2

(q; q)k(−bq; q)k
.

Then for |b| < 1,

g(b, λq)

g(b, λ)
=

1

1− b +

b+ λq

1− b +

b+ λq2

1− b +

b+ λq3

1− b + · · · . (7.4)

The condition |b| < 1 appears quite naturally as a requirement for the sum to
be convergent. To see this, consider the limit

lim
n→∞

N ′
n = lim

n→∞

∑

k,j≥0

qk
2+kλk

(q; q)k+j(q; q)n−k−j

(q; q)k(q; q)j(q; q)n−2k−j(q; q)k
(−b)j

=
∑

k≥0

qk
2+kλk

(q; q)k

∑

j≥0

(q; q)k+j

(q; q)j(q; q)k
(−b)j

=
∑

k≥0

qk
2+kλk

(q; q)k(−b; q)k+1

,

upon invoking (6.4), assuming |b| < 1. This shows that

lim
n→∞

N ′
n =

g(b, λq)

1 + b
.

Similarly, we can see that

lim
n→∞

D′
n =

g(b, λ)

1 + b
,

and this completes a proof of (7.4).
Next we take b = 0 in (1.1). Ramanujan found the continued fraction (see Entry

15 of [5, ch. 16 ] or [3, Entry 6.3.1(ii)])

g(a, λ)

g(a, λq)
= 1 +

λq

1 + aq +

λq2

1 + aq2 +

λq3

1 + aq3 + · · · .

A formula for the convergents of Ramanujan’s Entry 15 is as follows. Let

N̂n =
∑

j≥0

qj
2

λj

[
n+ 1− j

j

]

q

(−aq; q)n−j

(−a; q)j

and

D̂n =
∑

j≥0

qj
2+jλj

[
n− j

j

]

q

(−aq; q)n−j

(−aq; q)j
.

Then, for n = 1, 2, 3, . . . , we have

(1 + a)
N̂n

D̂n

= 1 + a+
λq

1 + aq +

λq2

1 + aq2 +

λq3

1 + aq3 + · · · +
λqn

1 + aqn
. (7.5)

To obtain (7.5), we take x = 1 in (6.5) and (6.6) and observe that

Qn+1(1) = (1 + a)N̂n
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and

Q∗
n+1(1) = D̂n.

When a = 0, (7.5) reduces to Ramanujan’s Entry 16 given in (1.3). Formula
(7.5) is implicit in Al-Salam and Ismail’s study [1] of the orthogonal polynomials
associated with Rogers–Ramanujan continued fraction. Bhatnagar and Hirschhorn
[8] wrote it in this form and gave an elementary proof following Euler’s approach
given in [7].

Formulas (7.5) and (7.3) are generalizations of Ramanujan’s Entry 16, corre-
sponding to two extensions of the Rogers–Ramanujan continued fraction given by
Ramanujan in the Lost Notebook, recorded as Entry 6.3.1(ii) and (iii), respec-
tively in [3]. As we have seen, such formulas can be discovered quite easily using
generating functions.
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