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Abstract—Data transfer across DRAM channels accounts for
nearly a quarter of the total energy consumption of DDR4
DRAMs. Modern applications with high bandwidth requirements
further increase channel energy consumption. However, channel
energy consumption is dependent on data being transferred.
Pseudo Open Drain (POD) asymmetric termination, used in
current DDR4 systems, consumes energy only when 1’s are
being transmitted over the channels. Many modern applications,
including AI/ML ones are resilient to errors in data, and can
work well with approximate data. This resilience can vary widely
across and within applications, which provides a number of ways
for exploiting these characteristics to save data transfer energy
across the DRAM channel. However, all DRAM data encoding
schemes have been targeted towards applications that require
exact data and are not approximation resilient.

In this paper, we propose Zero Aware Configurable Data
Encoding by Skipping Transfer (ZAC-DEST), a data encoding
scheme to reduce the energy consumption of DRAM channels,
specifically targeted towards approximate computing and error
resilient applications. ZAC-DEST exploits the similarity between
recent data transfers across channels and information abut error
resilience behaviour of applications to reduce on-die termination
and switching energy by reducing the number of 1’s transmitted
over the channels. ZAC-DEST also provides a number of knobs
for trading off application’s accuracy for energy savings, and
vice versa, and can be applied to both training and inference.

We apply ZAC-DEST to five machine learning applications. On
average, across all applications and configurations, we observed
a reduction of 40% in termination energy and 37% in switching
energy as compared to the state of the art data encoding
technique BD-Coder with an average output quality loss of 10%.
We show that if both training and testing are done assuming the
presence of ZAC-DEST, the output quality of the applications can
be improved upto 9× as compared to when ZAC-DEST is only
applied during testing leading to energy savings during training
and inference with increased output quality.

Index Terms—Data Encoding, DRAM Channels, Approximate
Computing, Machine Learning.
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I. INTRODUCTION

DRAMs are an integral component of memory systems [1]–

[4]. DRAM energy accounts for approximately 46% of the

total system energy consumption [5], [6]. The energy con-

sumption of the DRAM I/O channel contributes 25% of the

total DRAM energy due to off-chip communications [7], [8].

To reduce DRAM I/O energy consumption, asymmetric I/O

termination mechanisms like Pseudo Open Drain (POD) and

Low Voltage Swing Terminated Logic (LVSTL) have been

implemented [9]–[12]. These mechanisms help in reducing en-

ergy consumption of DRAM channels [9]–[12]. This happens

because asymmetric termination mechanisms dissipate energy

for only one of the bits during data transfer, i.e. for bit-0 in

LVSTL and bit-1 in POD [9], [13], [14].

Error resilient applications in the domain of machine learn-

ing, object recognition, image/video processing etc. have

opened up a plethora of possibilities to optimize current com-

puting and memory systems [15]–[17]. The error resilience

of applications is exploited by introducing approximation in

computation or data to reduce energy and/or improve per-

formance. As a result, the applications are able to achieve

the same level of performance and accuracy, with sometimes

significant amount of approximation introduced into the data,

which enables us to explore trade-off between accuracy and

energy savings. Previous research explored approximate data

encoding for serial data transfer in embedded systems [18]–

[20]. Recent works have also explored approximate compres-

sion and decompression of data [21], [22].

DRAM I/O energy consists of two components, namely

termination and switching. Termination energy is consumed in

DRAM channels as a result of on-die termination. Switching

energy is consumed due to charging of DRAM channels during

data transfer. Termination energy in POD, used in DDR4

DRAMs, is directly proportional to the number of 1’s being

sent over the DRAM channel. Bit value 1 is sent using 0V and

bit value 0 is sent using VddV [13], where Vdd is the supply

voltage. The number of 1’s in a data word, also called its

hamming weight, has a positive correlation with termination

energy [9]. On the other hand, switching energy is proportional

to the number of 1 to 0 (charging) transitions. For 0 to 1

(discharging) transitions, no current is drawn from the supply

voltage [9], [13], [14]. In most cases, reducing hamming

weight also leads to a reduction in switching count, thus

reducing switching energy as well [14]. In modern DRAMs,

which deploy one of the two termination schemes, the ter-

mination energy has become the dominant source of energy

consumption in DRAM channels [9], [14]. Thus, in recent
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years, research has focused on reducing termination energy by

reducing the number of 1’s sent across the channel [13], [14].

However, to the best of our knowledge, there exists no prior

research which looks into encoding the data approximately

between DRAM channels and processors. This is the first work

to exploit approximate computing to benefit while performing

data transfers.

In this paper, we propose ZAC-DEST (Zero Aware

Configurable Data Encoding by Skipping Transfer), an energy

efficient data encoding scheme for DRAM channels for ap-

proximate computing applications. DEST extends existing data

encoding schemes for exact data transfers - Bitwise Differ-

ence Encoding (BD-Coder) [14] and Dynamic Bus Inversion

(DBI) [23] with additional optimizations options provided

by error and approximation tolerant applications to provide

a further reduction in termination and switching energies of

DRAM I/O.

Transfer of approximate data across the DRAM channel

leads to energy savings at the cost of output quality loss in

applications. An error resilient application can tolerate varying

amounts of approximation, i.e. there is a trade-off between out-

put quality and energy consumption. ZAC-DEST introduces

three tuning features – i) Similarity Limit, ii) Truncation, and

iii) Tolerance which allows it to introduce a varying range of

approximations in data sent across the DRAM channel, and

as a result, allows for interesting trade-offs to be made by the

architect or the application programmer. In most applications

increasing the approximation leads to an increase in energy

savings with a reduction in output quality [24].

Depending upon the application, the acceptable output qual-

ity may vary. The tuning features in ZAC-DEST allow it

to be tailored for obtaining acceptable output quality, while

achieving significant energy contributions. Overall, in this

paper, we make the following contributions.

• To the best of our knowledge, ZAC-DEST is the first

proposal for an encoding mechanism for transferring

data across DRAM channels geared specifically towards

error resilient applications. ZAC-DEST extends the data

encoding schemes designed for exact applications to

provide and average savings of 40% in termination and

37% in switching energy off-chip DRAM channels across

five machine learning applications.

