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Farsighted formulations of coalitional formation, for instance, by Harsanyi and

Ray and Vohra, have typically been based on the von Neumann–Morgenstern sta-

ble set. These farsighted stable sets use a notion of indirect dominance in which

an outcome can be dominated by a chain of coalitional “moves” in which each

coalition that is involved in the sequence eventually stands to gain. Dutta and

Vohra point out that these solution concepts do not require coalitions to make op-

timal moves. Hence, these solution concepts can yield unreasonable predictions.

Dutta and Vohra restricted coalitions to hold common, history-independent ex-

pectations that incorporate optimality regarding the continuation path. This pa-

per extends the Dutta–Vohra analysis by allowing for history-dependent expecta-

tions. The paper provides characterization results for two solution concepts that

correspond to two versions of optimality. It demonstrates the power of history

dependence by establishing nonemptyness results for all finite games as well as

transferable utility partition function games. The paper also provides partial com-

parisons of the solution concepts to other solutions.

K. Coalition formation, farsightedness, vNM stable set, history depen-

dence, maximality.

JEL . C71.

1. I

The von Neumann–Morgenstern (vNM) stable set has had a distinguished standing as

a solution concept in cooperative game theory. It is based on the notion of coalitional

dominance, with one social state y dominating state x if some coalition has the power

or ability to change the state from x to y and all members of the coalition prefer y to x.

von Neumann and Morgenstern identified a stable set as one that satisfies two prop-

erties: (i) internal stability, in the sense that no stable outcome dominates any other

stable outcome, and (ii) external stability, in the sense that every outcome not in the sta-
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ble set is dominated by some stable outcome. Of course, the core, the set of states that

are not dominated by any other state, must be contained in any stable set. The predom-

inant position of the vNM stable set is evident from the large literature on this solution

concept.1

Both the core and the stable set are myopic solution concepts in the sense that a

deviating coalition cares only about the immediate consequence of a deviation. But if

coalition S decides to change x to y because the latter gives strictly higher payoffs to

each member of S, it does not ask itself whether y itself is a stable outcome. Conversely,

the implicit rationale of the vNM set is that if x is not dominated by any coalition, then

x must be in the solution set, since no coalition objects to it. Harsanyi (1974) criticized

the underlying logic by pointing out the following situation. Suppose coalition S has the

power to enforce y from x. Suppose also that at least one member of S does not gain

from the move to y. Then myopic solution concepts would decree that S will not, in fact,

effect the move from x to y. But now suppose that some state z that is deemed stable

dominates y and all members of S strictly prefer z to x. Harsanyi argued that S should,

in fact, move the state from x to y, expecting the “final” outcome to be z. In other words,

a nonmyopic or farsighted approach to coalitional stability negates the logic underlying

solution concepts such as the vNM stable set.

Following Harsanyi, there has been a large literature on solution concepts that are

based on “farsighted” individuals who base their decisions on whether to deviate from

the current status not on the immediate consequence of the deviation, but on how they

will fare at the “final” outcome following further deviations by other coalitions.2 A com-

mon feature in much of this literature is the absence of any extensive form that specifies

the order in which players or coalitions move as well as any prespecified set of terminal

states. So farsighted or forward-looking behavior cannot be captured through the use of

any reasoning analogous to backward induction.

Clearly this approach requires the specification of the final outcome of any sequence

of coalitional deviations. Since prespecified terminal outcomes do not exist in this ap-

proach, the final outcome must be one from which no coalition wants to deviate. This

suggests that the final outcome is one that is “stable.” Then farsightedness essentially re-

quires that a coalition compares the payoffs of its members at the current status quo to

what it expects will be their payoffs at the stable outcome that will be reached if the coali-

tion does deviate. But this implies that deciding on the stability of a particular outcome

against a sequence of moves requires us to know which other outcomes are stable. This

makes the notion of stability circular and suggests the use of a solution concept based

on the principles of internal and external stability that underlie the original vNM stable

set. Indeed, Harsanyi (1974) and much of the literature in this area after him modified

the stable set by allowing for sequences of coalitional moves, so that both internal and

external stability are replaced by their farsighted counterparts.

1See Lucas (1992) for a survey.
2See, for instance, Chwe (1994), Bloch (1996), Ray and Vohra (1997, 1999, 2015b), Xue (1998), Diaman-

toudi and Xue (2003), Konishi and Ray (2003), Herings et al. (2004, 2009), Anesi (2010), Mauleon et al. (2011),

Vartiainen (2011), Anesi and Seidmann (2014), Chander (2015), Kimya (2018), and Dutta and Vohra (2017).

Aumann and Myerson (1988) also modeled farsighted behavior, but from a different perspective. Ray and

Vohra (2015a) provide an insightful survey of this literature.
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Ray and Vohra (2015a) raised an important issue with much of the literature. They

pointed out that the Harsanyi stable set and other variants do not restrict coalitions

to make optimal moves. That is, suppose x is the current status quo and coalition S

is contemplating a deviation. Then if S has two possible deviations, with one devia-

tion Pareto-dominating the other, then it should not take the latter move. Moreover, all

coalitions that have deviated before S should also assume that S will only take Pareto-

undominated or maximal moves.3 The following comments of Ray and Vohra (2015a)

about the existing farsighted solution concepts are instructive:

Stable outcomes can be modeled either with optimistic beliefs or conservative beliefs or

perhaps some combination of the two. However, this is serious drawback of the blocking

approach.

They go on to add:

A key requirement that is missing in the notion of farsighted blocking, is that of constrain-

ing objecting coalitions to make maximal moves (our emphasis) among their profitable

alternatives.

Dutta and Vohra (2017) (henceforth DV) also point out that farsighted objections as

typically modeled also permit coalitions to hold different beliefs about the continuation

path of coalitional moves. That is, x may not be in the farsighted stable set because coali-

tion S1 replaces it with y, anticipating a second, and final, move to z. At the same time,

another coalition S2 may deviate from x′ to y in the belief that the next (and final move)

will be to z′ (not z). That is, coalitions S1 and S2 hold different beliefs about the contin-

uation from state y. DV refer to this issue as one of holding consistent beliefs, although

they point out that such seemingly inconsistent beliefs may arise because coalitional

moves are history-dependent.4

DV incorporated maximality and consistency (or history independence) of beliefs in

the notion of farsighted stability. They use the tool of an expectation function, a concept

borrowed from Jordan (2006). In this framework, the expectation function describes the

transition from one state to another, as well as the coalition that is supposed to effect

the move. Thus, the expectation function represented the commonly held beliefs of all

agents about the sequence of coalitional moves, if any, from every state.5 The use of a

single expectation function immediately incorporates consistency.

Importantly, DV assumes that the transition from any state x to another state y de-

pends only on the current state. Together with the expectation function, each state is

then identified with a terminal or stationary outcome that is eventually reached from

this state. Using this correspondence, DV define the notion of maximality of an expec-

tation: it is a move that a coalition cannot improve upon given the consequences of

the deviation. DV defined two versions of maximality, one demanding that the move is

3See Examples 1 and 2 in Section 4.
4Notice that in this example, the state y is reached along different histories of past coalitional moves.
5Although there is no extensive form in our framework, the imposition of commonly held beliefs about

continuation paths is analogous to that of such beliefs in noncooperative equilibria such as subgame per-

fection. For an alternative approach, see Bloch and van den Nouweland (2019), who allow individuals to

hold different beliefs about the path of future actions.
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maximal for the active coalition and the other that the move is maximal for any relevant

coalition. The latter condition implies strong robustness, but may also lead to existence

problems. The sets of stationary points of an expectation function that satisfy one or the

other notion of maximality as well as farsighted versions of internal and external stabil-

ity then gave two different solution concepts. DV showed that these solution concepts

are very different from the ones defined earlier.

The point of departure in this paper is to incorporate history dependence into the

DV framework. Formally, this extension implies that a coalitional move may depend

on the past history of coalitional moves and not only on the current state. So history

dependence permits coalitions to remember which coalitions or individuals have been

active and potentially condition their future behavior on past experiences.

The dependence of coalitional moves on past history is intuitively appealing. For

instance, we are more likely to join groups of individuals with whom we have had a

pleasant experience in the past. Correspondingly, we are less likely to associate with

individuals who have lost our trust. Allowing agents to have memory is also standard in

noncooperative games.

Notice that since history independence is a special case of history dependence, the

DV solutions remain solutions in our framework. However, as is standard in the nonco-

operative framework, the introduction of history dependence expands the sets of stable

outcomes quite dramatically. In particular, it allows us to prove powerful nonemptyness

results: we show that the set of stable outcomes is nonempty in all finite games as well

as in all transferable utility partition function games. What is more, the latter result is

derived under the strong maximality property of an expectation, implying remarkable

robustness of the solution.

Apart from expectation functions, a key tool in the paper will be objection paths. An

objection path is a finite sequence of coalitional deviations starting from an initial state

and ending up in a terminal state, with the property that each coalition in the sequence

strictly prefers the terminal state to the state from which it is deviating. In other words,

it represents a farsighted objection. We characterize our solution concepts in terms of

collections of such objection paths: the terminal states in the appropriate collection

will constitute a solution in our framework. While these are not direct characterizations,

since the necessary and sufficient conditions are not stated in terms of sets of states,6 we

show subsequently that even the indirect characterizations are remarkably useful; they

are employed extensively in the proofs of the nonemptyness results as well in yielding a

very transparent result on the structure of the solution(s). In particular, we show that our

solution is always contained in Chwe’s largest consistent set. Since the largest consistent

set is viewed as being too permissive, this inclusion result is of some interest.

The plan of the paper is as follows. In the next section, we introduce some key con-

cepts. In Section 3, we formally describe the framework introduced by DV and then go

on to introduce our solution concepts. We discuss related solution concepts in Section 4.

Section 5 contains our main characterization results in terms of objection paths, while

6We also provide an alternative characterization in terms of sets of states for the special class of simple

games.
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Section 6 contains the characterization for simple games. An important by-product of

the analysis for simple games is that notions of maximality are rendered irrelevant, in a

sense to be explained in Section 5. We present two applications of our solution concept

in Section 7. These applications demonstrate the importance of history dependence. In

Section 8, we discuss some properties of our solution concepts. We go on to present the

nonemptyness results in Section 8. We conclude in Section 9.

2. T 

We consider a general setting, described by an abstract game, (N�X�E�ui(·)), where N

is the set of players and X is the set of outcomes or states. Let N denote the set of all

nonempty subsets of N . An effectivity correspondence, E : X × X → N , specifies the

coalitions that have the ability to replace a state with another state: for x� y ∈ X , E(x� y)

is the (possibly empty) set of coalitions that can replace x with y. We sometimes use

E(x�S) to denote the set of states that coalition S can induce from x. Finally, ui(x) is the

utility of player i at state x.

The set of outcomes as well as the effectivity correspondence depend on the specific

model that is being studied. For instance, in a partition function game, (N�v), the func-

tion v will specify a real number for each embedded coalition (S�π), where π denotes the

coalition structure with S ∈ π being one of the coalitions in the partition π. Feasibility

implies that an embedded coalition (S�π) can distribute at most v(S�π) to individuals

in S. A state for partition function games refers to a coalition structure π and a cor-

responding payoff allocation that is feasible and efficient for each embedded coalition

corresponding to π. Much of traditional cooperative game theory has focused on the

simpler but more restrictive transferable utility characteristic function games in which a

coalition can assure itself of a minimum aggregate utility v(S). The dominant tradition

in the literature has treated the set of states to be the set of imputations, i.e. the Pareto

efficient utility profiles in v(N), and implicitly assumed that S ∈ E(x; y) if and only if

yS ∈ v(S). Ray and Vohra (2015b) provide a convincing critique of why this assumption

is unsatisfactory for studying farsightedness. We return to this issue below.

