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In a recent work, [1] the equilibrium of a cluster of charged dust particles mutually interacting
with screened Coulomb force and radially confined by an externally applied electric field in a 2-D
configuration was studied. It was shown that the particles arranged themselves on discrete radial
rings forming a lattice structure. In some cases with the specific number of particles, no static
equilibrium was observed; instead, angular rotation of particles positioned at various rings was
observed. In a two-ringed structure, it was shown that the direction of rotation was opposite. The
direction of rotation was also observed to change apparently at random time intervals. A detailed
characterization of the dynamics of small-sized Yukawa clusters has been carried out in the present
work. In particular, it has been shown that the dynamical time reversal of angular rotation exhibits
chaotic behavior.

I. INTRODUCTION

Plasma medium being intrinsically nonlinear has at-
tracted considerable interest in the study of chaotic dy-
namics associated with it [2–4]. These studies have
mostly explored the chaotic behavior associated with
macroscopic signals such as the current-voltage charac-
teristics etc. Some recent studies [5, 6] have, however,
also shown the presence of chaos in the dynamics of the
small charged cluster of particles immersed in a plasma
medium. For instance, in a paper by T.E. Sheridan [5], it
was shown that a three-particle system exhibits chaotic
dynamics in the presence of a low-frequency modulation
of the underlying background plasma density.

The charged clusters are essentially dust particles
immersed in plasma and form the basis for complex
dusty plasma tabletop experiments [7]. The lighter elec-
tron species, in this case, gets attached to these micro-
particles rendering them negatively charged. The charge
on the micro-particles can often be quite large, of the or-
der of 104 electronic charges. The experiments involving
dusty plasma are fairly simple, and they can be easily
pushed into the strongly coupled regime [8–11] even at
room temperature and normal densities. The dust charge
gets shielded in the plasma environment, and as a result,
the inter-dust interaction is typically described by the
screened Coulomb potential [12]. The experiments in-
volving such configurations of dust particles are easy to
perform, and the trajectory of individual dust particles
can also be tracked with sufficient detail and with very
simple diagnostics. Such a system offers an ideal test-bed
for studying crystallization process [9–11], single-particle
dynamics [13–15], phase transitions [16–18], etc. The sys-
tem thus provides a very convenient example for studying
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the dynamical behavior of a small cluster of interacting
particles placed in any externally applied field.

In a recently published work from our group [1] the
2-D equilibrium study of charged dust cluster immersed
in plasma under a radially confining static force has been
studied with the help of Molecular Dynamics simula-
tions. The screening of the charged dust particles by
the background plasma was accounted for by consider-
ing a screened Yukawa interaction amidst dust particles.
The dust particles were shown to arrange themselves in
interesting patterns at various radial rings. The system
was observed to relax towards static configuration with
particles placed in radial rings in a definite pattern. In
some cases, depending on the number of particles, it was
noticed that there was no static configuration possible.
In such cases, the dust particles exhibited azimuthal ro-
tation, and the direction of rotation kept changing with
time in a seemingly random fashion. We provide here
an understanding of the formation of these structures on
the basis of minimization of the total potential energy
of the system. Furthermore, we explore the dynamical
state exhibited by these small clusters of dust particles
in detail and show that the azimuthal dynamics of the
particles are essentially chaotic in time.

The paper has been organized as follows. In section
II, we discuss the simulation details. Section III contains
the details of possible configurations to which the system
is observed to relax. The understanding and relaxation
towards a dynamical state for some cases for which no
static equilibrium exists has been provided in this section.
In section IV, we study the dynamics in detail for some
specific clusters and show that the azimuthal dynamics of
the particles exhibit chaotic behavior. Section V contains
the summary and conclusion.
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II. MD SIMULATION DETAILS

We simulate of 2-D dust Yukawa cluster with a fi-
nite number of charged particles using classical Molec-
ular Dynamics code, LAMMPS [19]. Each simulation
is started with random phase-space distribution of dust
grains inside the simulation box of normalized length
L = Lx = Ly = 12.79λ0 in x and y directions re-
spectively. Here, λ0 = 2.2854 × 10−3m is choose to
normalized the length scales. We consider identically
charged dust grains immersed in background plasma.
The mass (M) and charge (Q) of dust species are taken
to be 6.99 × 10−13kg and 11940e respectively where e
is the charge of an electron. These values correspond
to a typical experiment of dusty plasma [20]. All nega-
tively charged dust particles repel each other via screened
coulomb potential, U(r) = (Q/4πǫ0r) exp (−r/λD) and
are confined in the x − y plane by a parabolic potential
which is provided by an externally applied electric field of
the form E = K(x−L/2)x̂+K(y−L/2)ŷ . Here, λD and
K are the typical Debye screening length and strength of
confining potential respectively . We define normalized
screening parameter defined as (κ = λ0/λD = 1 ) which
represents the strength of pair interaction. The value of
K, which defines the strength of the electric field, has
been chosen to be 2500. Dynamics of dust particles are
tracked by choosing time step 0.001ω−1