• We augment the existing encoding mechanisms (BD-

Coder) with two additional policies that improves the

BD-Coders’ table update mechanisms. In addition, ZAC-

DEST handles transfer of zeros across the channel sepa-

rately, which is useful for reducing data transfer energy

when data to be transferred has majority zeros. On

average the modified BD-Coder consumes 25% lesser

energy as compared to the original BD-Coder.

• ZAC-DEST incorporates multiple knobs to trade off

accuracy and DRAM channel transfer energy in error re-

silient applications. : Similarity Limit (exploits similarity

between recent data transfers), Truncation(removing bits

that do not affect output quality), and Tolerance (masking

bits that cannot tolerate approximation), making it an

ideal candidate for use in approximate processors. These

knobs can be varied to obtain the desired accuracy and we

(a) PSNR=Inf (b) PSNR=36 (c) PSNR=32

Fig. 1: (a) Original (b) 20% 1’s flipped in LSBs (c) 40% 1’s

flipped in LSBs

have explored them in detail. We have also implemented

ZAC-DEST design in UMC 65nm. The area overhead of

ZAC-DEST over BD-coder is 15%.

• We developed a framework that allows for the evaluation

of DEST on error resilient machine learning applications.

We also evaluated five different machine learning ap-

plications namely: i) ImageNet inferencing, ii) CIFAR-

100 training and inferencing, iii) Eigenfaces, iv) Color

quantization using K-Means and v) SVM. For each of the

applications, we observe a reduction of hamming energy

by 39%, 34%, 44%, 47%, and 36% respectively.

• Finally, we demonstrate that inference accuracy of image

classification of CIFAR-100 dataset using ResNet-110

can increase on an average 24% (by upto 9×) when ZAC-

DEST is applied to data transfer from DRAM during

both training and inference phases, as opposed to appli-

cation of ZAC-DEST to only the inference process data

transfers. Thus, not only can ZAC-DEST be exploited to

provide energy savings during both training and testing,

but also improve the output accuracy.

II. MOTIVATION

Error Resilient Applications: Various recognition, mining,

and synthesis applications are resilient to some degree of

approximation in data and computations [21], [25]–[27]. Ma-

chine learning applications for object detection, image recogni-

tion, etc. have also shown robustness towards errors in data and

computations [28]–[35]. Thus, there exists a wide variety of

applications where approximation can be traded off for energy

savings. We demonstrate error resilience in images with the

help of an example image, shown in Fig. 1a. Every pixel of

the image is of an 8-bit entry. To introduce approximation in

data, the 1’s in the last 4-bits of pixels were flipped to 0’s.

The percentage of flipped 1’s in Fig. 1b is 20% and Fig. 1c is

40%. Peak signal to noise ratio (PSNR), a quality metric used

to measure the similarity between images, is 36 for Fig. 1b and

32 for Fig. 1c, higher PSNR is better [36]. For most images,

PSNR ≥ 30 is acceptable [36] as it is indifferentiable to the

human eye. This shows the error resilience of images towards

bit flips. In later sections, we will show that when these kinds

of approximated images are fed as input to error resilient

applications, the output quality loss is minimal. Hence, there

is an opportunity to reduce energy by approximating the data.

Energy Consumption by DRAM I/O: A breakdown of en-

ergy consumption of various DDR4 DRAM components was

provided in [14], and is shown in Fig. 2. We observe that
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Fig. 2: Energy dissipation breakdown in DDR4 DRAM

sub-system [14]

Fig. 3: Overall Data encoding-decoding structure

DRAM I/O energy (termination + switching) accounts for

21% of the total DRAM energy consumption. The termination

energy accounts for 67% of the total DRAM I/O energy while

the switching energy accounts for the rest. Prior research has

focused mostly on reducing termination energy [13], [14].

Furthermore, DRAM I/O energy is predicted to worsen in the

future as it is unaffected by scaling [13], [14]. This makes it

crucial to devise techniques to reduce the DRAM I/O energy

consumption.

III. BACKGROUND AND PRIOR WORK

DRAM Data Transfer: The data over the DRAM channel

is transferred in 64 byte (cache line) granularity. DRAM

data bus is 64-bit wide, i.e. there are 64 physical lines from

DRAM DIMM to the memory controller for the transfer of

data. There are other physical lines for the transfer of error

correction codes, control commands, etc. The 64 byte cache

line is transferred in 8 bursts of 64 bits each (assuming each

chip is x8) [37]. For a 64-bit burst, the overall structure for

data encoding is shown in Fig. 3. The encoder is situated

between the DRAM chip and the I/O bus, while the decoder

is located between the I/O bus and the memory controller.

In DRAMs, while transferring the bit value 0, the DRAM

channel is connected to Vdd and for bit value 1, connected to

GND [13].

DRAM I/O Termination and Switching Energy: POD I/O

termination is a widely used termination scheme in DDR4

Fig. 4: Pseudo Open Drain I/O Termination

(a) (b)

Fig. 5: BD-Coder (a) Encoder (b) Decoder

DRAMs [9]. The termination energy is a result of the POD I/O

scheme. Due to asymmetric design, it consumes a significant

amount of energy, which depends on termination resistance,

while transferring a bit value 1 [13], [14]. This is due to the

direct path between Vdd and GND as shown in Fig. 4 ( 1 ).

This current accounts for the termination energy in DRAM

I/O’s. When bit value 0, is transmitted there is no current flow

as shown in Fig. 4 ( 2 ). Transferring bit value 1 can consume

13.75 mA additional current as compared to bit value 0 [9].

Thus termination energy is directly proportional to the number

of 1’s transferred over the DRAM channel. Switching energy is

proportional to the number of 1 to 0 (charging) transitions. The

energy consumption as a result of switching is obtained using

E = CV 2

dd
, where C is the capacitance and Vdd is the supply

voltage. The typical value of C per channel is 15pF [14].