State y dominates x if there is S ∈ E(x� y) such that uS(y) ≫ uS(x).7 In this case we

also say that (S� y) is an objection to x.

The core is the set of all states to which there is no objection.

A set K ⊆X is a vNM stable set if it satisfies the following conditions:

• Internal stability. For any x ∈ K, there is no y ∈K such that y dominates x.

• External stability. For any x /∈K, there is y ∈K such that y dominates x.

The core and vNM stable set are myopic solution concepts since they are based on

single rounds of deviations. So as to introduce farsighted solutions, it is convenient to

introduce the concept of objection paths.

D 1. An objection path is a finite sequence (y0� S1� y1� � � � � Sm� ym) such that,

for all k= 1� � � � �m, Sk ∈E(yk−1� yk) and uSk(ym) ≫ uSk(yk−1).

7We write uS(y) ≫ uS(x) if ui(y) > ui(x) for all i ∈ S.



164 Dutta and Vartiainen Theoretical Economics 15 (2020)

Given the abstract game (N�X�E�ui(·)), we denote the set of all objection paths by

P∗. We often use P ⊆ P∗ to denote a subset of objection paths and use Px to denote

the set of objection paths in P with initial element x. We use px to denote a typical

objection path in Px and use µ(p) to denote the terminal state ym in the objection path

p = (y0� S1� y1� � � � � Sm� ym).

State y indirectly dominates x if there is an objection path px such that y = µ(px).

Farsighted or indirect domination takes into account forward-looking behavior be-

cause at each point in the objection path, the deviating coalition takes into account the

utility profile not at the next state in the sequence but at the “final” state in the objection

path. Of course, this leaves open the question of how the terminal state is determined.

This is going to be a central issue of this paper.

The relation of dominance or farsighted dominance depends on the specification of

the effectivity function. Ray and Vohra (2015b) point out the importance of imposing

appropriate restrictions on the effectivity function in the construction of farsighted so-

lution concepts. In the context of characteristic games, the standard practice allowed a

coalition S complete freedom to choose even the payoffs to individuals in the comple-

mentary coalition N − S. Notice that this does not matter for solution concepts like the

core or the vNM stable set, since these are based on myopic deviations: the deviating

coalition simply compares its own payoff allocations at the current state and the state

following immediately after the deviation.8 But why or how can coalition S dictate either

the payoffs accruing to the complementary coalition or how N−S organizes itself after S

deviates? Of course, this does matter even in characteristic function games, since it may

influence what coalitions form along the sequence. Ray and Vohra (2015b) demonstrate

that this assumption can significantly alter the nature of the farsighted version of the

vNM stable set. They show that imposing reasonable restrictions on the effectivity cor-

respondence results in a farsighted stable set that is very different from that of Harsanyi

(1974).

We impose the appropriate restrictions on the effectivity function when we apply

our solution concept to partition function games and simple games later on.

3. R     

As we mentioned earlier, DV incorporate both maximality and common beliefs about

continuation paths (of coalitional deviations) in their analysis. They use an expectations

function to model the transition from one state to another as well as the coalition that is

supposed to effect the move. The use of an expectation function to represent the transi-

tion from one state to another is adapted from Jordan (2006), who used such a function

to represent commonly held beliefs about the transition from any state to the final out-

come. The expectation function represents the commonly held beliefs of all agents about

the sequence of coalitional moves, if any, from every state. One can then choose to im-

pose restrictions on the expectation function so as to make the function reasonable. An

obvious restriction is that the expectation function must be consistent with the under-

8Note that this aspect of the effectivity function is important even for myopic solution concepts of par-

tition function games, since the deviating coalition has to “predict” what coalition structure will prevail

immediately after the deviation, since its aggregate utility depends on what partition forms.
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lying game and, hence, with the effectivity function associated with the game: it cannot

specify a move from state x to state y by coalition S if S /∈ E(x� y). Another restriction

that is desirable is that the expectation function specify moves that are optimal. We

describe below slightly different notions of degrees of optimality; each gives rise to a

specific restriction on the expectation function.

DV assumed that the process of transition is history-independent ; that is, if the ex-

pectation function specifies a transition from state x to state y, then it must do so irre-

spective of how state x is reached.9 The essential purpose of this paper is to show how

the DV analysis can be extended to incorporate history dependence into this transition

process. Allowing for history dependence obviously results in a more general frame-

work in which future coalitional moves can, in principle, depend on the evolution of

past coalitional moves. There are at least two reasons why this is an interesting exer-

cise. We mentioned earlier that there are a variety of contexts where history does matter.

Moreover, from a purely formal perspective, it is well known that history dependence en-

larges the set of noncooperative equilibria. In principle, this logic may carry forward to

the present context. Indeed, the applications later on illustrate the instrumental impor-

tance of history dependence.

With this in mind, we define histories more formally. Let x0 be an initial status quo.

At period t = 0�1� � � � , coalition S can challenge the current state xt by demanding an

outcome xt+1 such that S ∈E(xt�xt+1). In such a case, xt+1 becomes the new status quo

at period t + 1. If no coalition challenges some state x in period t, then the game termi-

nates and x is implemented. A history is a sequence (x0� S1�x1� � � � � Sm�xm) that specifies

the past play path and coalitions that have been active until xm has been reached. Let H

represent the set of all (finite) histories, with a typical element h.

For any history h = (x0� S1�x1� � � � � Sk�xk), we use µ(h) to denote the terminal state

xk of h. Notice that all finite histories have well defined terminal states.

We use the following notation on concatenation of path. For any history h, (h�S�x)

is the history reached by adding to h the state x that is induced by coalition S from the

final state µ(h) of h. Note that S ∈E(µ(h)�x) for this to be valid.

Expectation function

An expectation is a function F : H → N ×X , specifying the active coalition and its move

for all possible current states and past histories.

The expectation function “predicts” that one coalition is going to be active at any

history, without describing any explicit protocol that chooses the active coalition.10

9Note that in our framework, we cannot interpret states as nodes of an extensive form game, since a state

can be reached along several different objection paths.
10A referee questioned why only one coalition is assumed to move at any point. Consider an extensive

form or game tree that represents a specific protocol that describes the player who moves at any particu-

lar node in the tree. The tree also describes the possible paths that may be followed from any given node.

Here we have no explicit protocol. The expectation function is supposed to be a formalization of the com-

monly held beliefs of players about the continuation path from any given state, including the coalition that

is supposed to move. Notice that this assumption is implicit in all solution concepts based on objection

paths. However, the stronger version of optimality—Condition M* to be defined later—does allow for the

possibility that a deviation can come from a coalition that is different from that specified by the expectation

function.
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Denote F(h) = (S(h)� f (h)), where f (h) is the state that is expected to follow at his-

tory h and S(h) is the coalition expected to induce the next state. If S(h) = ∅, then no

coalition wants to change the state and the final state of the history h will be imple-

mented.11

As usual, history independence is a special case of history dependence. Consider

any two histories h�h′ ∈ H. Then the DV expectation function satisfies F(h) = F(h′)

whenever µ(h) = µ(h′). So the continuation path once a state x is reached does not

depend on whether the state was reached via history h or history h′.

Given an expectation F = (S� f ), note that (h�S(h)� f (h)) is also a history. We de-

note F0(h) = h, F1(h) = F(h) and, generally, Fk+1(h) = F(h�F0(h)� � � � �Fk(h)) for all

k = 0�1�2� � � � . Similarly, denote by Sk(h) and fk(h) the first and second components of

Fk(h), respectively, so that Fk(h) = (Sk(h)� fk(h)) for any k.

We say that history h is stationary if S(h) = ∅. If h is stationary, then we also denote

by µ(h) the stationary point associated to h.

An expectation F is absorbing if, for every h ∈H, there exists k such that Sk(h) =∅.

A history (h�S1� y1� � � � � Sm� ym) is an indirect objection to h if

(

µ(h)�S1� y1� � � � � Sm� ym
)

∈ Pµ(h)�

That is, the new history is formed from h by appending an objection path to it.

For an absorbing F , the path F(h) generated by F from history h, i.e.,

F(h) =
(

h�F1(h)�F2(h)� � � �
)

�

has a finite length and µ(F(h)) is well defined for any h.

Let F(H) =
⋃

h∈H{F(h)} denote the sets of possible paths that are generated by an

absorbing F , by varying the initial history, and µ(F(H)) the stationary states associ-

ated with these paths. Hence, assuming that expectation F is played in the continuation

game, µ(F(H)) is the set of states that can be eventually reached by starting from any

initial history. So it makes sense to view µ(F(H)) as a farsighted solution when F is the

function describing the transition from state to state.

We now turn to the issue of describing “reasonable” restrictions on F , keeping in

mind that these translate into restrictions on µ(F(H)), the set of stationary points.

We first describe two restrictions on the expectation F that are the farsighted ana-

logues of internal and external stability.

Condition I. If h is a stationary history, then there does not exist y ∈ X and S ∈

E(µ(h)� y) such that (µ(h)�S� y� F̄(h�S� y)) is an objection path.

Condition E. If h is a nonstationary history, then (µ(h)�F(h)) is an objection path.

If Condition I is not satisfied, then for some stationary state x, there is a coalition

S that can deviate, anticipating that the resulting sequence of transitions according to

F will lead to another stationary state that all members of S prefer. Clearly, this is a

violation of farsighted internal stability. Condition E states that if µ(h) is not a stationary

state, then some farsighted objection will result in a stationary state; this is an obvious

requirement of farsighted external stability.

11For history-dependent solutions in related contexts, see Vartiainen (2011, 2014, 2015).
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Notice that nothing has been said so far about the optimality of coalitional devia-

tions involved in any indirect objection implicit in Condition E. We now describe two

different versions of optimality or maximality.

Condition M. If h is a nonstationary history, then there does not exist y ∈ X such that

S(h) ∈E(µ(h)� y) and uS(h)(µ(F(h�S(h)� y))) ≫ uS(h)(µ(F(h))).

Condition M*. If h is a nonstationary history, then there does not exist y ∈ X and S ∈

E(µ(h)� y) such that S(h)∩ S 	=∅ and uS(µ(F(h�S� y))) ≫ uS(µ(F(h))).

Maximality assumes that at a nonstationary history x, some coalition S(h) is the

coalition that has the floor. Then S(h) should not be able to deviate to another path

that all i ∈ S(h) prefer. Condition M* (strong maximality) is stronger. This allows for the

possibility that more than one coalition may be able to move at state x. For instance,

there may be some coalition S such that i ∈ S ∩ S(h), y ∈ X with S ∈ E(µ(h)� y) and

ui(µi(F(h�S� y))) > ui(µ(F(h))). Then a “rational” i should join coalition S instead of

S(h). Condition M* precludes this possibility.

We say that history-dependent and absorbing expectation F is (strongly) rational

(abbreviated HRE (resp. HSRE)) if it satisfies Conditions I, E, and M (resp. M*).

Our farsighted solution concepts are defined below.

D 2. The set of stationary points, µ(F(H)) of an HRE (HSRE) F is a history-

dependent (strongly) rational expectation farsighted stable set (abbreviated HREFS

(HSREFS)).

In what sense is a set like HREFS (or HSREFS) a stable set? Given any history h, the

(absorbing) expectation function specifies that the terminal state µ(h) will be reached.

The property of being absorbing implies that no coalition wants to deviate once the state

µ(h) is reached. Of course, the terminal states of any absorbing expectation will not con-

stitute a reasonable stable set. This is where the Conditions I, E, M, and M* come in by

eliminating ad hoc absorbing expectation functions whose terminal points do not sat-

isfy intuitive notions of stability. It is worth pointing out that while any given history will

have only one terminal state, HREFS and HSREFS will, in general, be set-valued, since

we have to consider the union of the terminal states of all histories; that is, µ(F(H)).