0 for simulations

where ω0 = (QK/M)1/2 = 2.616s−1. The net force act-
ing on any (say ith) particle is sum of forces due to all
other particles and external confinement force as given
by the expression below

Fi = −Q

Np
∑

j=1

∇U(ri, rj) +Q(Ex +Ey), (1)

A Nose-Hoover thermostat [21, 22] is used to keep the
system at the desired temperature, and phase space co-
ordinates are generated from canonical ensemble using
a thermostat. In addition, a chain of thermostats has
been coupled to a particle thermostat [19, 22]. A thermal
equilibrium state is obtained using a Nose-Hoover ther-
mostat at particle kinetic temperature 416.95 K, which
corresponds to Coulomb coupling parameter (Γ) 2500.
The typical particle velocity (vth) corresponding to this
temperature is 9.07× 10−5ms−1.

III. CONFIGURATION OF SMALL CLUSTERS

We studied the relaxation of a specific number of
charge particles distribution randomly placed in the box.
The configuration as expected tries to relax to an equilib-
rium state in which the energy is minimum. A single par-
ticle would thus always reside at the center of simulation
box where the external potential energy is minimum. As
the number of particles are increased in the cluster the
interaction potential amidst the particles also becomes

relevant. The repulsive Yukawa potential of the particles
tries to place particles as far apart as possible whereas
the external electric field confines all of them close to the
central region of the box. As a result of this the parti-
cles arrange themselves in patterns as illustrated in Table
I. The table shows different arrangements to which the
particle relax as one changes the number of particles. It
can be observed from the table that when the particle
number lies between 2 to 5 they are arranged in a single
ring at equi-angular spacing. As the number of particles
is increased, we first get a configuration in which a sin-
gle particle is placed at the center and others are placed
around a ring at a particular radius. This continues till
the total number of particle is 8. For particle number
9 and beyond the structures become more complicated.
The inner shell now comprises of 2 to 5 particles and the
rest of the particles are arranged at a larger radius. It
is in these configurations that one observes that in most
cases the structure never relaxes to a stationary pattern,
instead particles are observed to exhibit rotation.

FIG. 1: (1,5) and (0,6) configurations of cluster having six
particles.

(a)

FIG. 2: Plot of internal (IPE) and total potential energy
(TPE) as a function of ring radius (r). Here square symbol in
green and triangle in red colour represents minima of TPE of
(0,6) and (1,5) respectively. Subplot (a) is the zoomed plot
near minima.

We now try to understand the formation of these pat-
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TABLE I: Table for configuration, dynamics and snapshot
of shell structure at a time for different cluster systems on
varying number of particles.

terns. The first question that we address is the preferred
formation of the structure (1, 5) over (0, 6) observed in
our simulations. We essentially would like to see if the
former configuration is a state with lower potential en-
ergy for our simulations and hence it is preferred.

For this purpose we evaluate the internal potential en-
ergy (IPE) and the total potential energy (TPE) of the
two possible configurations. Here the IPE is the amount

of work done to bring the charges from infinite and make
the cluster in the absence of an external electric field.
TPE is the sum of IPE and parabolic potential energy
due to external electric field. The schematic for (1,5) and
(0,6) configurations is shown in Fig.1. The expression for
IPE and TPE for the two configurations is written below:

IPE(1,5) =
5Q2

d

4πǫ0

(

e−kr1

r1
+

e−ka

a
+

e−kb

b

)

(2)

IPE(0,6) =
Q2

d

4πǫ0

(

6e−kr2

r2
+

3e−ke

e
+

6e−kd

d

)

(3)

where a, b, c, d, and e can be written in terms of r1 and
r2 using relations

a = 2r1cos(54
◦) b = 4r1cos(36

◦)sin(54◦)

c = r2 d = 2r2cos(30
◦)

e = 2r2

TPE(1,5) = IPE +
5

2
KQdr1

2 (4)

TPE(0,6) = IPE +
6

2
KQdr1

2 (5)