Bitwise Difference Coder (BD-Coder): BD-Coder [14] ex-

ploits data similarity between recent data transfers to reduce

DRAM I/O energy consumption. It maintains a table (data

table) of recent data transfers at sender’s (DRAM) as well as

receiver’s (memory controller) end. The data to be sent is first

compared to all the entries in the data table to find the most

similar entry. To find the most similar entry, the data to be

sent is bitwise XORed with all the data table entries (XORing

the same numbers gives a 0) to reduce the number of 1’s. This

new number of 1’s (hamming weight) in the XORed output

is now compared to that of the original data. If the XORed

output has a smaller hamming weight, the address/index of the

most similar data (using a separate line per chip), along with

the XORed output is transferred over data lines. Otherwise,

the original data is sent over the data lines and the index lines

send the address. If encoded data is received at the receiver’s

end, it is XORed with the data table entry pointed by the

received address. Otherwise, the original data is passed to the

memory controller and the data table is updated with this data

at both the sender and the receiver’s end. The overall structure

of the encoder and decoder in BD-Coder is shown in Fig. 5a

and Fig. 5b, respectively.

Dynamic Bus Inversion (DBI): DBI is widely used in

DDR4 systems to reduce energy consumption of the DRAM

I/O [23]. It is applied at a granularity of 8-bits. If more than 4-

bits out of 8-bits are 1’s, DBI inverts the data being transferred.

An additional line is added per chip, i.e. 8 lines total, to convey

if DBI has been applied. Thus, the transmitted data always has

at most four 1’s leading to a reduction in termination energy.

In the next section we will discuss ZAC-DEST, our pro-

posed encoding scheme.
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IV. ZERO AWARE CONFIGURABLE DATA ENCODING BY

SKIPPING TRANSFER (ZAC-DEST )

Most data encoding schemes try to reduce the DRAM I/O

energy during data transfer. In this section, the mechanisms

to exploit the error resilience when transferring data over the

DRAM channel to reduce DRAM I/O energy are explained.

Since termination energy is proportional to the 1’s being trans-

mitted, ZAC-DEST focuses reducing the number of 1’s. ZAC-

DEST is built on top of current state of the art data encoding

schemes for data transfer: a) BD-Coder [14] and b) DBI [23],

which allows ZAC-DEST to be easily integrated with any

encoding schemes built using similar design principles.

A. Leveraging Error Resilience

The similarity between recent data accesses remains the

same irrespective of whether the application is error resilient

to input data. We leverage the error resilience of applications

by introducing approximations with the goal of reducing the

number of 1’s. The naive approach to introduce approxima-

tions will be to change all 1’s to 0’s when a request for

approximate data is received. The key goal is to reduce the

number of 1’s being sent over the channel keeping the degree

of approximation under check.

The amount of approximation that can be tolerated not only

varies widely across applications but also within the same

application. Thus, we need to provide a variety of configu-

rations that control the degree of approximation introduced

in data. Note that data transfers pertaining to instructions are

never approximated. Also, among the data, only the accesses

that are known to be error resilient a priori are approximated.

The information related to approximation, can be transferred

over the already existing address lines of the DRAM while

transferring the column address as column address have lesser

bits as compared to the row address and it leaves some address

lines unutilized [14].

ZAC-DEST uses the same data table as in BD-Coder, shown

in Fig. 5. Each data table, one per chip, holds ‘n’ recent

entries of 64-bits transferred over the DRAM channel [14]. We

assume that the degree of approximation that can be tolerated

by an application will be known a priori and can be encoded

in the applications. The output quality for each workload will

be defined in Section VII-A. The data to be sent is compared

with all the entries in the data table. So, if an application

can tolerate a 25% approximation in data, 16 out of 64-bits

can be approximated. The data to be sent is compared to all

the entries in the table to find the most similar entry. The

most similar entry is now checked to see if it differs from the

original data by not more than 16-bits. If true, in place of actual

data, all 0’s are sent over the DRAM channel along with the

index of the most similar entry, which is already present at the

receiver’s end. Note that this is the same as best case scenario

since we are not transmitting any 1’s. The only overhead is

sending the index of the receiver’s data table at which the most

similar entry is stored. Here, the assumption is that number

of 1’s in the index is very small as compared to the data. If

it would have been the case that the most similar entry has

less than 48 similar bits, we would have applied BD-Coder

on it i.e, the data would be sent without approximation. Thus,

this encoding scheme fits very well on top of the existing data

encoding scheme. BD-Coder updates data table after every

transfer, which can lead to multiple entries having the same

value. In ZAC-DEST, we update the data table only when the

exact data is transferred. This ensures no duplicate entries are

present in the table. Since there are no duplicate data entries

in ZAC-DEST, the probability of finding a most similar entry

is higher, leading to further energy savings.

B. Using the Unused

In frequent value (FV) encoding, the frequent values are

encoded and sent as a one-hot encoded address and was

targeted towards reducing switching energy [38]. ZAC-DEST

differs from FV encoding as we have a separate encoding

scheme and target termination energy. We will show how we

exploit one hot encoding to further reduce the termination

energy for ZAC-DEST. ZAC-DEST allows us to skip data

transfer when a similar entry is found in the data table. The

only hiccup now is of transferring the index (location) of the

most similar entry. In BD-coder, a separate line was used to

transfer the index to the receiver. However, when ZAC-DEST

is true, the skipping of data transfer during ZAC-DEST leaves

the data lines unused. These lines are used to our benefit for

sending the index of the entry in the one-hot encoded (OHE)

format. For example, in the worst case scenario which occurs

when transferring the index value 111111 (i.e. 63 in decimal)

causes six 1’s to be sent. If the same is encoded in 64-bit OHE,

the index sent will be ‘0x8000000000000000’. This reduces

the number of 1’s down from six to one. Also, no additional

lines are required since existing lines for data transfer are used

to send the OHE index.

V. ZAC-DEST OPTIMIZATIONS

In this section, we discuss a separate addressing technique

for zeros. We also discuss the support provided by ZAC-DEST

for allowing configurability in approximation within each data

transfer.

A. Handling All Zeros

Without any data encoding scheme, the transfer of 0’s

consumes the least amount of energy [13]. Hence, we must

ensure that there are no overheads while transferring 0’s.

Thus, whenever a 64-bit data containing all 0’s needs to be

transferred, neither ZAC-DEST nor BD-coder applied to it.

Also, unlike BD-Coder, which would update the table after

every data transfer we do not add an entry in the data table

when 0’s are transferred which allows us to store unique data

in the data table.