Indeed, like any vNM-type solution set, individual elements of µ(F(H)) are not stable.

Of course, every HSRE is a HRE and, hence, a HSREFS is a HREFS. But the converse

is not true.

R 1. DV defined Conditions I, E, M, and M* for expectation functions that are

history-independent. They called their solution concepts REFS and SREFS. Of course,

any set that is REFS is also HREFS and, similarly, any SREFS is HSREFS.

4. R  

Following Harsanyi (1974), there have been several papers modeling farsighted cooper-

ative solution concepts, several of them based on indirect domination.



168 Dutta and Vartiainen Theoretical Economics 15 (2020)

Many of these farsighted solution concepts are either implicitly or explicitly based

on notions of sequences of objections or paths as we define here. Suppose that the cur-

rent state is x and coalition S is contemplating whether to deviate from x to y. In a

farsighted solution concept, it has to look ahead to the terminal state of the sequence

of deviations that will take place after y. Obviously, a coalition can consider further de-

viations and, indeed, several coalitions may contemplate deviations. So there can be

multiple objection paths from y and, typically, S itself has no control over which one

will actually take place. The multiplicity of such paths has resulted in a multiplicity of

different solution concepts.12 We discuss here some of these solution concepts as well

as how they compare to HREFS and HSREFS.

An “obvious” way to introduce farsightedness—and one suggested by Harsanyi

himself—is to modify the original vNM solution by replacing the direct domination re-

lation by the indirect domination relation. Chwe (1994) first defined this formally. His

definition is given below.

D 3. A set F ⊆ X is a farsighted stable set if it satisfies the following state-

ments:

• Farsighted internal stability. For any x ∈ F , there is no y ∈ F such that y indirectly

dominates x.

• Farsighted external stability. For any x /∈ F , there is y ∈ F such that y indirectly

dominates x.

The farsighted stable set is based on an optimistic view of the coalitions involved in

an indirect objection: a state is dominated if there exists some path that leads to a better

outcome. Chwe (1994) proposed a farsighted solution concept based on conservative or

pessimistic behavior.

D 4. A set K ⊆X is consistent if

K =

{

x ∈X :
for all y and S with S ∈E(x� y), there is z ∈K such that
(

(z = y) or (z indirectly dominates y)
)

and uS(z) 	≫ uS(x)

}

�

Thus, any potential move from a point in a consistent set is deterred by some indirect

objection that ends in the set. Chwe shows that there exists one such set that contains

all other consistent sets and he defines this to be the largest consistent set (LCS). Chwe

himself points out that the LCS is a weak solution concept that is “not so good at picking

out, but ruling out with confidence.”13 For example, the LCS may contain elements not

in the core. Nevertheless, the largest consistent set is an important concept that has

received much attention in the literature.

Several papers used either the farsighted stable set or its variants in specific contexts.

For instance, Béal et al. (2008) study farsighted stability in transferable utility games,

12Many of the solution concepts based on farsightedness can also be viewed through Greenberg’s (1990)

theory of social situations.
13See Chwe (1994, p. 300).
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while Bhattacharya and Brosi (2011) extend the analysis to nontransferable utility (NTU)

games. Some authors have also analyzed farsighted stability in hedonic games. These

include Diamantoudi and Xue (2003, 2007) and Mauleon et al. (2011). The latter ana-

lyze one-to-one matching markets and show, surprisingly, that a set of matchings is a

farsighted stable set if and only if it is a singleton element of the core.

Articles by Herings et al. (2009, 2010) are two notable recent solutions with connec-

tions to farsighted stable sets. Herings et al. (2009) analyze farsighted stable networks

in a model where, as in much of the literature on networks, only two-person coalitions

can form and can change only one link at a time (these are assumptions on the effec-

tivity function). Their solution, called pairwise farsighted stability, requires farsighted

external stability but no version of internal stability. Instead, deviations from inside

the stable set to anything outside are required to be deterred by the possibility of be-

coming (weakly) worse off, and a minimality requirement is also imposed, since (in the

absence of internal stability) the entire set of networks satisfies the two conditions. Her-

ings et al. (2010) apply the same solution concept to hedonic games where outcomes are

partitions of N and individual payoffs are defined directly on partitions. However, like

Herings et al. (2009), they do not impose internal stability.14

The next couple of simple examples, adapted from Xue (1998), Herings et al. (2004),

and Kimya (2018) illustrate some drawbacks of these solution concepts.

E 1. We have

(1,1)

(0,0)

(10,10) (0,20)

a

b

c d

{1}

{2} {2}

14The lack of internal stability allows Herings et al. (2009, 2010) to prove a strong existence theorem.

Most history-independent farsighted (and myopic) solution concepts that use both internal and external

stability typically fail to guarantee a nonempty solution when the indirect domination relation is cyclic as

in the voting paradox.
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Both c and d belong to the farsighted stable set since they are terminal states. Since

there is a farsighted objection from a to c, the former is not in the farsighted stable set.

However, this is based on the expectation that player 2 will choose to replace b with c

rather than d even though 2 prefers d to c. If player 2 is expected to move, rationally, to

d, then a should be judged to be stable, contrary to the prediction of the farsighted stable

set. Note that a belongs to the LCS because of the possibility that the final outcome is d.

So in this example, the LCS makes a more reasonable prediction than the farsighted

stable set.

E 2. We have

(1,1)

(0,0)

(2,20) (-2,4)

a

b

c d

{1}

{2} {2}

Now the optimal move for player 2 is to choose c rather than d. The LCS and far-

sighted stable set remain unchanged. But now it is the LCS that provides the wrong

answer because player 1 should not fear that player 2 will (irrationally) choose d instead

of c. In this example, the farsighted stable set makes a more reasonable prediction. The

LCS is {a� c�d} and is a strict superset of HREFS, which is {c�d}.

We show in Proposition 2 below that HREFS is a subset of LCS. Another notable

refinement of LCS is the largest cautious consistent set (LCCS) of Mauleon and Van-

netelbosch (2004), which assumes “cautious” coalitional behavior. Cautiousness is a

response to the criticism of LCS that a blocking of an element in LCS can be deterred

by the mere possibility that a postblocking objection path may lead to an outcome in

the LCS that makes the blocking coalition indifferent between blocking or not, even if

the other objection paths leading back to the consistent set are strictly profitable for the

blocking coalition. Notice that in this case, the coalition can only win by blocking. How-

ever, LCS will include the initial element. Mauleon and Vannetelbosch correct for this

by imposing the requirement that a potential deviating coalition assigns strictly positive

probability to all objection paths.
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While the LCCS certainly does correct one problem inherent in the LCS, its basic

logic is somewhat similar to that of LCS. In particular, it does not require optimal be-

havior on the part of coalitions. That is, LCCS does not satisfy maximality. Notice that

in Example 2, the LCCS may coincide with the LCS and, thus, make the wrong predic-

tion.15 There is also no clear relationship between the LCCS and HREFS. For example, as

demonstrated by Mauleon and Vannetelbosch (2004), LCCS can be empty even in finite

games, whereas we show below that HREFS is always nonempty in this class of games.

Furthermore, Example 3 below (Figure 2 in Mauleon and Vannetelbosch 2004) demon-

strates that LCCS can be a strict subset of HREFS/HSREFS. There LCCS is {c�d}, whereas

one HREFS (and, hence, LCS) is {a� c�d}. Since HREFS depends on the expectation func-

tion, there may not be a unique HREFS: the solution depends on whether 2 or {1�3} is

expected to move from b. In fact, one HREFS coincides with the LCCS. Of course, HREFS

may also be contained in LCCS as shown in Example 2.

E 3. We have

(1,0,0) (2,0,0)

(3,0,1)

(1,2,1)

a b c

d

{1}

{1,3}

{2}

Xue (1998) also argued that the LCS and farsighted stability did not really incorpo-

rate farsighted behavior. He suggested that the focus should be on stability of objection

paths rather than the terminal outcomes. He defined stable paths to be those that satis-

fied analogues of Greenberg’s optimistic and conservative standards of behavior. Notice

that neither standard of behavior incorporates maximality. Importantly, Herings et al.

(2004) and Ray and Vohra (2015b) point out other problems with Xue’s approach, arising

essentially from any lack of a protocol specifying the order in which coalitions can move.

One way to interpret Examples 1 and 2 is that maximality imposes the type of logic

inherent in backward induction or, more generally, subgame perfection. In a recent in-

teresting paper, Kimya (2018) also formulates two solution concepts that integrate coali-

tional analysis with noncooperative logic. Kimya too focuses on paths with elements

15Example 2 also shows that there may be a multiplicity of LCCS, depending on the probability distribu-

tions over objective paths. Of course, the imposition of maximality rules out the move of player 2 from b to

d and, hence, selects a unique continuation path from b to c.
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being triples of the form (x� y�S) with S ∈ E(x� y) and x� y ∈ X .16 A coalitional behav-

ior φ (or coalitional strategy) is a complete plan of action at every state. A coalition S

can deviate from the prescribed behavior φ at state x if S intersects T , where T is the

coalition that is supposed to move at x. The specification of a coalitional behavior φ

with reference to which deviations can take place plays a role very similar to expectation

functions and so incorporates consistency.

The coalitional deviation of S from φ is profitable if a deviation by S is profitable at

every node at which an action changes; that is, everybody in S prefers the new path of

play to the initially prescribed path of play. Kimya defines a coalitional behavior φ to

be an equilibrium coalitional behavior (ECB) if there does not exist a profitable coali-

tional deviation from φ. ECB satisfies strong maximality; indeed, Kimya shows the co-

incidence between the terminal outcomes supported by ECB and SREFS in any abstract

game.

He defines a credible set of coalitional behaviors to be a set of coalitional behaviors

such that any profitable deviation from a coalitional behavior in the set is followed by

further profitable deviations back into an element in the credible set that makes one

of the initial deviators worse off. Kimya defines a coalitional behavior to be a credi-

ble ECB (CECB) if it is immune to profitable and credible deviations. Note that since

coalitional strategies are strategies that are defined on states and not histories, these are

essentially Markovian. So CECB and ECB are history-independent solutions analogous

to those in Dutta and Vohra (2017). Moreover, due to different criteria for credible devi-

ation, Kimya’s solution CECB does not have a clear relationship with the solution of the

current paper or that of Dutta and Vohra (2017); neither solution implies the other.

Kimya shows that CECB exists in all finite games, but has no characterization result.

He also states that CECB is not a “satisfactory solution concept for characteristic func-

tion games” partly because CECB depends on a type of backward induction that is not

possible in this class of games.

Herings et al. (2004) and Granot and Hanany (2016) propose solution concepts on

the abstract game by constructing noncooperative extensive form games. Granot and

Hanany (2016) assume that nature chooses the coalition that moves at any stage, with

each coalition allowed to remain at the current state or select a new outcome according

to the effectivity function. Their solution concept is the set of outcomes that can be

supported as the subgame perfect equilibria of the extensive form game. They are able

to show existence only for finite set of states.17 They also need to impose the assumption

that players are pessimistic so as to make the solution concept independent of nature’s

moves. This is, of course, a violation of maximality. Herings et al. (2004) define a notion

of social rationalizability in their multistage games. They study rationalizable strategies

and the resulting outcomes in a game form that specifies how coalitions are formed.

