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Abstract

We study coexistence in discrete time multi-type frog models. We first show that for

two types of particles on Z
d, for d ≥ 2, for any jumping parameters p1, p2 ∈ (0, 1],

coexistence occurs with positive probability for sufficiently rich deterministic initial

configuration. We extend this to the case of random distribution of initial particles.

We study the question of coexistence for multiple types and show positive probability

coexistence of 2d types on Z
d for rich enough initial configuration. We also show an

instance of infinite coexistence on Z
d for d ≥ 3 provided we have sufficiently rich

initial configuration.
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1 Introduction and model

Coexistence in frog models, in the study of interacting particle systems has been

an object of recent interest. The frog model can be viewed as a model for describing

information spreading. The original idea is that every active particle has some infor-

mation and it shares that information with a sleeping particle at the time the former

meets the latter. Particles that have the information move freely helping in the process

of spreading information. The name ‘frog model’ seems to be attributed to R. Durrett in

the literature. The question of recurrence for frog model on Z
d was studied in [9] and

[7]. The question of extinction and survival was studied in [1] for a modification of the

frog model, where active particles may disappear at each step. The shape theorem for

the frog model on Z
d was studied in [2], [3] and extended for a continuous time version

of the model in [8].

Coexistence in discrete time two-type competing frog model has been recently studied

in [4] with an assumption of equality of the two jump probabilities. In this paper we study

the problem of coexistence for two types without the equality assumption, as well as

coexistence for multi types and show that, in the beginning if each of the dormant sites

has sufficient number of particles with high probability then the coexistence probability

is positive. It may be worthy to note that the work of Deijfen et. al in [4] has been
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Coexistence in frog models

extended to show coexistence for any values of the jump probabilities for dimension 1 in

[5].

The two-type competing frog model was introduced in [4]. Let {η(x) : x ∈ Z
d} denote

a family of i.i.d. non-negative integer valued random variables such that η(x) denotes

the initial number of particles (frogs) at site x and these particles (frogs) are in the

dormant state. At time 0, particle at the origin is activated and assigned type 1, while

particle at another site y ∈ Z
d \ {0} is activated and assigned type 2. We will call a site

x ∈ Z
d \ {0,y} as initially dormant site. Fix p1, p2 ∈ (0, 1] and active particles of both

types follow random walks as follows. At each time point, for i = 1, 2, each of the i-type

active particles independently either stay back at their present site with probability 1−pi,

or move to a different site, uniformly chosen among all possible neighbouring sites, with

probability pi. The active particles on reaching any site activate all the dormant particles

present there and assign them the type of itself. Clearly, an active type i particle follows

simple symmetric lazy random walk if pi < 1. Keeping this in mind, from hereafter with

a slight abuse of notation, we call p1, p2 ∈ (0, 1] as laziness parameters of the two-type

competing frog model described above. The resulting random walks followed by active

particles will be called possibly lazy nearest neighbour random walks.

We now describe a construction of the two-type competing frog model along the lines

of Deijfen et. al. [4]. Let {Sx,j,(i) : x ∈ Z
d, j ≥ 1}i=1,2 denote independent collections of

nearest neighbour possibly lazy random walks on Z
d, starting from the origin, such that

the distribution of the laziness clock is given by:

P(min{n ≥ 1 : Sx,j,(i)
n 6= S

x,j,(i)
0 } = k) = (1− pi)

k−1pi for k ∈ N.

We further assume that both the collections of random walks are independent of the

initial configuration {η(x) : x ∈ Z
d}.

We say that a site is discovered when it is first hit by an active particle. Suppose

at time n, a dormant site x ∈ Z
d is discovered by type ‘i’ active particle(s) only. Then

the j-th ‘newly’ activated particle at x, which has to be of type ‘i’, follows random walk

{S
x,j,(i)
n+l }l≥1, and is at the site (x + S

x,j,(i)
n+l ) at time n + l, for l ≥ 1. In case x has been

discovered by both types of active particles at the same instant, some tie breaking

mechanism will be used to decide the type of the newly activated particles. We are

not specifying any tie-breaking mechanism here as our result remains valid for any

tie-breaking mechanism.

We assume that at time 0 we start with one active type 1 particle at the origin, and one

active type 2 particle at some other site y, and the corresponding conditional probability

measure is denoted by P0,y(.). For i = 1, 2, let Nn(i) denote the set of i-type active

particles at time n and let |Nn(i)| denote the cardinality of the same. By our assumption,

we have P0,y(|N0(1)| = |N0(2)| = 1). For i = 1, 2 let Gi denote the event that

Gi := {| Nn(i) |→ ∞ as n → ∞}.