B. Configurability in ZAC-DEST

Similarity Limit: Similarity Limit, as the name suggests

refers to the number of bits that needs to same, between the

data to be sent and the most similar entry, for ZAC-DEST to

be true. We have included 4 different similarity limits in ZAC-

DEST for evaluation purposes. These are 7, 13, 16, and 20 out
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of 64 bits which corresponding to 90%, 80%, 75%, and 70%

similarity limit respectively. ZAC-DEST can be tuned to use

any of the similarity limit values required by the application.

Tolerance: Tolerance refers to the bits which cannot be

approximated. Even though we are proposing an encoding

scheme for approximate applications, it may happen that

approximating most significant bits (MSBs) may cause large

errors in applications. These bits need to be transferred without

approximation, irrespective of the similarity limit. Thus, the

number of bits that can tolerate errors, in this case, will reduce.

For example, if the data is 64-bits and a tolerance of 16 is

required, the most significant 16 bits of data cannot be approx-

imated. This will put a tighter constraint on approximation

and ZAC-DEST will be applied a fewer number of times.

Support for a wide range of values that can be selected to tune

required tolerance depending upon the data width is provided

in ZAC-DEST. It is important to note that while having higher

tolerance reduces energy savings, it does increase the output

quality of the application.

Truncation: Truncation refers to the removal of a fixed num-

ber of bits from the original data. In approximate computing,

one of the most widely used approximation methodology is

the removal of least significant bits (LSBs). Thus, it is useless

to transfer these bits over the DRAM channel. For example,

if we have an 8-bit data of the form 01101111 and we had

to truncate 4 LSBs the data would change to 01100000. In

ZAC-DEST we incorporate truncation in the following way.

If we have a 64-bit data and a truncation of 16 bits is required,

the least significant 16 bits of the data will be ignored while

finding the most similar entry. These bits will be replaced by

0’s hereafter. The rest of the steps remain the same as that of

ZAC-DEST. The overall algorithm for BD-Coder and ZAC-

DEST is shown in Algorithm 1 and Algorithm 2.

Algorithm 1 BD-Coder Algorithm

Definitions

DCD- DRAM Chip Data

DS - Data sent over DRAM channels

DR - Data reconstructed at receiver end

MSE - Most similar entry

BD-Coder- BDE

for all chip do

Find MSE w.r.t DCD

Check for BDE

Condition for BDE to be True:

Hamm(DCD) > Hamming Count of (MSE XOR DCD)

if BDE condition TRUE then

DS : (MSE xored DCD) and Index of MSE

DR: DCD

else

DS : DCD

DR: DCD

Table Updated with DCD

end if

end for

Algorithm 2 ZAC-DEST Algorithm

Definitions

DCD- DRAM Chip Data

DCDT- DRAM Chip Data after Truncation

DS - Data sent over DRAM channels

DR - Data reconstructed at receiver end

MSE - Most similar entry

MSET - Truncated most similar entry

ZAC-DEST - Zero Aware Configurable Data Encoding by

Skipping Transfer

MBDC - Modified Bitwise Difference Coder

DBI - Dynamic Bus Inversion

for all chip do

Find MSE w.r.t DCDT

{Truncated bits are not used for comparison}
Check for Zeros

if DCDT == 0 then

return 0

end if

Check for ZAC-DEST

Condition for ZAC-DEST to be True:

Hamming Count of (MSET XOR DCDT) < Threshold

and Tolerance bits are same

if ZAC-DEST condition TRUE then

DS : OHE index of MSE

DR: MSET

else

Check for MBDC

Condition for MBDC to be True:

Hamm(DCDT) > Hamming Count of (MSET XOR

DCDT) added to Hamming count of Index

if MBDC condition TRUE then

DS : DBI (MSET xored DCDT) and Index of MSE

DR: DCDT

else

DS : DBI (DCDT)

DR: DCDT

end if

Table Updated with DCDT

end if

end for

VI. ZAC-DEST CIRCUIT IMPLEMENTATION

The detailed circuit implementation of ZAC-DEST will be

shown in this section.

ZAC-DEST Data Table: We start with modifying the BD-

Coder design. Fig. 6a shows the NOR based binary content

addressable memory (CAM) used to implement the data table.

The data table in BD-Coder does the following i) stores recent

data transfers, and ii) finds the most similar entry (MSE).

(i) A 6-transistor based SRAM is used for storing the data

in the CAM cell as shown in Fig. 6a. This allows reading

and writing data into the data table using BL and BL’. For

(ii) a 5-transistor comparator is used and search is performed

using SL and SL’. The most similar entry is obtained using the
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(a) (b) (c) (d)

Fig. 6: (a) Original CAM cell [14] (b) Modified CAM cell (c) Replica Word CAM Cell (d) Modified BD Coder (MBDC)

Data Table for ZAC-DEST

comparator. For ZAC-DEST we have added one more feature

(iii) for supporting truncation. For (iii) we add 1-transistor

and an additional line, truncation line in the CAM module

as shown in Fig. 6b. When the truncation line goes to 0, the

NMOS connected to the line turns off and disconnects the

comparator from the comparison line. This bit value connected

to this line will then not be used for comparison. An additional

row called the replica cell row is used in BD-Coder to count

the number of 1’s in the input data. The replica row will be

used when the number of 1’s is lesser than the MSE. We

modify this row similarly as shown in Fig. 6c. The overall

structure is shown in Fig. 6d is called the Modified BD-Coder

(MBDC).

Zero Checker: The zero checker circuit is used to detect, in

advance, if the input data to be sent is all 0’s. The zero checker

gives an output 1, only when all the 64 input bits are 0’s. This

is achieved using the NOR gate as shown in Fig. 7 ( 1 ).

Similarity Checker: The similarity checker is shown in

Fig. 7 ( 2 ). It sums up the count of the number of dissimilar

bits between input data and the most similar data. Depending

upon the required similarity percentage, i.e. the percentage of

bits which are supposed to be equal, 90%, 80%, 75% and 70%

the numbers of dissimilar bits, irrespective of the bit positions,

can be 7, 13, 16 and 20 respectively for 64-bit data. Hence,

if an application requires a 90% similarity, the sum of the

bitwise difference should be less than 7 for ZAC-DEST and

so on.