Like the largest consistent set, the social rationalizability of Herings et al. is meant to

be a “weak” concept that removes strategies with confidence but does not predict or

explain which of them are eventually taken. In particular, it does not attempt to provide

16Mariotti (1997) restricts attention to normal form games and also focuses on objection paths. However,

he assumes optimistic behavior on the part of deviating coalitions. Hence, his solution violates maximality.
17Herings et al. (2004) also assume a finite set of states.
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an equilibrium story of coalition formation. Interestingly, Herings et al. (2004) construct

an example in which the LCS excludes too much. Since HREFS is a subset of LCS, it too

will exclude too much in this specific example.

The solutions discussed so far are all history-independent. We close this section with

a couple of examples that illustrate the role of history dependence.

E 4. We have

(3,3,3)

(0,0,0)

(4,4,0) (4,0,4) (0,4,4)

a

b

c d e

{1,2},{1,3},{2,3}

{1,2} {1,3} {2,3}

In this example, a is the surplus-maximizing outcome and, hence, the unique so-

cially efficient outcome corresponding to the utilitarian rule. However, none of the

history-independent solutions other than the LCS and LCCS can support a as an out-

come. All the majority coalitions have profitable deviations from b. History indepen-

dence means that which coalition moves is independent of previous movements. In

particular, punishments are not possible. So whichever coalition(s) is expected to move

at b will also want to move from a to b. So the prediction must be that {c�d� e} (the set of

terminal outcomes) constitute the set of stable outcomes. Consider, however, how this

prediction changes when history dependence is introduced. Suppose, for instance, that

S = {1�2} deviates from a to b. Then one of the players in S, say 1, can be punished for

the deviation by choosing the continuation path to be {2�3} moving to e. Clearly, any de-

viation from a can be punished in this way by making the continuation path from b de-

pendent on the initial deviation from b. Hence, HSREFS and so HREFS will be {a� c�d� e}.

R 2. In this example, the LCS coincides with HREFS. However, the permissive-

ness of the LCS can easily be demonstrated by embedding this example in a bigger one

as follows. Consider two new alternatives f with utility vector (1�1�−0�25) and g with

utility vector (1�1�−0�5). Let {3} ∈ E(f�b) and {1�2} ∈ E(b�g). Then 3 will not deviate
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from f to b under the pessimistic expectation that {1�2} might move to g from b. How-

ever, this is a violation of maximality: the optimal move for {1�2} from b is to c, which is

better than f for 3.

Finally, history dependence also helps to establish existence of a nonempty solution

set in situations where several history-dependent solutions will be empty. One example

in which this is the case is the three-player NTU “roommate game” depicted below.

E 5. From every state there is one two-player coalition that gains by moving to

another state.

It is easy to see that this games possesses no vNM stable set, no farsighted stable set,

no ECB, and no REFS.

In Section 7 below, we describe two specific examples that illustrate the same general

principles outlined here through abstract games.

5. C

In this section, we provide characterization results for HREFS and HSREFS of abstract

games. Our characterization exercises are not directly in terms of sets of states, but in

terms of the terminal states of sets of objection paths. That is, we provide necessary and

sufficient conditions so that the terminal states corresponding to any set P of objection

paths will be HREFS (or HSREFS) if and only if P satisfies these conditions.

While we are aware that it may be difficult to check whether a specific subset of

states satisfies the necessary and sufficient condition, it is very handy in proving gen-

eral nonemptyness results: we provide constructive proofs of nonempty HREFS in all

finite abstract games as well as a nonempty HSREFS in all superadditive partition func-

tion games. The characterization results also throw light on the logical structure of sets

of HREFS, including the fact that a largest HREFS exists for all finite games. Finally, the

characterization is employed when we analyze the relationship of HREFS and HSREFS

to other solution concepts. In particular, the characterization proves useful in showing

that every HREFS is a subset of the LCS.

Recall that we use px, py , etc. to denote objection paths with initial state x, y. Sim-

ilarly, given any set of objection paths P , we use Px to denote the subset of objection

paths in P with initial state x.

D 5. Let P be a collection of objection paths.
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• An objection path p = (x0� S1�x1� � � �) is S1-dominated in P via y if S1 ∈ E(x0� y)

and uS1
(µ(py)) ≫ uS1

(µ(px0
)) for all py ∈ P .

• An objection path (x) is S-dominated in P via y if S ∈ E(x� y) and uS(µ(py)) ≫

uS(x) for all py ∈ P .

That is, an objection path p is dominated via node y in the set P of paths if the mem-

bers of the first active coalition profit by directing the play to node y rather than contin-

uing along the path p to the terminal state. Notice that the definition requires that once

S1 deviates to y, it takes into account the possibility that any objection path in P with y

as the original state may be followed in the future. Clearly, if this condition is satisfied

and S1 believes that only the set of paths P are “possible” paths that can be followed,

then it cannot be optimal for S1 to move to x1. Part (ii) stipulates that if x is not followed

by any other state, i.e., is stationary, then any coalition can dominate it via some y if an

analogous condition is satisfied.

D 6. A collection of objection paths P is coherent if it satisfies the following

statements:

(i) Collection Px is nonempty for all x ∈X .

(ii) If (x0� S1� � � �) ∈ P , then (xk� Sk+1� � � �) ∈ P for all k= 0�1� � � � .

(iii) If (x0� S1� � � �) ∈ P , then (x0� S1� � � �) is not S1-dominated in P (via any y).

(iv) If (x) ∈ P , then (x) is not S-dominated in P (via any y) by any S.

R 3. Suppose µ(p) = x for some p ∈ P , where P is a coherent collection of paths.

Then, by part (ii) of Definition 6, (x) ∈ P .

Our first theorem shows that any HREFS must be the set of terminal states of a co-

herent collection of objection paths.18

The first two conditions are obvious. The first condition requires that the set P must

contain at least one objection path with initial state x for every state. After all, we must

be able to predict what happens starting from any initial state x. The second condition

states that if an objection path p is in P , then any objection path that is a subpath of p

must also be in P . Conditions (iii) and (iv) are in some sense the two crucial conditions.

Suppose condition (iii) is not satisfied by some set P . Then P must include an objection

path p = (x0� S1�x1� � � �) that is S1-dominated in P via some y. This would mean that

S1 can deviate to y and be assured that all paths in Py make it strictly better off than

following the path p. This implies that S1 is not taking a maximal move if it moves from

x0 to x1. Condition (iv) requires that if (x) is in P and, hence, x is a terminal state of a

path in P , then not deviating from x must be a maximal move for every coalition. We are

going to show that the terminal states of paths in a coherent collection P constitute an

HREFS. Condition (iv) is required to ensure that Condition I is satisfied.

18Path-based coalitional solutions include Xue (1998), Mariotti (1997), and Kimya (2018). However, as

discussed in Section 4, they are based on assumptions that are, in general, not compatible with HREFS and,

hence, not directly comparable to coherence.
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T 1. A set Y ⊆X is HREFS if and only if Y ≡ µ(P) for some coherent collection of

objection paths P .

The proof of the theorem follows from two lemmas.

L 1. Let F be a history-dependent, absorbing expectation function that satisfies

Conditions I, E, and M. Then F(H) is a coherent collection of objection paths.

P. Since F is absorbing, F consists of finitely long paths. Moreover, for any non-

stationary configuration (h), F(h) is an objection path by Condition E.

We now check the defining conditions of a coherent collection of paths. Take any

history h such that µ(h)= x.

First, if S(h) = ∅, then F(h) = (x). If S(h) 	= ∅, then, by Condition E, there is S ∈

E(x� y) such that uS(µ(F(h�S� y))) ≫ uS(x). By construction, F(h�S� y) ∈ F(H). Thus,

in all cases, F(h) ∈ F(H)x for all x ∈X .

Second, since F(h) = (F(h)�F(h�F(h))) and (F(h)�F(h�F(h)) ∈ F(H), it follows by

induction that if (x0� S1�x1� � � �) ∈ F(H), then (xk� Sk+1� � � �) ∈ F(H) for all k= 0�1� � � � .

Next suppose that F(h) is S(h)-dominated in F(H) via y. Then uS(h)(µ(F(h�S(h)�

y))) ≫ uS(h)(µ(F(h))). But this violates Condition M.

Finally, suppose that F(h) is S-dominated in F(H) via y. Then uS(µ(F(h�S� y))) ≫

uS(µ(h)) for some S such that S ∈E(µ(h)� y). But this violates Condition I.

This shows that F(H) satisfies all the four requirements that define a coherent set of

objection paths.

We now want to prove the converse result: if P is a coherent collection of objection

paths, then the terminal state associated with P is HREFS. The proof of the claim is con-

structive: given any coherent set P , we specify an absorbing expectations function that

satisfy Conditions I, E, and M.

L 2. If P is any coherent collection of objection paths, then µ(P) is HREFS.

P. Fix a coherent collection of objection paths P for the rest of the proof.

Take any path px = (x�S1� � � �) ∈ P and pair (S� y) such that S ∈ E(x� y) with

S = S1 if px 	= (x). Define a function ξ with the property that ξ(px� (S� y)) ∈ P and

uS(µ(ξ(px� (S� y)))) 	≫ uS(µ(px)) Such a function ξ must exist for each such (px� (S� y))

from conditions (iii) and (iv) of Definition 6.

Given a coherent collection of objection paths P , we now construct a history-

dependent and absorbing expectation function FP such that µ(F(H)) = µ(P).

Interpret P as an index set and let {Hp}p∈P be a partition of the set of histories H. We

construct FP that is measurable with respect to this partition so that for each p ∈ P and

histories h�h′ ∈ Hp, F(h) = F(h′). So each element Hp of the partition of H contains all

the relevant information concerning the past coalition actions.

We specify the partition of H recursively. For each x ∈ µ(P), from Remark 3, we know

that (x) ∈ P . For each such x, let (x) ∈ H(x). Recursively, take any px0
= (x0� S1�x1� � � �) ∈
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P and h ∈Hpx0
. Let S ∈E(x0� y) be such that S = S1 if S1 	= ∅ and let

(h�S� y) ∈

{

H(x1�S2����) if (S� y)= (S1�x1)�

Hξ(px0
�(S�y)) if (S� y) 	= (S1�x1)�

Proceeding from the initial history ∅, each element in the set of histories H is allocated

into exactly one element of {H(x0�S1����)}(x0�S1����)∈P . Note that if h ∈H(x0�S1����), then µ(h)=

x0.

Construct now an expectation FP such that, for any h ∈H(x0�S1����),

FP(h)=

{

(S1�x1) if S1 	= ∅�

(∅�x0) if S1 = ∅�

First, we check that FP is absorbing.

Take any (x0� S1� � � �) ∈ P and any h ∈ H(x0�S1����). Then FP(h) = F1(h) = (S1�x1),

FP(h�FP(h)) = F2(h) = (S2�x2), and so on. Thus FP continues along the path (x0� S1�

x1� S2� � � �) ∈ P until a stationary state is reached. Since any objection path is finitely long,

F is absorbing.

We now verify the three properties of a rational expectation.

C I. Suppose that h is a terminal history. Then h ∈ H(µ(h)). Consider y

such that S ∈ E(µ(h)� y). Then (h�S� y) ∈ Hξ((µ(h)�(S�y)). By the construction of FP ,

(y�F1(h�S� y)�F2(h�S� y)� � � �) = ξ((µ(h))� (S� y)). By the definition of ξ, uS(µ(ξ(µ(h)�

y))) 	≫ uS(µ(h)).

C E. Suppose that h is a nonterminal history. Find the path (x0� S1� � � �) ∈ P

such that h ∈ H(x0�S1����). By the construction of FP , (F1(h)�F2(h)� � � �) = (S1�x1� S2� � � �).