For two-type competing frog model the ‘coexistence’ event is expressed as the event

G1 ∩G2. Under certain assumptions on the initial configuration {η(x) : x ∈ Z
d}, in [4]

it is proved that for p1 = p2, coexistence occurs with positive probability. A natural

question of interest is what happens when p1 6= p2. It has been conjectured in [4] that if

η(x) is a heavy-tailed random variable, then coexistence is possible. The reason behind

this intuition is that, irrespective of the values of p1 and p2, both types will have the same

limiting shape: a full diamond D := {x ∈ R
d : ||x||1 ≤ 1} (Theorem 1.5 of [4]).

In this paper in Theorem 3.1, we show positive probability of coexistence for any

p1, p2 ∈ (0, 1] and for a deterministic initial configuration provided each dormant site has

sufficiently many particles in the beginning. We neither require equality of the entire
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Coexistence in frog models

limiting shapes nor heavy tailed initial configurations. In fact, we prove coexistence for

bounded (but sufficiently large) initial configurations. The main tool for our proof is a

coupling with oriented (site) percolation on Z
d, defined in Section 2. In Proposition 3.2

we extend this for random i.i.d. initial configuration. The probability of having sufficient

number of particles per site must be large though. We mention here that for any p1 = p2,

positive probability of coexistence was shown in [4] for one particle per site initial

configuration as well. Our results are not applicable for one particle per site initial

configuration.

We apply this method to study coexistence for more than two types of particles as well.

Coexistence of more than two types is denoted by the event that the number of active

particles of each type grows to infinity simultaneously. We obtain positive probability for

coexistence of 2d types on Z
d for d ≥ 2 and of infinitely many types of particles on Z

d for

d > 3. These results are applicable for any laziness parameters provided initially, each

dormant site has sufficient number of particles with high probability.

The succeeding part of our paper is divided into three sections. The first of them, Sec-

tion 2 defines a coupling of (possibly) lazy frog model with an oriented (site) percolation

model. This coupling is the basis of all our proofs. In Section 3 we prove Theorem 3.1 and

Proposition 3.2. In Section 4 we study the question of coexistence for general multi-type

frog models and show positive probability of coexistence of 2d types on Z
d. We also show

coexistence of infinitely many types for d > 3.

2 A coupling with oriented percolation

In this section we define a coupling of the (possibly lazy) frog model with an oriented

site percolation model on Z
d.

To this end, we consider collection of i.i.d. random tuples {(Ix,jn , Ux,j
n ) : x ∈ Z

d, j ≥

1}n≥0, independent of the initial i.i.d. configuration {η(x) : x ∈ Z
d}, such that U0,1

0 is

U(0, 1) random variable and I0,10 denotes the increment for a nearest neighbour random

work on Z
d, i.e.,

P(I0,10 = +ei) = P(I0,10 = −ei) = 1/2d for all 1 ≤ i ≤ d,

where {e1, · · · , ed} denotes the standard basis set for Rd. We further assume that the

collections, {Ix,jn : x ∈ Z
d, j ≥ 1}n≥0 and {Ux,j

n : x ∈ Z
d, j ≥ 1}n≥0, are mutually

independent.

Fix p ∈ (0, 1] and we will construct a frog model with laziness parameter p using the

collection {(Ix,jn , Ux,j
n ) : x ∈ Z

d, j ≥ 1}n≥0. At time t, consider an active site x (which

has been activated at some earlier time 0 ≤ s ≤ t). We further assume that we have an

algorithm which orders the active particles present at x at time t. Note that, some of

these active particles may come from some other sites as well. The j-th active particle

present at site x at time t jumps to the site x+Ix,jt at time t+1 only if Ux,j
t ≤ p, otherwise

it stays still. We observe that on the event {Ux,j
t ≤ p}, the j-th active particle at x at

time t reaches site (x+ Ix,jt ) at time t+ 1 and it’s movement (if any) for the next time

point is decided by the collection of random vectors {(U
(x+I

x,j
t ),j′

t+1 , I
(x+I

x,j
t ),j′

t+1 ) : j′ ≥ 1}.

This describes a frog model with laziness parameter p. Further, the use of U(0, 1)

random variables allows us to couple frog models with different laziness parameters.

Consider a two-type competing frog model where type i has laziness parameter pi for

i = 1, 2. Then the j-th active particle of type i present at site x at time t jumps to the

site x + Ix,jt at time t + 1 only if Ux,j
t ≤ pi, otherwise it stays still. This describes the

same process as considered in [4]. Heuristically, in [4], to each newly activated particle

an independent possibly lazy random walk trajectory was attached, depending upon its
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type, whereas in our construction each active particle, upon reaching a new location,

gets an i.i.d. (possibly) lazy increment, depending upon its type.