Tolerance: The circuit design for introducing tolerance is

shown in Fig. 7 ( 3 ). At a time, we can transfer 64-bits of

data. If we assume that this data contains eight chunks of 8-

bit values, then tolerance will be applied to the MSB of each

chunk. For a tolerance of 16, 2bit MSBs from each chunk

cannot be approximated as shown in Fig. 8 ( 1 ). Similarly if

the values were of 16-bit each, i.e. there will be 4 chunks, then

4-bit MSBs of each of the chunks cannot be approximated as

shown in Fig. 8 ( 2 ).

Mostly the most significant bits (MSBs) are the ones that

cannot tolerate approximation as described in Section VIII.

So, for 64-bit data, ZAC-DEST allows for the introduction

of tolerance in 8 or 16 bit granularities. Depending upon the

bit-width the tolerance bits can be distributed. The tolerance

bits can be selected as per need using MUX as shown in

fig. 7a ( 3 ). For a bit-width of N, ZAC-DEST can have

tolerance in first N/4 or N/8 MSBs, where N can have values

of 8, 16, 32 and 64. A single mismatch (between data and

the most similar entry) in the tolerant bits will make the NOR

gate output go low so that ZAC-DEST encoding is not applied

and exact data is sent as shown in Fig. (7).

Truncation: The circuit design for introducing truncation is

shown in Fig. 7 ( 4 ). Similar to tolerance we allow support

for a various bit-widths. ZAC-DEST allows a choice of N/4

and N/8 bit truncation for N equal to 8, 16, 32 and 64. The

crucial difference is that truncation will make the bits to go

to 0. For truncation of 16 and two different chunk sizes of 8

and 16, how the bits are approximated is shown in Fig. 8 ( 3 )

and ( 4 ).

Overall ZAC-DEST Encoding Scheme: The block diagram

of ZAC-DEST encoder is shown in Fig. 7b. The input data to

be sent over the channel is sent to zero checker. If the data is

all 0’s the zero checker output is 1 and all 0’s are sent over the

channel. At the receiver’s end, all 0’s are identified as such.

The data is then forwarded to the MBDC to obtain MSE.

MBDC also provides the One Hot Encoded (OHE) address

and the Address Binary Encoded (ABE) address of the most

similar data. The most similar data is XORed with the original

data to get the bitwise difference, which is then provided as

input to the similarity and the tolerance blocks. The similarity

block checks for the required similarity criteria and will output

a 1 if the criteria is satisfied. The tolerance checker will output

a 1 only if all the bit positions selected for tolerance do

not have a mismatch. If both similarity and tolerance criteria

meet (ANDed output is 1), the One Hot Encoded Address is

sent over the data lines (ZAC-DEST Output), else the MSE is

sent (BD-Coder Output). Not if the original data has a lesser

hamming weight that the MSE, the MBDC output the original

data in place of MSE. A bit that informs the receiver whether

the bits on the data lines represent the data or address. BD-

Coder uses a single index line per chip to transfer the address.

Since data table size is 64, a maximum of 6-bits are required

to address the entire data table. The final output is sent after

applying DBI.
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(a) (b)

Fig. 7: (a) Sub Modules for ZAC-DEST (b) ZAC-DEST Encoder Circuit

Fig. 8: Bits for Tolerance and Truncation 8, 2 and 16, 4.

(Chunk Size = 8, 16, Bits within Chunk = 2, 4)

MBDC Overheads: We have derived energy values of BD-

Coder in 65nm to be 7 pJ from [14]. The modification

introduced in the data table is a single transistor that does

not increase the energy significantly. We implemented the

additional modules for ZAC-DEST in Verilog. We used 10,000

random inputs to generate the switching activity file (SAIF)

using Synopsys VCS tool. We used the SAIF file generated in

Synopsys Design Compiler to obtain the power consumption

of the hardware. The energy consumption overhead of the

entire sub module is 9% higher than that of the BD-Coder. The

ZAC-DEST submodules, combined with BD-Coder consume

7.66 pJ per access. The latency for the data table in BD-

Coder was 2.4 ns, while the entire ZAC-DEST sub module

combined with BD-Coder has a latency of 3.4 ns. Even though

the latency of MBDC increases as compared to BD-Coder, this

is minimal as compared to the DRAM latency as also shown

in [14]. The area overheads of the submodules are 15% higher

as compared to the BD-Coder. The receiver of both ZAC-

DEST and BD-Coder is similar. Thus, the energy consumption,

latency, and area of ZAC-DEST receiver is similar to that of

BD-Coder’s receiver. These overheads are per DRAM chip, but

overall overheads are still negligible as compared to DRAM

as also shown in [14].

VII. METHODOLOGY

TABLE I: Encoding Schemes Under Evaluation

OHE One-Hot Encoding of ZAC-DEST
BDE ORG Original Bitwise Difference Coder
BDE Modified Bitwise Difference Coder
DBI Dynamic Bus Inversion
ORG Original Unencoded Data (Baseline)

ZAC-DEST improves channel-energy efficiency by trans-

mitting approximate data in error resilient applications. There-

fore we must choose a set of workloads that are amenable to

approximation and have a quantifiable metric for measuring

their output’s quality. In this section, we describe the method-

ology used to evaluate the benefits of ZAC-DEST over existing

models and the measure of quality used to understand the

effect it has on the outputs. Their analysis is done by first

converting their inputs to hexadecimal traces. We then emulate

the transfer of data over the DRAM channels using these traces

and use them to simulate the models described in Table. I. For

ZAC-DEST models that involve approximating data accesses,

we use the simulated traces to reconstruct approximate inputs

that are used to run the workloads. This way, we compare the

results of the workloads with the original input set and the

reconstructed ones to get a measure of quality.

A. Workloads

The workloads chosen for evaluation are machine learning

applications that use images as inputs. To evaluate different

models we Fig. 9 ( 1 ) read the images and store their pixel

values in a row-major format of 64 bytes chunks to simulate

a cache line Fig. 9 ( 2 ) apply ZAC-DEST and the other

models on the resulting trace to simulate data transferred to the

memory controller while calculating the amount of hamming

and switching energy Fig. 9 ( 3 ) reconstruct images using

the data received by the memory controller Fig. 9 ( 4 ) use

the reconstructed images to run respective models and study

the effect on quality. The workflow is summarized in Fig. 9.