We have plotted the internal and total potential energy
of both the configurations as a function of ring radius,
as shown in fig.2. We find that in the absence of an ex-
ternal electric field, the IPE of both configurations does
not have any minimum as expected. The configurations
are not stable as charged particles repel each other. The
external electric field tries to confine the particles giving
rise to a minimum of total potential energy at a particu-
lar radius. This is shown in subplot (a) of Fig.2. Here the
triangle(red) and square(green) denote the minimum of
TPE for two possible configurations, viz., (1,5) and (0,6)
respectively. In the presence of the external electric field,
the value of TPE for the (1,5) configuration is less com-
pared to that of (0,6) at the minima. This implies that
the configuration (1,5) would be preferred over (0,6). The
radius at which the minima of the TPE occurs is denoted
by the red color triangle for which r/λD = 0.9614 shown
in Fig.2. This value matches precisely with the radius of
the cluster observed in the relaxed state for simulations
with 6 particles. Thus formation of these configurations
is based on the relaxation towards the minimum potential
energy state.
The next question is related towards understanding

those configurations which are unable to relax towards a
stationary state. The characteristic feature exhibited by
the dynamics in these cases is of further interest. These
issues will now be adderssed in the next section.
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IV. CHAOS IN DYNAMICS

When the total number of the particle is such that they
all get accommodated in a single radial shell or with one
particle at a center and others on a single radial ring
around it, the observed relaxed configuration is always
stationary. For our simulations, this occurs till the total
number of particles is 8 in the system. When we increase
the number of particles, the configurations become com-
plex. They can be typically looked upon as structures for
which particles are located on two or higher numbers of
shells. For these cases, if the number of particles placed
on each ring is integer multiple of each other, then the
system relaxes towards a stationary state. If this condi-
tion is not satisfied, then the configuration displays com-
plex dynamics. For instance, in clusters having 10 and
11 particles with configuration (3, 7) and (3, 8) respec-
tively are shown in Table I. For both these cases, the
particles in the two shells are not related to each other
by integer numbers. It is evident that for such combi-
nations, there exists no possible placement of particles
that can ever lead to a form for which the interparticle
forces acting on every particle would be get balanced by
the external force field, which would be required for a

stationary configuration. A θ̂ component of force, there-
fore, always remains unbalanced on some particles giving
rise to interesting dynamics. We now try to understand
the dynamics that are exhibited by such configurations.
We have specifically chosen to illustrate this here with a
detailed study of a configuration with 9 particles. Other
configurations exhibiting dynamical states have also been
investigated, though they have not been presented here.
The general inferences about the dynamics for all these
cases remain similar.
We have shown the time evolution of the configuration

of 9 particles with two slightly different initial conditions
in Fig.3. In subplots (a) and (c) we have shown the par-
ticle configuration at ω0t = 0. It is to be noticed that
the initial configurations of these two cases are slightly
differ from each other. In subplot (b) and (d) the time
evolution of these two configurations have been shown
from ω0t = 38 to ω0t = 60. Here, the color symbols from
blue to red represent the increase of time. It is clear that
the time evolution is drastically different even though the
initial conditions were very close. The rotational dynam-
ics observed is therefore sensitive to the chosen initial
conditions.
We now track the angular velocity (Vθ) of the particle

defined by

Vθ = −Vxsinθ + Vycosθ (6)

here Vx and Vy are the x and y components of parti-
cle velocity and θ is the angle of rotation. In Fig.4 the
time evolution Vθ has been shown for one of the par-
ticle located on the outer shells. Here, red (solid) and
blue (dash) lines represents time evolution of Vθ for two
different initial space distributions of particles shown in
sub-plot (a) and (c) of Fig.3. The two plots of Vθ are
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FIG. 3: Position of particles in simulation box for two dif-
ferent initial configurations. Subplot (a), (c) show the initial
positions at time ω0t=0 and (b),(d) represent time evolution
of final equilibrium configuration. Here, colorbar represnts
the increase of time from the ω0t=38 to ω0t=60

almost identical to begin with and subsequently get un-
correlated. The vertical line in green at time ω0t = 10
separates the evolution which occurs before and after the
cluster formation. It should be observed that the chang-
ing sign of Vθ corresponds to the changing direction of
rotation. It should be observed from the figure that the
time interval at which this occurs is fairly random. Thus

0 5 10 15 20 25
-5

0

5

FIG. 4: Time evolution of angular velocity of single particle
in outer shell with slight change in initial coordinates of one
particle.

the system appears to be sensitive to a slight difference
in the initial condition of the particles. We, therefore,
analyze this system carefully quantitatively now.
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A. Time series analysis

In this section, we will mainly focus on the time history
of Vθ for one of the particles, which has shown evidence
of sensitivity towards initial conditions. In Fig.5 sub-plot
(a) and (b) the Fourier transform and power spectrum of
Vθ from ω0t = 10 to 666 has been shown respectively.
There are definite peaks in the frequency spectra against
a noisy background. We can see from these subplots that
the power spectrum is considerably broad, and there is
no specific characteristic frequency of the system. The
nature of the frequency and power spectrum is broad.
The sub-plot (b) of Fig.5 shows that at the higher end
of the spectrum, the power spectrum of Vθ falls as ω−4.
Identification of chaos in a series is a multistage process

0 5 10 15 20 25 30
0
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10
-15
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-10