Since (x0� S1�x1� S2� � � �) is a finitely long objection path, the continuation play leads to

a terminal history (h�F1(h)�F2(h)� � � �) = (h�x0� S1� � � �), which is an indirect objection

to h.

C M. Suppose that h is a nonterminal history. Find the path (x0� S1� � � �) ∈ P

such that h ∈ H(x0�S1����). Then x0 = µ(h). Take any y such that S1 ∈ E(x0� y). By the con-

struction of FP , (y�F1(h�S� y)�F2(h�S� y)� � � �) = ξ((x0� S1� � � �)� (S� y)). By the definition

of ξ, uS1
(µ(ξ((x0� S1� � � �)� (S� y)))) 	≫ uS1

(µ((x0� S1� � � �))).

This completes the proof of the lemma.

Lemmas 1 and 2 prove Theorem 1.

Of course, neither the theorem nor the lemmas throws any light on the existence

of a coherent collection of paths or how such a set can be identified if it exists. The

following example demonstrates that the rudimentary structure of the abstract game

does not itself guarantee the existence of a coherent collection of paths and, hence, a

HREFS.
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Consider a one agent N = {1} decision problem with X = (−1�0), and where {1} ∈

E(x� y) if and only if y = x/2. Let u1(x) = x for all x ∈ X . Now any (trivial) objection

path (x) except (0) is dominated via x/2. Hence, the only candidate for the HREFS is

{0}. But there is no finite objection path that initiates from any x and ends in 0. Hence,

Definition 6(i) is violated by any collection of paths, and there cannot be any HREFS.

Our objective is to prove the existence of HREFS in a large and natural class of games.

We will, in fact, provide a sufficient condition for a stronger version of the solution,

HSREFS. To this end, we define a stronger version of coherence.

D 7. A collection of objection paths P is strongly coherent if the following con-

ditions are satisfied:

(i) The collection Px is nonempty for all x ∈X .

(ii) If (x0� S1� � � �) ∈ P , then (xk� Sk+1� � � �) ∈ P for all k= 0�1� � � � .

(iii) If (x0� S1� � � �) ∈ P , then (x0� S1� � � �) is not S-dominated in P (via any y) for any S

such that S1 ∩ S 	=∅.

(iv) If (x) ∈ P , then (x) is not S-dominated in P (via any y) for any S.

So strong coherence strengthens Definition 6(iii), all other requirements being the

same as for coherence. The strengthening involves ensuring that any coalition with a

nonempty intersection with S1 should not want to deviate.

T 2. If P is a strongly coherent collection of objection paths, then µ(P) is HSREFS.

P. Let P be some strongly coherent collection of objection paths. We construct an

HSRE FP such that F(H) = P .

Identify a function ξ that is defined for each pair ((x0� S1� � � �)� (S� y)) such that

(x0� S1� � � �) ∈ P and S ∈E(x0� y) with S1 ∩ S 	=∅ if S1 	= ∅. Then ξ is defined by the prop-

erty that ξ((x0� S1� � � �)� (S� y)) ∈ Py and

uS
(

µ
(

ξ
(

(x0� S1� � � �)� (S� y)
)))

	≫ uS
(

µ
(

(x0� S1� � � �)
))

for any pair
(

(x0� S1� � � �)(S� y)
)

�

Since P satisfies Definition 7, such a function ξ does exist.

As before, interpret a strong coherent path structure P as an index set and let

{Hp}p∈P be a partition of the set of histories H. We construct F that is measurable with

respect to this partition.

We specify the partition of H recursively. As before, let (x�∅) ∈ Hx for all x ∈ µ(P).

For any history h, find (x0� S1� � � �) ∈ P such that h ∈H(x0�S1����). For any S and y such that

S ∈E(x0� y) and such that S1 ∩ S 	= ∅, if S1 	= ∅, let

(h�S� y) ∈

{

H(x1�S2����) if (S� y) = (S1�x1)�

Hξ((x0�S1����)�(S�y)) if (S� y) 	= (S1�x1)�
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Then each element in the set of histories H is allocated into exactly one component

of the partition {Hp}p∈P . Note that, by construction, µ(h)= x0 for all h ∈H(x0�S1����).

Construct now an expectation F such that, for any h ∈H(x0�S1����),

FP(h)=

{

(S1�x1) if S1 	= ∅�

(∅�x0) if S1 = ∅�

It suffices to verify Condition M*, since the rest of the proof is identical to that of

Lemma 2. Suppose that h is a nonstationary history. Find the path (x0� S1� � � �) ∈ P

such that h ∈ H(x0�S1����). Then x0 = µ(h). Take any S and y such that S ∈ E(x0� y)

and such that S1 ∩ S 	= ∅. By the construction of FP , (y�F1(h�S� y)�F2(h�S� y)� � � �) =

ξ((x0� S1� � � �)� (S� y)). By the definition of ξ, uS(µ(ξ((x0� S1� � � �)� (S� y)))) 	≫ uS(µ((x0�

S1� � � �))).

We use these characterization theorems repeatedly in subsequent sections. In par-

ticular, we use Theorem 2 to construct nonempty HSREFS in all superadditive transfer-

able utility partition games as well as nonempty HREFS in all finite games.

6. S 

In this section, the focus is on the class of NTU simple games, which we formalize by a

nonempty set W of winning coalitions and the set of states X . Von Neumann and Mor-

genstern (1944) described simple games by a characteristic function v such that v(S)= 1

if S ∈ W and v(S) = 0 otherwise.19 Of course, this assumes that utility is transferable

and winning brings the same aggregate benefit to the winning coalition. We use a dif-

ferent formalization of simple games, motivated at least partly by the kind of contexts

that are typically mentioned as potential applications of simple games. Consider, for in-

stance, a legislature that has to choose whether to pass a bill along with a set of possible

amendments. Alternatively, consider a committee voting on an up-or-down decision.

In such cases, the rules of the legislature or the committee specify what groups of indi-

viduals are decisive (or winning ) in the sense of being able to make decisions, and so

the simple game structure in terms of winning coalitions seems appropriate. However,

it is somewhat inappropriate to assume either that utility is transferable or that the final

decision or outcome brings the same aggregate benefit to the group whose vote wins the

day. Our formulation preserves the essential structure of simple games, so that winning

coalitions can enforce any outcome, but drops the assumption that aggregate benefits

are equal no matter the outcome that is chosen, and also transferability of utility.

Our focus is on monotonic and proper simple games, such that

(i) if S ∈ W , and S ⊂ T , then T ∈ W20

(ii) if S ∈ W , then N − S /∈ W for all S ⊆ N .

19Farsightedness for this class of simple games was studied by both Ray and Vohra (2015b) as well as DV

(2017).
20So N ∈ W .
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Given W , a coalition B is a blocking coalition if N −B is not a winning coalition. Let

B denote the set of blocking coalitions. A coalition is a losing coalition if its complement

in N is a winning coalition.

In this section, we explicitly assume that a state consists of an outcome a from some

feasible set A (for instance, the set of legislative bills) as well as a partition π of N . That

is, any state x is a pair (a�π) and X = A × �. Of course, a winning coalition may not

form. In such cases, we assume that the outcome will be a distinguished element a0 (the

status quo), which is also in A. We use X0 to denote the set of “zero” states in which no

winning coalition has formed, so that a typical element of X0 will be x0 = (a0�π), with

no element of π being in W .

We assume that each individual i has a utility function defined over A and that

ui(a�π) = ui(a) for all i ∈ N�(a�π) ∈ X�

That is, individuals care only about the bill that is passed or the decision that is taken by

the committee and not about the partition that represents the voting choices.

In a simple game, a winning coalition has the power to choose any outcome in A,

while a blocking coalition can ensure that the status quo a0 is the resulting outcome. The

only way in which a losing coalition T can change the utility allocation is if T leaves a

winning coalition S and S−T is not a winning coalition. So, for instance suppose |N| = 5

and any coalition of three or more is a winning coalition. Let π = {{1�2�3}� {4}� {5}}. Then

any i ∈ {1�2�3} can leave the coalition and ensure that a zero state emerges. Alternatively,

if π = {{1�2�3�4}� {5}}, then no singleton has any power to change the outcome. This

illustrates the limitations on the power of losing coalitions: if L is a losing coalition that

is a subset of a winning coalition S, then L can change the outcome to a0 if and only if

S −L is not winning.

So as to express these ideas formally, we use the following notation. For any partition

π and coalition S ⊂ N , let (S�πS) ∈ � represent the partition where S is an element of the

partition and T ∈ πS if and only if T = R−S for some R ∈ π. That is, if a coalition S forms

and deviates from π, then the new partition consists of S and all original elements of π

without members of S. We also use (S�π−S) to denote the partition with S as an element

and some partition π−S of N − S.

The power of winning, blocking, and losing coalitions is captured in the following

assumption, which describes two properties of an effectivity function for simple games.

A 1. The effectivity function E satisfies the following statements:

(i) For all S ∈ W , for all x = (a�π) ∈X , S ∈E(x� y) if y = (b� (S�πS)) for any b ∈A.

(ii) For all B ∈ B, B ∈E(x�x0) for all x ∈X .

(iii) For all L ⊂ S ∈ W , for all x = (a� (S�π−S)) ∈ X , (b� (L�S − L�π−S)) ∈ E(x�L) if

and only if a= b or [(b = a0) and S −L /∈ W].

Part (i) of the assumption implies that a winning coalition is eligible to induce state

(b� (S�π)) from any state (a�π). Part (ii) just says that a blocking coalition can always
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induce a zero state. Part (iii) implies that a subcoalition L of a winning coalition S that

is not winning or blocking can change the outcome only if the residual coalition, i.e.,

S − L, ceases to be a winning coalition. In such a case, no winning coalition forms and

so L enforces the status quo.

Given these restrictions on the power of coalitions and utility functions, the only

relevant details of a state not in X0 are given by the identity of the winning coalition S

and the outcome chosen by S.

We normalize utility functions so that ui(a
0) = 0, and make the following assump-

tion.

A 2. For all S ∈ W , there is a ∈A such that ui(a) > 0 for all i ∈ N .

Assumption 2 ensures that every winning coalition has at least one alternative that

its members strictly prefer to the status quo outcome.

In this setting, we derive a transparent necessary and sufficient condition for

HSREFS and HREFS in terms of sets of outcomes rather than sets of objection paths.

As we mentioned earlier, the advantage of this more direct approach is that it is easier

to check whether a given set of social states Y can be supported as a solution. The in-

tuitive reason why it is possible to derive this direct characterization is because of the

special structure of simple games: the only “powerful” coalitions are winning coalitions

or blocking coalitions that have the power to prevent the complementary coalition from

winning. Importantly, we are also able to show that this stark distribution of power im-

plies that any absorbing expectation function satisfying Conditions I and E is an HSRE.

That is, neither version of maximality plays a role for NTU simple games in the presence

of history dependence.

For any x ∈ X and S ∈ N , denote DS(x) = {y ∈ X : uS(y) ≫ uS(x)}. Our characteriza-

tion is in terms of the system of sets {DS(x)}S∈N �x∈X .

D 8. A set Y ⊆ X satisfies Property C if for any y ∈ Y , for any S ∈ N , z ∈

E(y�S), either z ∈ Y − DS(y) or there are B ∈ B, W ∈ W and x ∈ Y such that x ∈

Y ∩DB(z)∩ (DW (x0)−DS(y)).

R 4. Note that this definition allows for the possibility that B = W . This is the

case if there is T ∈ W and x ∈ Y ∩DT (z)−DS(y).