Each workload has a different set of precision and accuracy

Fig. 9: Workflow of the methodology

metrics. Therefore we define quality for each workload to

understand the effect of ZAC-DEST on the output. Quality

is defined as the ratio of the output metric observed due

to ZAC-DEST reconstructed images to that of the original

images. As a result, a quality of 1 corresponds to the workload

not expressing any degradation in its output and a quality of

0.5 indicates the workload experiencing a 50% degradation in

the corresponding quality metric when compared to its non-

approximated run. We now discuss each application in detail.
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1) ImageNet: CNNs from the ImageNet Challenge: Con-

volutional neural networks (CNNs) have been successfully

applied in several image processing and computer vision tasks

like image classification, object detection, etc [24], [39]–

[43]. We use pre-trained pytorch [44] models of 15 of these

CNNs. These 15 CNNs were trained using the ImageNet

2012 classification dataset [45] which contains 1.28 million

images in the training set. We performed inferencing using

50K images in the validation set of ImageNet dataset. The

top-1 score matches the result with the highest probability

against the target label. It is calculated as the number of times

the top predicted label matches the target label, divided by the

number of images evaluated.

Quality Metric: For these CNNs, the quality metric is

a ratio of the top-1 score for inferencing with ZAC-DEST

reconstructed images and the original images.

2) ResNet: Classification of the CIFAR dataset: Previous

works [46], [47] have shown that training ML models on

approximate data are instrumental in alleviating drops in

quality which accompany the use of approximate data. We

demonstrate this by allowing ResNet-110 [48], a PyTorch

model from the ImageNet challenge, to be trained on ZAC-

DEST reconstructed train images before recording its accuracy

while inferencing using ZAC-DEST reconstructed test images.

We carry out these experiments on the CIFAR-100 dataset

[49].

Quality Metric: It is a ratio of the top-1 score that we obtain

from making predictions using reconstructed images (on the

model that has been trained using reconstructed images) to

that of the original data and model.

3) Quant: Color Quantization using K-Means: Considering

that both ResNet and ImageNet consist of Neural Networks,

we chose Quant as a workload for unsupervised tasks. This

workload uses K-Means clustering to reduce the number of

colours required to reproduce an image [50]. The algorithm

reduces the large number of unique RGB values that are

present in an image to a mere 64 with minimal degradation

in image quality. This degradation is measured using the

structural similarity (SSIM) [51] metric that quantifies image

quality degradation with respect to the reference image. We

use the images from the KODAK image dataset [52] and

quantize the colour using Scikit-Learn’s KMeans algorithm in

Python.

Quality Metric: It is a ratio of SSIM obtained using

reconstructed images compared to the original images.

4) Eigen: Using Eigen Vectors for face detection: Eigen

is an unsupervised workload that uses Principal Component

Analysis (PCA). PCA is a statistical procedure that uses

transformations to convert a set of data into a set of uncor-

related variables. The task in this workload is to use PCA to

decompose images present in the Yale Face Database [53] and

then use these images for detecting faces.

Quality Metric: It is a ratio of the number of faces correctly

detected using the reconstructed images when compared to

using original images.

5) SVM: FMNIST image classification using Python: To

compare the different encoding schemes on a sparse data, we

choose an SVM model that learns the Fashion MNIST dataset

Fig. 10: Energy savings seen by all exact models

[54], [55]. A Support-vector machine (SVM) is a machine

learning model that uses a kernel to project data into higher

dimensions following which it tries to learn a hyperplane that

separates them distinctly. We choose FMNIST as it has a large

number of sparse accesses, a behaviour that is exhibited by a

number of contemporary workloads [13].

Quality Metric: It is the ratio of the number of articles of

clothing correctly classified obtained using the reconstructed

images when compared to using the original image set.

VIII. EVALUATION

In the following section, we discuss the setup used to

analyze the effects of ZAC-DEST and understand how the

different parameters that are used to control ZAC-DEST’s

approximations affect the energy savings and output quality.

A. Setup

We use C++ scripts to parse memory traces and simulate

ZAC-DEST, DBI and BDE. These scripts are used for the

dual purpose of simulating data transmission over the DRAM

channel and it being received by the controller. Simulating

data transmission is used to record the hamming and switching

counts that are used for the energy calculations. Simulating

data received by the memory controller, on the other hand,

is used for evaluating the effect of ZAC-DEST on the output

quality of the workloads. Quality as defined in Section. VII

refers to the ratio of top-1 precision for ImageNet and ResNet,

SSIM values for Quant and accuracy of workload task for

Eigen and SVM obtained using ZAC-DEST reconstructed im-

ages when compared to using the original images. The analysis

for termination and switching energy is done as described

in Section I and III. These values are calculated based on

the data transmitted over the data lines and the index/other

metadata passed over the control lines. While presenting the

results, we discuss the termination energy, as in most cases

both termination and switching follow similar trends.

We perform experiments for 8 chip DRAMs, with each chip

having a data table size of 64. The choice of the data table size

is made based on the discussions in [14] where data table size

up to 64 give a relatively large increase in energy benefits.

B. Comparing ORG, DBI, BDE ORG and BDE

Fig. 10 shows a comparison of the savings for all the

exact models, i.e., non-approximate models, observed when

compared to the original non-encoded scheme. We observe

that when encoded with DBI, the number of 1’s being sent

over the DRAM channel is reduced by 28%, which leads to a

corresponding decrease in termination energy when compared
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to original memory accesses. It is interesting to observe that

data encoded using BDE ORG (proposed in [14]) performs

worse than DBI in this aspect leading to only a 20% reduction

while BDE with our proposed optimisations leads to a 41%

reduction. We hypothesize that this occurs due to the data

tables not being updated regularly, thus leading to suboptimal

encodings. Also, the overheads of transferring the address of

the index adds up to the termination energy. Due to this,

workloads like Eigen which use images that are relatively

uniform suffer the most - observing only a 39% reduction

compared to 77% reduction produced by our version of BDE

that updates the data table at every access. Hence, for the

remainder of this section, we compare the different modes of

ZAC-DEST with respect to our modifed BDE, which acts as

a stricter baseline.

C. Effect of Similarity Limit

The Similarity Limit is a parameter that controls the amount

of approximation being done to the workload. A Similarity

Limit of 90 denotes a ZAC-DEST implementation where data

accesses at least 90% of bits similar to the most similar entry

would be approximated. We choose 90%, 80%, 75% and 70%

(these correspond to a max of 7, 13, 16 and 20 bits being

approximated) as similarity limits for analysis as they provide

a varied view of the benefits that the approximation can yield.