(b)

FIG. 5: (a) Fourier transform (b) Power spectrum for time
series of Vθ, Here magenta (dash) line represents the linearly
fitted slope.

that includes calculating time delay coordinate, recon-
structing phase space, calculating correlation dimension,
and Lyapunov exponent [23]. The first step constitutes
calculating the time-delay coordinate (τ). We want to
reconstruct a phase space attractor, so it’s important to
get a good estimate for the time delay (τ) for this time
series. The value of τ is a typical time after which one
expects the correlation in the signal to die out. There
are several methods by which we can calculate this time
lag [24–26]. It can thus be calculated by using either
velocity autocorrelation or mutual information function.
Fraser and Swinney [24] introduced an approach for se-
lecting time delay using the first local minimum of mu-
tual information function. Velocity auto-correlation ex-
amines the correlation in time series data as a function
of time, and the first zero crossing gave an idea about τ .
Here, we have a time-series of Vθ and its auto-correlation

is shown in Fig.6. The first zero crossing corresponds
to a delay of 136-time steps, which gives us time delay
τ = 0.150ω0t. Choosing this method would not intro-
duce any bias as invariant quantities computing using
reconstructed attractor are not very much sensitive to τ
[23]. The second step constitutes reconstruction of the
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FIG. 6: Velocity auto correlation of one of the particle in
inner shell of cluster.

phase space for this attractor, an abstract mathematical
space spanned by the dynamical variable of the system.
It was shown by Takens [27] that phase space can be
reconstructed by time-delayed measurement of a single
observed time-series signal. Fig.7 shows a reconstructed
3-D attractor for the time series of Vθ. In order to resolve
the structure of the system in reconstructed phase space,
the minimum embedding dimension m is found to be 3
using “False Nearest Neighbour” [28]. For the choice of
m = 3 there were no self-intersections. The third step

FIG. 7: Reconstructed phase space attractor in 3-D using
Vθ(t) with time delay of 132 time steps.

is to calculate correlation dimension [29] (d). It should
be independent of embedding dimension m, which gives
information about attractor that is effectively embedded
in higher dimension space. We found that correlation
dimension d is 2.25 ± 0.05. We observe that on chang-
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ing the embedding dimension, the correlation dimension
becomes independent of m as shown in Fig.8. This sug-
gests that the particle dynamics is not totally random but
has chaotic attribute for which the attractor is strange
with a non-integral dimension. As the final step of our
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FIG. 8: Embedding dimension Vs correlation dimension.

analysis, we try to find the Lyapunov exponent, which
quantifies the mean divergence between neighboring tra-
jectories in phase space for a chaotic system. The chaotic
system must have at least one non-negative Lyapunov
exponent. We evaluated the largest Lyapunov exponent
(LLE) using the Rosenstein algorithm [30] by allocating
the nearest neighbor on adjacent trajectories and com-
puting the divergence between successive pairs along the
trajectories. The slope of average logarithmic divergence
is shown in subplot(a) of Fig.9 which gives the value of
LLE as 0.21496. The positive value of the LLE confirms
that the system is chaotic.
We have carried out a similar analysis for other cluster

configurations and observed that the rotational dynam-
ics exhibited by the cluster configuration is essentially
chaotic in nature. The Lyapunov index and other char-
acteristics of the attractor for each case may, however,
differ. For instance, in a cluster having 13 particles the
largest Lyapunov exponent is 0.16898 as shown in subplot
(b) of Fig.9. The observation of strange attractors and
positive LLE confirms the chaotic dynamics of particles
inside the cluster.
We have also carried out Langevin dynamics simula-

tion [31] using LAMMPS [19], which includes the effect of
neutral on dust particles of the cluster. The phase space
trajectories in the attractor are a little distorted due to
random kicks of neutrals with dust grains, but dynamics
still remain chaotic with small changes in parameters like
correlation dimension and Lyapunov exponent.

V. CONCLUSION

Equilibrium and/or relaxed state for particles interact-
ing with repulsive screened Coulomb/Yukawa potential
in an overall radially confining force field was studied
using Molecular Dynamics simulation. Such a system

(a)

(b)

6

FIG. 9: Lyapunov exponent for cluster having (a) 9 and (b)
13 particles.

can be prepared easily in the laboratory by immersing
charged micron-sized dust particles in ordinary electron-
ion plasma. A biased ring electrode can provide the
radial confinement. It is observed that the system re-
laxes towards a minimum energy configuration. In such
a state, particles organize themselves in various shells
around the center. Depending on the number of parti-
cles, the relaxed state is observed to be either station-
ary or exhibits a dynamical rotating state in which the
particles arranged in various shells show rotation. The
rotation changes with time, and detailed analysis shows
that the dynamics is chaotic.
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