A set Y satisfies Property C if the following is true. Take any y in Y and any S that

can deviate to z. Suppose z ∈ Y , but all members of S do not strictly prefer z to y. In that

case, one does not have to worry about the possibility of this deviation taking place. In

all other cases, we have to ensure that this deviation is blocked. Property C states that

if S does deviate from y to z, then some blocking coalition B can precipitate the status

quo and then some winning coalition W can make a further deviation to x ∈ Y . The

state x has the property that all members of B strictly prefer x to z and all members of

W strictly prefer x to the status quo. Alternatively, someone in S is not better off at x

compared to y. So if the expectation is that there will be a move to x following a move to

z, then the initial deviation will not take place.

Our main result of this section follows.
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T 3. In all proper simple games, the following statements are equivalent for any

set Y ⊂X .

(i) We have Y = µ(F̄), where F is an absorbing expectation function satisfying Con-

ditions I and E.

(ii) The set Y is HSREFS.

(iii) The set Y satisfies Property C.

P. Since (ii) obviously implies (i), it is sufficient to show that (iii) implies (ii) and (i)

implies (iii).

S 1. We first show that (iii) implies (ii).

P. Suppose Y satisfies Property C. Pick any y ∈ Y , coalition S, and z ∈E(S� y) such

that z ∈ Y ∩ DS(y) or z ∈ X − Y . Define a function φ such that, for any y ∈ Y , for any

z ∈ (X −Y)∪ (Y ∩DS(y)), and S ∈E(y� z),

φ(y�S� z)=
(

B�x0�W �x
)

s.t. B ∈ B�W ∈ W and x ∈ Y ∩DB(z)∩
(

DW

(

x0
)

−DS(y)
)

�

Since Y satisfies Property C, such a function φ exists. By construction, (z�φ(y�

S� z)) = (z�B�x0�W �x) is an objection path for any such specified (y�S� z).

We show that there is a strongly coherent collection of objection paths P with

µ(P) = Y .

Let P1 = {(z�φ(y�S� z)) : y ∈ Y�S ∈ N � z ∈ E(S� y)� z ∈ (X − Y) ∪ (Y ∩ DS(y))}. Let

P2 = {(x0�W �x) | (z�B�x0�W �x) ∈ P1}.

Construct P by

P =
{

(y)
}

y∈Y
∪ P1 ∪ P2�

We show that P satisfies parts (i)–(iv) of Definition 7.

To check part (i) of the definition, note that (y) ∈ P for each y ∈ Y . Take any x /∈ Y .

If x ∈ X0, then B ∈ E(y�x) for all y ∈ Y and B ∈ B. So choose some y ∈ Y and B ∈ B,

and note that px = (x�φ(y�B�x)) ∈ P1. If x /∈ X0, then for some S ∈ W and S ∈ E(y�x),

px = (x�φ(y�S�x)) ∈ P1.

Part (ii) follows immediately since P2 is a subset of P .

To check part (iv), consider any path (y) ∈ P . Take any S ∈ N and z ∈ E(S�x). If

z /∈ (Y − DS(y)), then pz = (z�φ(y�S� z)) ∈ P and µ(pz) ∈ Y − DS(y). So (y) is not S-

dominated in P via z. If z ∈ (Y − DS(y)), then again (y) is not S-dominated in P since

(z) ∈ P .

For part (iii), consider any path py ∈ P . Suppose py is S-dominated in P via some S.

Identify µ(py) = x. Since py is S-dominated in P , there is z ∈E(S� y) such that

uS
(

µ(pz)
)

> uS(x) for all pz ∈ P� (1)

Suppose z = (b�π) /∈X0. Then S ∈ W . Since S is a winning coalition, S ∈E(x� (b�π′))

for some π ′ with S ∈ π ′. Using (1), it follows that (x) is S-dominated in P . This is a

contradiction since we have shown that part (iv) of strong consistency is satisfied.
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Suppose z ∈ X0. Now py ∈ P1 ∪ P2. Since µ(py) = x, in either case, there is W ∈ W

such that (x0�W �x) ∈ P2. Hence, there is pz ∈ P such that µ(pz)= x, contradicting (1).

Hence, P is indeed a strongly coherent collection of objection paths. It follows from

Theorem 2 that Y is HSREFS if Y satisfies Property C.

This completes the proof of Step 1. ⊳

We now prove the other implication.

S 2. We now show that (i) implies (iii).

P. Take any absorbing F satisfying Conditions I and E, and suppose Y = µ(F̄).

Take any y ∈ Y . Then there must be a stationary history h such that F(h) = y. Take

any S ∈ N and z ∈ Y ∩DS(y). Since F satisfies Condition I, (h�S� z) is not stationary. So

there is pz = (z�B�x0�T�x) such that x ∈ Y −DS(y) and (h� y�S� z�B�x0�T�x) is station-

ary.

Next suppose z ∈ X − Y . Since z /∈ Y , (h�S� z) is not stationary. Then Condi-

tion E again implies the existence of pz = (z�B�x0�T�x) such that x ∈ Y − DS(y) and

(h� y�S� z�B�x0�T�x) is stationary. ⊳

This shows that Property C is satisfied.

Thus we conclude that in the class of simple games, it is possible to provide a di-

rect characterization of HREFS (and HSREFS) in terms of sets of outcomes. Perhaps,

more importantly, the theorem also demonstrates that maximality plays no role in sim-

ple games.21

7. T 

In this section, we describe three applications that are designed to show the roles of his-

tory dependence and maximality. We remarked earlier that an important implication

of history dependence is that punishments can now be history-specific. The first ap-

plication is designed to show that such punishments can be used to support efficient

outcomes. The final two applications illustrate the role of maximality by emphasizing

the permissiveness of solutions like LCS.

Why history dependence matters

This is a model of global pollution abatement. Each country can undertake industrial

activities that result in low or high levels of pollution, labelled 0 and 1. Given other coun-

tries’ choices, each country i strictly prefers choosing 1 to 0 because 0 involves high cost

clean technology. Alternatively, other countries prefer that i chooses 0 rather than 1. So

21On this issue, see also Ray and Vohra (2019).
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let xi ∈ {0�1} denote a typical strategy of i. So this is an example of negative externalities.

Payoff functions are given by

ui(x1�x2�x3) = xi −
1

2

(

∑

j 	=i

xj

)2

�

Consider the normal form game in which each country chooses its level of pollution

simultaneously. The only Nash equilibrium is (1�1�1) while O ≡ {(0�0�0)� (1�0�0)� (0�1�

0)� (0�0�1)} is the set of socially optimal allocations in the sense of maximizing the sum

of payoffs for the countries. Notice that for all x ∈O,

∑

i∈N

ui(x1�x2�x3) = 0�

We show that O is HREFS, though it cannot be sustained as a REFS. This shows the

importance of history dependence.

R 5. In this example, O is also the LCS.

Let x0 = (0�0�0), x1 = (1�0�0), x2 = (0�1�0), x3 = (0�0�1), x4 = (1�1�0), x5 = (1�0�1),

x6 = (0�1�1), and x7 = (1�1�1).

To keep the notation simple, we suppress the coalition structure and write a state

just in terms of an allocation. So, for instance, we write (x0) instead of (x0� {{1}� {2}� {3}})

and so on. Also, we write an objection path by describing just the states that figure in the

sequence and suppress mention of the coalitions that effect the move since there will be

no ambiguity about the latter.

The effectivity function follows straightaway from the underlying normal form game.

Any coalition S ∈ C is effective in moving from xk to xk
′

if xki = xk
′

i for i /∈ S. That is,

the transition from xk to xk
′

cannot involve any change of strategy of those not in S.

Note that since {1�3} and {1�2�3} are not permissible coalitions, there cannot be any

immediate transition from x0 to x5 or from x7 to x0.

Let P be the set of objection paths given below along with all their subpaths so that

P satisfies condition (ii) of Definition 6:

• (x0)

• (x1�x5�x7�x3)

• (x2�x4�x7�x1)

• (x3�x6�x7�x4�x2).

We want to show that the set P forms a coherent set. Before we go into this

demonstration, we explain why the path (x3�x6�x7�x4�x2) is qualitatively different from

(x1�x5�x7�x3) and (x2�x4�x7�x1). Notice that in the latter two paths, coalitions {1�2}

and {2�3} are deviating jointly at x7. But {1�3} is not a permissible coalition and so this

deviation is not possible at x7. That is why we need 3 and 1 to deviate sequentially.
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Clearly, P satisfies the first two conditions of Coherence. So we only need to check for

conditions (iii) and (iv). Consider, for instance, (x1�x5�x7�x3), where the first coalition

to move (from x1 to x5) is country 3. Notice that µ(x1�x5�x7�x3) = x3. Since this is 3’s

most preferred outcome in O, (x1�x5�x7�x3) is not S-dominated by any S containing 3.

Analogous arguments show that condition (iii) is satisfied.

We also need to show that x0 is not S-dominated in P so as to demonstrate that

condition (iv) of Coherence is satisfied. Consider any singleton coalition, say {1}. If 1

deviates to x1 (its only possible deviation), then since (x1�x5�x7�x3) is in P and u1(x
0) >

u1(x
3), x0 is not 1-dominated in P . Analogous arguments hold for 2 and 3. Finally, note

that there is no two-person coalition S and outcome in O that is preferred by S to x0.

This shows that O is HSREFS. An obvious question is the role of history dependence.

To see this, consider how x0 is supported as part of the HSREFS. Suppose 1 deviates

and chooses 1. Then the objection path (x1�x5�x7�x3) is used to punish 1 for the initial

deviation. Notice that this requires that {1�2} to deviate jointly at x7. Now suppose 2

deviates at x0. Then the objection path (x2�x4�x7�x1) is used to punish 2. This requires

{2�3} to deviate at x7. History independence (as in REFS or CECB) would not allow two

different continuation paths at x7, but is possible given history dependence.

Why maximality matters

This example illustrates the connection between maximality and subgame perfection.

While the specific model is based on how the Conservative party in the United Kingdom

elects its leader, the same issues arise in other contexts.

The Conservative party uses a two-step procedure. In the first step, members of the

Conservative party in the House of Commons select a panel of two candidates from the

list of candidates seeking nomination if the latter set contains more than two candi-

dates.22 Successive rounds of voting are held if necessary, with the weakest candidate

being eliminated in each round until only two candidates remain. In the second stage,

all members of the party choose one candidate from the panel chosen by the members

of parliament.

In our model, we assume that only three members of parliament (MPs)—x, y and z—

are seeking nomination. Hence, only one round of voting in the first stage is required

to obtain a two-member panel. Let N1 be the electorate in stage 1 and let N2 be the

electorate in stage 2. We assume N1 = {1�2�3} and N2 = {L(eave)�R(emain)}. The lat-

ter definition is meant to represent the fact that there are only two groups in N2, with

individuals in each group having unanimous preferences. While this is a simplifying as-

sumption, it is not farfetched in the context of the 2016 election when Brexit seemed to

be the only issue concerning voters.

Let |L| > |R| so that L gets to decide the eventual winner.

For each i ∈ N1, a strategy si is to eliminate one candidate.23 A strategy for each

j ∈N2 is a function sj that selects a winner from each two-element subset of {x� y� z}.

Let preferences be as follows:

22There were five candidates in the last contested election in 2016, and four in 2005.
23Some tie-breaking rule, which is irrelevant for our purpose, is used to select the eliminated candidate

if each i selects a different candidate.
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• xP1yP1z

• xP2zP2y

• zP3xP3y

• zPLxPLy

• yPRxPRz.

Assume that players also have a ranking over all nonempty subsets of {x� y� z}, this rank-

ing being consistent with preferences over singleton sets defined above and that any

singleton set is preferred over any set containing more than one element.24

Clearly, the optimal or maximal strategy for L is to choose z from any panel con-

taining z and to choose x otherwise. Given this, the subgame equilibrium path of play

should be for {1�2} to eliminate z so as to ensure that the eventual winner is x. This must

also be the unique HREFS. In fact, history dependence plays no role here and so several

history-independent solutions like REFS and CECB that satisfy maximality will coincide

with HREFS.