Allowing for more bits to be approximated (a similarity limit

of < 60%) would lead to incorrect results while high thresh-

olds (a limit of >90 %) would not result in any significant

improvement in energy savings. For these experiments, both

Truncation and Tolerance are kept as 0. Fig. 11 shows the

behaviour of the CNNs from the ImageNet Challenge. There

is a decline in top-1 precision as we decrease the Limit due to

loss in image quality. It is interesting to observe that the loss

in accuracy in decreasing the Limit from 75 to 70 is much

more significant than the other transitions, namely from 90

to 80 and 80 to 75. Fig. 12 shows the degradation of the

reconstructed image caused due to the decrease in Similarity

Limit. When we compare quality metrics across workloads in

Fig. 13, we observe a similar trend of decreasing qualities

with a decrease in Similarity Limit. While in the case of

the Eigen, ResNet and SVM, it is gradual, ImageNet and

Quant observe a sharper decline as the Limit decreases. It

is important to note that for a Similarity Limit of 90 most

of the workloads have a quality comparable to or more than

1 (where a quality of 1 means that there is no reduction in

accuracy). Fig. 14, shows the effect of Similarity Limit on

termination and switching energy for all the workloads. We

observe that for a similarity limit of 90, as compared to BDE,

ZAC-DEST reduces the termination and switching energies

by 8% and 7% respectively. Decreasing the similarity limit

(allowing more bits to be approximated) drastically reduces

energy consumption. Comparing the energy consumption for

Similarity Limits 90 / 80 / 75 / 70, we observe a reduction

of 8% / 20% / 32% / 60% in termination energy compared

to BDE, with a similar trend for switching energy. These are

especially promising results as for Similarity Limit of 80 and

75 we see a reduction of 20% / 32% in the energy consumption

when compared to BDE with qualities of 0.96/0.8.

D. Effect of Truncation and Tolerance

Fig. 15, shows the effect of Truncation and Similarity Limit

on the energy and quality of workloads. We observe that

increasing Truncation results in a decrease in energy at cost of

quality. This is caused due to the increase in the number of bits

being masked to zero caused by increasing Truncation. For

a Limit of 80, increasing Truncation from 0 to 16 causes the

savings of both termination and switching energy to increase

from 20% to 68% as compared to BDE. But at the same

time, we observe the quality to drop from 0.96 to 0.77. It

is interesting to observe that the effect of Truncation becomes

more prominent on lower Similarity Limits, with a drop in

quality from 0.72 to 0.44 for a Limit of 70. Fig. 16, shows

the effects of different parameters on workloads. Each data

point is differentiated based on color, size and shape which

correspond to Truncation, Tolerance and Similarity Limit,

respectively. This plot helps visualize the combined effects

that different parameters have on energy savings and quality

degradation. Ideally, we would select parameters to minimize

the energy consumption without compromising on quality,

selecting design points on the top-left of the chart. We observe

that decreasing Limit and increasing Truncation results in

energy savings at the cost of quality, pushing design points

to the lower left. We use Tolerance to balance the effect of

those parameters. Increasing it (represented by increasing the

size of the point) restricts the number of times ZAC-DEST

can be true, thus resulting in lower energy savings but better

quality (pushes the design points to the top right). Just as in

the case of Truncation, Tolerance does not affect the quality

and energy savings by a large amount at higher Similarity

Limits (where the design points of different sizes and colours

are closer to each other), but increases as we lower the Limit.

E. Using Reconstructed Images for Training

The workload ResNet is used to demonstrate that training

models on images reconstructed using ZAC-DEST, i.e., on

approximate images, would alleviate some of the quality

degradations. We observe this behaviour when we compare

ImageNet and ResNet in Fig. 17. We compare two different

models of ResNet - one that has been trained using the

reconstructed images while the other has been trained using

the original dataset. Fig. 18 compares the quality of the two

models based on the effects of Similarity Limit and Truncation.

We observe that the drop in quality is smaller in the case

of ResNet trained on approximation images as compared to

the model that isn’t. This motivates training models with

the ZAC-DEST reconstructed data when feasible to improve

the accuracy of the application. In some configurations, we

observe an improvement of up to 9× in output quality. Hence

depending on the application, in case where higher accuracy

is needed ZAC-DEST can be used both while training and

inference.

F. Effect of ZAC-DEST on Output Quality

Fig. 15 provides an insight into how amenable each work-

load is towards approximation. We observe that ResNet and
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Fig. 11: Effect of Similarity Limit on top-1 precision for neural nets in the ImageNet Challenge. The red line denotes the

original accuracy

(a) Limit = 90 (b) Limit = 80 (c) Limit = 70

Fig. 12: Reconstructed images for different Similarity Limits

Fig. 13: Effect of Similarity Limit on output quality for all

workloads.

SVM are more tolerant to higher levels of approximation

compared to ImageNet and Quant despite observing similar

benefits in energy consumption. Fig. 17 shows this analysis

for ImageNet and ResNet as representatives of the different be-

haviours. Here, ImageNet dips sharply at higher approximation

configurations while ResNet manages to remain stable, i.e., it

does not experience as large a drop in quality. This behaviour

is directly related to the nature of each workload. For Quant

large variations in the image can cause the K-Means algorithm

to quantize colours in a poor manner, leading to lower values

of SSIM. SVM, on the other hand, being a generally robust

model classifying a relatively simple data set is amenable to

approximations.

Fig. 14: Energy savings observed by all models with ZAC-

DEST while varying its similarity limit.

G. Effect of ZAC-DEST on Both Weights and Images

We now study the effect of applying ZAC-DEST on both

the weights and the images to study the impact on energy

and quality. For approximating weights we follow a similar

strategy as approximating images. The weights are represented

using the IEEE 754 format as shown in Fig. 19. It is important

to note that for weights it is imperative that we do not

approximate the exponent and sign bits as it introduces large

errors into the calculations. We evaluated and observed that

approximating even the last bit of exponent leads to 60%

deterioration in output quality. Thus, based on structure of the

traces and the DRAM data layout (detailed in Fig 3) we set

the tolerance sign and exponents bits are not approximated.