We now use the above construction of possibly lazy frog model to couple it with an

oriented site percolation process. For x ∈ Z
d and θ ∈ {+1,−1}d we define the ‘θ’ orthant

starting from x as

Λθ(x) := {x+

d
∑

j=1

kjθ(j)ej : kj ∈ N ∪ {0} for all 1 ≤ i ≤ d},

where θ(j) denotes the jth co-ordinate of θ. By definition we have x ∈ Λ(x). Fix M ∈ N

and ℓ ∈ N ∪ {0}. Corresponding to the choice of M, ℓ and p ∈ (0, 1] we define an oriented

(site) percolation model on the orthant Λθ(x). For a site w in the orthant Λθ(x) with

||x−w||1 = a, we say that w is ‘open’ if the following event occurs

{w is open} :={η(w) ≥ M}
⋂

(

∩d
j=1{I

w,i
ℓ+a = θ(j)ej with Uw,i

ℓ+a ≤ p for some 1 ≤ i ≤ M + 1}
)

.

In other words, for an open site w ∈ Λθ(x) with ||x−w||1 = a, if there are at least M + 1

active particles at w at time ℓ+ a, then all the oriented neighbours of w, i.e., w + θ(j)ej
for all 1 ≤ j ≤ d are reached by some of these active M + 1 particles at time ℓ+ a+ 1.

Let 1{w open} denote the indicator random variable corresponding to the event that w

is open. We observe that the collection {1{w open} : w ∈ Λθ(x)} gives an i.i.d. collection

of Bernoulli random variables with success probability given by P(η(w) ≥ M)g(M,p)

where g(M,p) is given by

g(M,p) =
∑

c1,c2,...,cd≥1,
∑d

i=1
ci≤M+1

(M + 1)!

c1!c2! . . . cd!(M + 1− c1 − c2 − · · · − cd)!

×
( p

2d

)c1+c2+···+cd (

1−
p

2

)M+1−c1−c2−···−cd

≥ 1− d(1−
p

2d
)M+1.

We end this section with the observation that for any p ∈ (0, 1], we can choose M = M(p)

large to make g(M,p) arbitrarily close to 1.

3 Coexistence for two types

In this section we prove coexistence for two-type competing frog model for any

p1, p2 ∈ (0, 1]. We first prove this for a deterministic initial configuration such that each

dormant site has sufficiently large number of particles. We later extend this result for

random i.i.d. initial configuration.

We recall that at time 0, we start the two-type competing frog model with only two

active particles, one type 1 active particle at the origin and another type 2 active particle

at some other site y. The corresponding conditional probability measure is denoted by

P0,y(·). The following is our first result in this section:

Theorem 3.1. For any p1, p2 ∈ (0, 1], there exists M = M(p1 ∧ p2, d) such that for initial

configuration η(x) ≥ M for all x ∈ Z
d \ {0,y} deterministically, coexistence occurs with

positive probability.

Proof: Our proof is based on the coupling defined in Section 2. Let us call e
∼

=

(1, 1, . . . , 1). We choose m ∈ N such that ||y||1 ≤ m and we consider two vertices
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θ+m, θ−m ∈ Z
d, where,

θ+m := (+m, · · · ,+m) and θ−m := (−m, · · · ,−m).

We consider two orthants given as

Λ
e
∼(θ+m) := {θ+m +

d
∑

j=1

kjej : kj ∈ N ∪ {0} for all 1 ≤ i ≤ d} and

Λ
−e

∼(θ−m) := {θ−m −

d
∑

j=1

kjej : kj ∈ N ∪ {0} for all 1 ≤ i ≤ d}.

By an abuse of notation we shall call them Λ(θ+m) and Λ(θ−m) respectively. Clearly, the

two orthants Λ(θ+m) and Λ(θ−m) are disjoint.

A finite sequence of nearest neighbour lattice points {xi}0≤i≤n ⊆ Z
d gives us a ‘path’

of length n starting from x0 and ending at xn. Let π1 := {x0 := 0,x1, · · · ,xmd−1,xmd :=

θ+m} be a path of length md from 0 to θ+m such that ||xi||1 < md for all 0 ≤ i ≤ md − 1.

Similarly, set k = ||y− θ−m||1 and let π2 := {y0 := y,y1, · · · ,yk−1,yk := θ−m} denote a path

of length k from y to θ−m such that ||yi||1 < md for all 0 ≤ i ≤ k − 1. Clearly, such π1 and

π2 exist.