However, the LCS can also be supported by {1�2} eliminating x or y, so that L

chooses z. A deviation of {1�2} is deterred if {1�2} expect L to choose y from {x� y}. So

the LCS (and LCCS) will be {x�z}.

The next example uses voting by veto procedures. Voting by veto was first proposed

by Mueller (1978) as a way to induce preferences for public goods. Various forms of

voting by veto procedures have been extensively analyzed by Moulin25 among many

others. In the original procedure described by Mueller (1978), n individuals propose n

alternatives. The proposed alternatives along with a status quo x0 constitute the issue

set. The voters then sequentially veto one alternative from the set that has not been

vetoed already. Since there are n + 1 alternatives and n voters, exactly one alternative

will escape a veto and this is declared the chosen outcome. In what follows, we avoid

the proposal stage, since that does not change the nature of the result, and we focus on

the vetoing stage.

Let N = {1�2�3} and A = {x0�x� y�z} be the issue set. Suppose the order of sequen-

tial vetoing is 1, 2, 3. Then individual 1’s strategy is to pick one alternative from A (the

alternative vetoed by 1), individual 2’s strategy is to pick one alternative from each three-

element subset of A, while individual 3 picks one alternative from each two-alternative

subset of A.

Let individual preferences over A be

• x1P1x2P1x0P1x3

• x0P2x1P2x2P2x3

• x3P3x0P3x1P3x2.

24This is an “artificial assumption so as to fit the model with our general framework.
25See, for instance, Moulin (1983).
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Extend these preferences over all two-element and three-element subsets of A such that

individual elements are strictly preferred to all supersets that can be constructed out

of A. We do this because X will be the set of all nonempty subsets of A. Then the unique

HREFS will involve 1 vetoing x0, 2 vetoing x3, and 3 vetoing x2, yielding the outcome x1.

However, the LCS (and LCCS) will also include x0 if 1 vetoes x3 under the pessimistic

assumption 2 will not veto x3. This is clearly a nonmaximal move by 2 and so 1 should

not expect this to take place.

It is easy to construct another preference profile where the farsighted stable set gives

the wrong prediction because of a violation of maximality.

Applications 2 and 3 also illustrate the close connection between subgame perfec-

tion and maximality in our framework despite the cooperative nature of our solution

concept. This point was also emphasized by Kimya in the context of ECB and CECB.

8. P  HREFS

In this section, we describe some results on the structure and properties of HREFS. We

point out at the end of the section that analogous results also go through for HSREFS.

P 1. Let P1 and P2 be coherent collections of objection paths. Then P1 ∪P2 is

also a coherent collection of objection paths.

P. Let P1 and P2 be coherent collections of objection paths. Let P̄ = P1 ∪ P2. We

show that P̄ satisfies all the conditions specified in Definition 6.

Clearly, P̄x is nonempty since P1
x and P2

x are both nonempty, implying Definition 6(i).

Take any p̄ = (x0� S1�x1� � � �) ∈ P̄ . Without loss of generality, p̄ ∈ P1. Then, by Defini-

tion 6(ii), (xk� Sk+1� � � �) ∈ P1 ⊂ P̄ for any k.

Finally, notice that if S does not dominate some p in a set P , then S does not domi-

nate p in P ′ with P ⊂ P ′. This shows that P̄ satisfies Definition 6(iii) and (iv).

So P̄ is a coherent collection of paths.

The following corollary is immediate.

C 1. If Y 1 and Y 2 are both HREFS, then so is Y 1 ∪Y 2.

Notice that this corollary establishes that there is a largest HREFS whenever X is

finite.

We now show that HREFS is a refinement of Chwe’s consistent sets. Even the largest

(in terms of set inclusion) HREFS is a subset of the largest consistent set. Moreover, Ex-

ample 2 demonstrates that HREFS can be a strict subset of LCS. As we remarked before,

this makes HREFS a more attractive solution concept given the usual criticism that the

LCS is too permissive.

P 2. If P is a coherent collection paths, then µ(P) is a consistent set.
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P. Suppose that µ(P) is not a consistent set.

Then there is x ∈ µ(P), y and S ∈ E(x� y) such that uS(z) ≫ uS(x) for all objection

paths (z0� S1� � � � � Sm� zm) with z0 = y and zm = z ∈ µ(P).

But since P is a subset of all objection paths, this contradicts the assumption that

(x) is not S-covered in P via y.

The farsighted stable set (Definition 3) is not necessarily HREFS in abstract games

since domination chains may violate maximality.

However, as we demonstrated in Section 6, the problem of maximality disappears in

simple games. This essentially yields the following proposal.26

P 3. If V is a farsighted stable set in a simple game, then V is HREFS.

It is trivial that V must satisfy Conditions I and E. So this result follows from our

characterization result on simple games.

9. N 

In this section, we show that a nonempty HREFS exists both when the set of social states

X is finite as well as in the case of transferable utility partition function games. In fact,

we prove a stronger result in the latter case by constructing a nonempty HSREFS.

9.1 The finite case

Suppose X , the set of social states, is finite. Since we make no other assumptions about

the abstract game, this covers a wide variety of cases such as hedonic games and social

network games without monetary transfers.

We provide a constructive proof that HREFS is nonempty in all finite games.

For any set of objection paths P , define

ud(P) =
{

(x0� S1�x1� � � �) ∈ P : for all k� (xk� Sk+1�xk+1� � � �) is not Sk+1-dominated in P
}

�

L 3. Let P ⊆ P ′. Then ud(P) ⊆ ud(P ′).

P. For any (x0� S1�x1� � � �) and any k= 0�1� � � � , if (xk� Sk+1�xk+1� � � �) is dominated

in P ′ via y, then it is dominated in P via y. Conversely, if (xk� Sk�xk+1 � � �) is not dom-

inated in P via any y and for any k, then it is not dominated in P ′ via any y and for

any k.

Recall that P∗ denotes the set of all objection paths. Define UD0 ≡ P∗ and UDt ≡

ud(UDt−1) for all t = 0�1�2� � � � .

By Lemma 3, UDt+1 ⊆ UDt . Denote by

UUD =
⋂

t

UDt

26See Ray and Vohra (2019) for a related result.



Theoretical Economics 15 (2020) Coalition formation and history dependence 189

the ultimate undominated set associated to the problem. So the ultimate undominated

set is the limit set, obtained by recursively eliminating dominated objection paths. No-

tice that if X is a finite set, then only finitely many elimination rounds are needed.

The next lemma provides a condition under which UUD is a coherent collection.

L 4. Let P = UUD. If Px is nonempty for all x, then P is a coherent collection of

paths.

P. It is clear that P satisfies Definition 6(ii)–(iv). So if Px is nonempty for all x, then

P is a coherent collection of objection paths.

Let P be any other coherent collection of objection paths. We show by induction that

P ⊆ UDt for all t = 0�1� � � � .

It is clear that P = ud(P) since no path in P is dominated because of Definition 6(iii)

and (iv).

By assumption P ⊆ P∗ = UC0. Let P ⊆ UDt . Then, by Lemma 3, P = ud(P) ⊆

ud(UDt)= UDt+1. Hence UUD contains all coherent collections and µ(P) is the largest

HREFS.

Given finiteness of X , the set of acyclic objection paths is finite. This implies that the

ultimate undominated set is, at each elimination round t, nonempty and well defined.

The difficult part is to show that UDt contains a path px with initial state x, for arbi-

trary x ∈ X , as required by Coherence. The proof of the next lemma, which does this, is

relegated to the Appendix.

L 5. Let X be finite. For all x ∈X , there is px such that px ∈UUD.

The proof of the next theorem follows immediately from Lemma 4 and Lemma 5.

T 4. If X is finite, there is a nonempty HREFS.

9.2 Nonempty HSREFS for partition function games

In this section, we prove an existence result for HSREFS for the large class of games

represented by superadditive partition function games. In view of the demanding nature

of HSREFS, this nonemptyness result demonstrates the power of history dependence.

Let � be the set of all partitions of N . An embedded coalition is a pair (S�π), where

π ∈ � and S ∈ π. With some abuse of notation, we use (N) to denote the embedded

coalition (N� {N}).

A TU partition function game is a mapping v that specifies a real number v(S�π) for

each embedded coalition (S�π). That is, v(S�π) is the sum of utilities that coalition S

can achieve if the partition π forms. This formulation allows for externalities: what S

can get depends on the entire coalition structure.

For any coalition S ⊆ N , we let πS denote a partition of S, while �S denotes the set

of all partitions of S. Also, �−S is the set of all partitions of N − S, with a typical element

π−S .
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For any π and S�T ∈ π, we use π−S∪T to denote the partition of N − S ∪ T obtained

from π. That is, R ∈ π−S∪T if and only if R ∈ π and R /∈ {S�T }.

Henceforth, we assume that v satisfies the following condition.

Superadditivity. For all π ∈ �, for all S�T ∈ π, v(S�π) + v(T�π) ≤ v(S ∪ T� {S ∪

T�π−S∪T }.

Note that superadditivity ensures that for all π ∈�, v(N)≥
∑

S∈π v(S�π).

Throughout, we also assume that the partition function v is 0-normalized so that

v({i}�π)= 0 for all i ∈ N and all π ∈� with {i} ∈ π.27

We should specify the effectivity function associated with a partition function game.

Take any initial state x and suppose some coalition S deviates from x. It makes sense

to assume that S can choose any partition of �S and that it cannot dictate how N − S

chooses a partition in �N−S . However, it is notationally complicated to explicitly for-

malize the effectivity function. Fortunately, for our purposes it suffices to consider only

certain kinds of coalitional moves and so we do not need to describe the effectivity func-

tion in full detail.

Let x0 ∈ X be the zero state such that ui(x
0) = 0 for all i and π(x0) = {{1}� � � � � {n}}.

That is, the partition formed in the zero state is one in which each element of the parti-

tion of N consists of a single individual and all corresponding embedded coalitions get

zero utility.28

We make the following assumption.

A 3. For all i ∈N , N − {i} ∈E(x�x0) for all x ∈X .

This is straightforward since N − {i} can always decide to break up into singletons.

We will use this assumption repeatedly in the proof of a crucial lemma.

D 9. Player i is essential if and only if v(N) > v(N − {i}� {N − {i}� {i}}).

So player i is essential if she adds positive value to coalition N − {i}. Let

Z =

{

x ∈X :
∑

i∈N

ui(x) = v(N)�ui(x) > 0, if i is essential

}

�

L 6. For all (x� y�k) ∈Z ×X ×N , there is py such that uk(µ(py)) ≤ uk(x).

P. Choose any triple (x� y�k) ∈Z ×X ×N . We consider two cases.

C 1. uk(y) > 0. Since y ∈X , superadditivity implies that
∑

i∈N ui(y) ≤ v(N). So there

is y ′ ∈X (possibly y = y ′) such that
∑

i∈N ui(y
′) = v(N), ui(y

′)≥ ui(y) for all i ∈N .

Suppose uk(x) > 0. Since uk(y
′) > 0, this implies that there is z ∈X such that

∑

i∈N

ui(z) = v(N)

27This is without loss of generality.
28The latter follows since v is 0-normalized.
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ui(z) > ui
(

y ′
)

for all i 	= k

uk(x) ≥ uk(z) > 0�

Then define py = (y�N − {k}�x0�N�z). Clearly, py satisfies all the requirements of

the lemma.