Fig. 20, shows us the effect of ZAC-DEST on termination

energy and quality when both the images and weights for

the model “InceptionNet” from the ImageNet workloads for

varying Similarity Limits. For Similarity Limits 70 / 65 / 60

/ 50, we observe a reduction of 10% / 40% / 59% / 60% in

termination energy (due to weights) compared to BDE. We see

that for such savings in energy the quality reduces from 0.92

to 0.57 (for a fixed image Similarity Limit of 90%). Fig. 21,

shows us that the effect of ZAC-DEST on ResNet-110 when

we approximate both weights and images during both training

and testing. Similar to what was discussed in Section VIII-E,

we see that training with ZAC-DEST improves the output

quality. Such comparisons would be useful for determining

the correct modes to be used for different models to obtain

the desired output quality. Based on the whether weight

or image transfer dominates depending upon the hardware

configurations and the application, for acceptable quality drops

one among the variety of configuration can be chosen.

H. Instances of Encoding During Memory Transfers

In Fig. 22 we visualize the frequency with which the data

is encoded for a particular encoding scheme for both weights

and images. We compare these values when we use BDE and

ZAC-DEST (which is built over an optimized version of BDE).

As compared to the BDE proposed in [14], we have added two

modifications. i) We handle 0’s separately, and ii) We have a

stricter condition for BDE as we sum the hamming weight of

both the data and index values to evaluate the BDE condition.

In [14], only hamming weight of data is considered and not

the index values. In both cases, we see that a majority of

the accesses are encoded using either of the schemes, with

only an average of 6.5% and 6.6% of the accesses not being

encoded using ZAC-DEST and BDE respectively. This result

demonstrates the high similarity between the transferred data
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Fig. 15: Effect of Truncation and Similarity Limit on Termination Energy and Quality (Switching Energy follows similar

trends). Each number in the box is the value of the metric.

Fig. 16: Effect of ZAC-DEST on Quality and Energy as an average over all workloads. Darker points correspond to higher

Truncation, larger points correspond to larger tolerance, and more number of sides correspond to larger similarity limits.

Fig. 17: Effect of ZAC-DEST on the ImageNet and ResNet

Fig. 18: Comparing ResNet-110 for different training sets

Fig. 19: 32-bit Floating Point representation in IEEE 754

Fig. 20: Comparing InceptionNet for both weight and image

approximation

and also speaks to the fact that to improve over BDE, whose

coverage is already very high, it is imperative to implement

schemes that have a better encoding mechanisms.
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Fig. 21: Comparing ResNet-110 for both weight and image

approximation with training

(a)

(b)

Fig. 22: Frequency with which data is encoded using ZAC-

DEST and BDE during a) Weight Transfers b) Image Transfers

for varying similarity limits

IX. RELATED WORK

In this section, we briefly present work in the area of data

encoding/compression and approximation.

Data Encoding: ZAC-DEST is an approximate encoding

model that develops on the state of the art data encoding

schemes BD-Coder [14] and DBI [23] to give higher energy

benefits. Various other works in the past have focused on

energy reduction using data encoding in DRAM channels.

Yan et al. [38] proposed an encoding scheme which exploits

temporal locality of data words. It uses one-hot encoding to

send frequently occurring values. Suresh et al. [56] proposed

VALVE, a variable-length bit pattern for encoding and decod-

ing. it matched partial data and sent either one-hot code or

two-hot code masks for that partial data word while the rest

was sent unencoded. Lee et al. proposed SILENT [57], a data

encoding scheme which focused on reducing the switching

energy by reducing the hamming weight of the data words

by exploiting similarity between current and the previously

accessed data word. Lee et al. [13] proposed a data encoding

scheme for GPUs, which reduces the number of 1’s in the

data sent over the channel. It took special care of zero data

by encoding it with a constant with reduced hamming weight.

While the technique works well for GPU applications it has

been shown to perform poorly for CPU applications.

Stanley-Marbell et al. [58] propose a value-deviation-

bounded serial (VDBS) approximate encoding scheme that

significantly reduces the switching observed for data. Pekhi-

menko et al. [59] propose Toggle-Aware Compression schemes

that reduce switching count impact of the data compression

algorithms. Both schemes can be used to assist in alleviating

the increase in switching counts caused due to BDE in certain

workloads (as seen in Fig. 10).

Approximation in Hardware: Various works have focused

on the introduction of approximation to DRAMs, caches

and processors [60]. Sampson et al. [61]–[63] have proposed

frameworks for annotating and identifying regions in the

program that are amenable to approximation and hardware

mechanisms for memories that result in energy savings at the

cost of output quality. Liu et al. [64] use application-level

input to effectively reduce the refresh rate of DRAMs, which

may result in data corruption. Miguel et al. [65] proposed

Load Value Approximation (LVA) and Thwaites et al. [66]

proposed rollback-free value prediction, techniques that ap-

proximately predict the data to be accessed during a load.

As such behaviour results in increased number of predictions

being made and reduces the number of times the memory is

accessed. These works focus on introducing approximation in

a method that is different from ZAC-DEST, which makes it

entirely possible to stack them with ZAC-DEST to leverage

more benefits.

Miguel et al. [67] propose Doppelganger, an approximate

cache mechanism that associates multiple similar entries to-

gether to reduce the amount of data stored. Boyapati et al.

[21] propose APPROX-NoC, a mechanism for network-on-

chip (NoC) devices to eliminate the transmission of similar

cache blocks by encoding them to similar data patterns. Both

these works can function in synergy with ZAC-DEST.

X. CONCLUSION

In this paper we propose DEST, an approximate data en-

coding scheme to reduce DRAM channel energy consumption

for error resilient applications. DEST works by exploiting

data similarity and the error resilience of applications leading

to reduction in hamming weight (number of 1’s in data

word). DEST builds up on top of existing data encoding

schemes namely BD-Coder and DBI. We applied DEST on

five different set of machine learning applications and observed

a reduction of 40% and 37% in termination and switching

energy respectively as compared to the state of the art data

encoding technique with an average output quality loss of

10%. DEST, if applied on both training and testing can

significantly outperform designs that apply DEST only during

testing, but are trained on non-DEST encoded data.
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