Next suppose uk(x) = 0. Since x ∈Z, i is not essential. So v(N −{k}� {N −{k}� {k}}) =

v(N). Clearly, this allows us to choose z ∈ X such that z(π) = {N − {k}� {k}}, N − {k} ∈

E(y� z), and

ui(z) > ui(y) for all i 	= k
∑

i 	=k

ui(z) = v
(

N − {k}�
{

N − {k}� {k}
})

= v(N)

uk(z) = 0�

Then let py = (y�N − {k}� z). Again, py satisfies the requirements of the lemma.

C 2. uk(y) = 0. Suppose k is essential, so that uk(x) > 0. Let {k} ∈ E(y�w), where

{k} ∈ π(w). Then uk(w) = 0. Note that we do not make any other assumption about

π(w) or ui(w) for i 	= k.

Since k is essential,
∑

i 	=k ui(w) < v(N) Since uk(w) = 0, we can choose z ∈ X such

that

∑

i∈N

ui(z) = v(N)

ui(z) > ui(w) or all i ∈N

uk(x) ≥ uk(w)�

Then py = (y� {k}�w�N�z) satisfies the requirements of the lemma.

Suppose k is not essential. If y ∈ Z, then py = (y) satisfies the requirements of the

lemma. If y /∈Z, then either

(i)
∑

i∈N ui(y) < v(N)= v(N − {k}�N − {k}� {k}})

or

(ii) i 	= k is essential, but ui(y) = 0.

If (i) holds, then let py = (y�N−{k}� z), where
∑

i 	=k ui(z)= v(N−{k}�N−{k}� {k}) =

v(N), and ui(z) > ui(y) for all i 	= k, uk(z) = 0 Clearly, such z ∈Z exists and so py satisfies

the requirements of the lemma.

If (ii) holds, then let i be essential and let ui(y) = 0. Then let {i} ∈E(y�w), where {i} ∈

π(w). Using the fact that
∑

j 	=i uj(w) < v(N), we can choose py = (y� {i}�w�N − {k}� z)

such that

∑

j 	=k

uj(z) = v
(

N − {k}�
{

N − {k}� {k}
})

= v(N) (since k is not essential)
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uj(z) > uj(w) for all j 	= k

uk(z) = 0�

This completes the proof of the lemma.

Let PZ is the collection of objection paths terminating in Z:

PZ =
{

p ∈ P∗ : µ(p) ∈Z
}

�

We will prove that Z is HSREFS by showing that PZ constitutes a strongly coherent col-

lection of objection paths.

T 5. The set Z is an HSREFS.

P. Take any y ∈ X . Choose arbitrary x ∈ Z and k ∈ N . Lemma 6 implies that there

is py ∈ PZ such that uk(µ(py)) ≤ uk(x). Hence, Py ∩ PZ is nonempty and Condition (i)

of Definition 7 is satisfied.

For any objection path in PZ , a subpath that begins from a state in the middle is also

an objection path of blocking coalitions with a terminal element in Z and, hence, is a

member of PZ . That is, Condition (ii) of Definition 7 is satisfied.

Next take any pz ∈ PZ with x = µ(pz). Suppose that pz is S-covered via y for

some S. Choose some k ∈ S. By Lemma 6, there is an objection path py ∈ PZ such

that uk(µ(py)) ≤ uk(x), contradicting the assumption that pz is S-covered via y. Hence,

Condition (iii) of Definition 7 is satisfied.

Now, take any (z) ∈ PZ . Suppose that (z) is S-covered via y for some S. Choose some

k ∈ S. By Lemma 6, there is an objection path py ∈ PZ such that uk(µ(py)) ≤ uk(x),

contradicting the assumption that (z) is S-covered via y. So Condition (iv) of Definition 7

is also satisfied and so PZ is indeed strongly coherent.

This shows that Z is HSREFS.

HSREFS need not be unique. We leave it to the reader to check that

W =

{

w ∈X :
∑

i∈N

ui(x) ≤ v(N)�ui(x) > 0, if i is essential

}

is also HSREFS. Of course, Z ⊆W .29

10. C 

This paper studies the consequences of memory on coalition formation. To this end, we

extend the rational expectation stable set solution of Dutta and Vohra (2017) by allowing

coalitions to condition their behavior on the history of blockings. The resulting solution

satisfies the same stringent stability properties as the Dutta–Vohra solution, but has an

extra degree of freedom because of history dependence.

29The proof that W is HSREFS is almost identical.
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History dependence turns out to have very powerful implications. We show that a

history-dependent rational expectation solution exists under very general conditions,

for example, whenever the set of states is finite. What is more, we demonstrate that even

the more stringent version of the solution, which requires that the current coalitional

move is optimal also for nonactive coalitions, exists and is nonempty in all superaddi-

tive partition function games. We are not aware of prior existence results in the literature

with similar robustness and existence properties. Our results suggests that the introduc-

tion of history dependence in the study of coalition formation is a fruitful avenue for

further research.

A

In this Appendix, we prove Lemma 5: for all x ∈ X , UUD contains some objection path

originating from x.

Proof of Lemma 5

Since UD0 = P and, hence, contains objection paths originating from x, it suffices to

prove that for all x ∈ X , for all t = 0� � � � , if UDt
x 	=∅, then UDt+1

x is nonempty as well.

Choose some set P of objection paths. Find, for any x such that (x) /∈ ud(P), a coali-

tion S(x) such that (x) is S(x)-dominated in P .

For any x, identify a set C(x�P) such that

C(x�P) =
{

y : (x) is S(x)-covered in P via y
}

� (2)

Further, denote by C∗(x�P) the subset of C(x�P) that contains any y that induces the

maxmin payoff to coalition S(x) in C(x�P). That is,

C∗(x�P) =
{

y ∈ C(x�P) : max
z∈C(x�P)

min
p∈Pz

uS(x)
(

µ[p)
)

	≫ min
p∈Py

uS(x)
(

µ[p)
)

}

� (3)

Note that (x) ∈ ud(P) if and only if C(x�P) = C∗(x�P) =∅.

We say that (x0� S(x0)� � � � � xJ) is a C∗(·�P) sequence that originates from x if x = x0

and xj+1 ∈ C∗(xj�P) for all j = 0� � � � � J − 1.

Denote by C
∗
(·�P) the transitive closure of C∗(·�P).30 Denote the set of maximal

elements of C
∗
(·�P) by V (P) = {x ∈X : y ∈ C

∗
(x�P) implies x ∈ C

∗
(y�P), for all y}.

L 7. Let y ∈ C∗(x�P). Then, for any py ∈ Py , the sequence (x�S(x)�py) is an objec-

tion path and it is not dominated in P ′ if P ⊆ P ′.

P. Since py is a member of Py and x is S(x) covered in P via y, (x�S(x)�py) is an

objection path.

If (x�S(x)�py) is dominated in P ′ and P ⊆ P ′, then there is z such that

min
pz∈Pz

uS(x)
(

µ[pz)
)

≥ min
pz∈P

′
z

uS(x)
(

µ[pz)
)

≫ uS(x)
(

µ[p)
)

≫ uS(x)(x)�

30That is, y ∈ C
∗
(x�P) if and only if there is a C∗(·�P) sequence originating from x and ending in y .
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The third inequality, which implies that (x�S(x)�py) is an objection path, follows from

the assumption that y ∈ C(x�P). Thus the first inequality implies that also z ∈ C(x�P).

But together with (2), this contradicts the assumption that y ∈ C∗(x�P).

L 8. For any t = 0�1� � � � , for any x0 ∈ X , let (x0� S(x0)�x1� � � � � xJ) be a C∗(·�UDt)

sequence with (xJ) ∈ UDt+1. Then (x0� S(x0)�x1� � � � � xJ) ∈UDt+1.

P. Of course, UDt+1 ⊆ UDt for all τ. So Lemma 7 implies that the sequence

(xj� S(xj)�xj� � � � � xJ) is not dominated in UDt for any j = 0�1� � � � � J − 1. Since, in ad-

dition, (xJ) is not dominated in UDt , we have (x0� S(x0)�x1� � � � � xJ) ∈UDt+1.

L 9. For any t = 0�1� � � � , for any x ∈ X , there is y ∈ C
∗
(x�UDt) such that (y) ∈

UDt+1.

P.

C 1. For any t, if x ∈ V (UDt) and (x) ∈UDt , then (x) ∈UDt+1.

P. Suppose that (x) ∈ UDt −UDt+1 and x ∈ V (UDt). Since X is a finite set, there

is a C∗(·�UDt) sequence (x0� S(x0)�x1� � � � � xL) such that x = x0 = xL. By Lemma 8,

(x1� S(x1)�x2� � � � � xL) ∈UDt . But then, since xL = v0, x0 is not dominated via x1 in UDt ,

a contradiction to the hypothesis that x1 ∈ C
∗
(x0�UDt). ⊳

C 2. For any t, C∗(x�UDt)= C(x�UDt) for all x ∈ V (UDt).

P. Fix any x ∈ V (UDt). It suffices to show the direction C(x�UDt) ⊆ C∗(x�UDt).

If (x) ∈UDt+1, then C(x�UDt)= C∗(x�UDt) =∅.

Suppose that (x) /∈ UDt+1. Since x ∈ V (UDt), there is a C∗(·�UDt) sequence

(x0� S(x0)�x1� � � � � xL) such that x = x0 = vL. Choose any x′ ∈ C(x0�UDt). By Lemma 7,

(x0� S(x0)�p
′) ∈ UDt for any p′ ∈ UDt

x′ . Iterating backward on j = L − 1�L − 2� � � � �2, it

follows that

(

x1� S(x1)� � � � � xL−1� S(xL−1)�x0� S(x0)�p
′
)

∈UDt for any p′ ∈ UDt
x′ �

Thus
⋃

p∈UDt
x′
µ[p) ⊆

⋃

p∈UDt
x1

µ[p), implying, by (3), that x′ ∈ C∗(x0�UDt). Since x′ is

an arbitrary element of C(x0�UDt), we conclude that C(x0�UDt) = C∗(x0�UDt). ⊳

C 3. For any t, for any x ∈ V (UDt), there is x′ ∈ C
∗
(x�UDt) such that (x′) ∈UDt+1.

P. Initial step: t = 0. Then (x′) ∈ UD0 for all x′ ∈ X . By Claim 1, (x′) ∈ UD1 for all

x′ ∈ V (UD0).

Inductive step: t > 0. Let the claim hold for t − 1. We show that it holds for t. By the

definition of V , C
∗
(x�UDt) ⊆ V (UDt) for all x ∈ V (UDt). Thus, by Claim 2,

C
(

x�UDt
)

⊆ V
(

UDt
)

for all x ∈ V
(

UDt
)

� (4)
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By the maintained assumption, there is a x′ ∈ C
∗
(x�UDt−1) such that (x′) ∈ UDt .

Since C∗(·�UDt−1) ⊆ C(·�UDt−1) ⊆ C(·�UDt), also v′ ∈ C(v�UDt). By (4), v′ ∈ V (UDt).

By Claim 1, (v′) ∈UDt+1. ⊳

C 4. For any x ∈X , there is y ∈ C
∗
(x�UDt) such that (y) ∈ UDt+1.

P. If x /∈ V (UDt), then there is y ∈ C
∗
(x�UDt) ∩ V (UDt). By Claim 3, there is z ∈

C
∗
(y�UDt) such that (z) ∈UDt+1. By transitivity, z ∈ C

∗
(x�UDt).

The next lemma now follows by Lemmas 8 and 9.

L 10. For any t = 0�1� � � � , for any x ∈ X , there is a C∗(·�UDt) sequence (x0� S(x0)�

� � � � xJ) such that (x0� S(x0)� � � � � xJ) ∈UDt+1
x .

This completes the proof of Lemma 5.
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