We choose M(p1 ∧ p2, d) ∈ N large such that g(M,p1 ∧ p2) > p↑c , where p↑c = p↑c(d) is

the oriented site percolation threshold for Zd. We use the coupling defined in Section 2

for the orthant Λ(θ+m) and consider the corresponding oriented percolation model in

Λ(θ+m) for the choice p = p1 ∧ p2,M = M(p1 ∧ p2, d) and ℓ = md. On the other hand, for

the other orthant Λ(θ−m) we consider the corresponding oriented percolation model with

p = p1 ∧ p2,M = M(p1 ∧ p2, d) and ℓ = k. We assume that in the beginning, any site

x ∈ Z
d \{0,y} has at least M many particles, i.e., P(η(x) ≥ M) = 1 for all x ∈ Z

d \{0,y}.

For i = 1, 2 and n ≥ 0, let Ln(i) ⊂ Z
d denote the collection of location(s) of all i-type

active particles at time n. Clearly, we have P0,y(L0(1) = {0}, L0(2) = {y}) = 1. Now we

are ready to define the following events:

A1 := {The initial type 1 active particle at the origin follows path π1 and reaches θ+m

at time md and the initial type 2 active particle at y follows the path π2 and

reaches θ−m exactly at time k}.

A2 := (∩md
n=0Ln(1) = {xn})

⋂

(∩k
n=0Ln(2) = {yn}).

A3 := {θ+m is a percolating point, i.e., there exists an infinite ‘oriented’ open path

consisting of sequence of oriented open neighbours starting from θ+m in Λ(θ+m)}.

A4 := {θ−m is a percolating point}.

We observe that the event A1 ∩A2 ensures that till time md, active type 1 particles are

not allowed to be lazy and they are all assembled at θ+m at time md. Similarly, till time k

all the active type 2 particles move without being lazy and reach the site θ−m at time k.

Set M ′ := max{η(w) : w ∈ π1 ∪ π2} and we observe that on the event A1 ∩ A2, the

number of newly activated particles at a site w ∈ π1 ∪ π2 is bounded by M ′ × (k ∨md).

Hence, the event A1 ∩A2 depends on the finite collection of random vectors

{

(Ixi,j

||xi||1
, Uxi,j

||xi||1
), (I

yj ,j

||yj−y||1
, U

yj ,j

||yj−y||1
) :1 ≤ j ≤ M ′ × (k ∨md) + 1,

0 ≤ i ≤ md− 1, 0 ≤ j ≤ k − 1
}

. (3.1)

Clearly, we have P0,y(A1 ∩ A2) > 0. Next, we observe that for w ∈ Λ(θ+m) we have
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||w||1 = md+ ||w − θ+m||1 and occurrence of the event A3 depends on the collection

{(Ix,j||x||1
, Ux,j

||x||1
) :x ∈ Λ(θ+m), 1 ≤ j ≤ M + 1}

= {(Ix,j
md+||x−θ

+
m||1

, Ux,j

md+||x−θ
+
m||1

) : x ∈ Λ(θ+m), 1 ≤ j ≤ M + 1}

which is disjoint from the collection considered in (3.1). Hence, the event A3 is indepen-

dent of the event A1 ∩A2. By the same argument, the event A4, which depends on the

collection

{(Iw,j

k+||w−θ
−

m||1
, Uw,j

k+||w−θ
−

m||1
) : w ∈ Λ(θ−m), 1 ≤ j ≤ M + 1},

is independent of A1 ∩A2. The choice of M as mentioned earlier ensures that

P0,y(A3) = P0,y(A4) > 0.

Further, as the orthants Λ(θ+m) and Λ(θ−m) are disjoint, the events A3 and A4 are indepen-

dent. This gives us that

P0,y(∩
4
i=1Ai) > 0.

Finally, we show that occurrence of the event ∩4
i=1Ai implies coexistence of both types.

Event A1 ∩A2 ensures that at time md all the type 1 active particles are at the site θ+m
and it has at least M + 1 type 1 particles. On the other hand, at time k all the type 2

active particles are at θ−m and there are at least M + 1 type 2 particles. We now claim

that on the event ∩2
i=1Ai, a site x ∈ Λ(θ+m) with ||x − θ+m||1 = l cannot be reached by a

type 2 active particle in time md+ l. We observe that the choice of π2 ensure that before

time k, all the type 2 active particles are inside the set {w ∈ Z
d : ||w||1 ≤ md− 1} and no

site in Λ(θ+m) has been visited by an active type 2 particle. Since, all the type 2 particles

are at θ−m at time k and starting from θ−m, a type 2 particle requires at least 2md+ l many

additional jumps to reach x. Hence, an active type 2 particle cannot reach x by time

k + 2md+ l − 1 which is strictly bigger than md+ l. This proves our claim.

Similarly, a site w ∈ Λ(θ−m) with ||w − θ−m||1 = l cannot be reached by an active type

1 particle by time k + l. The event A3 ∩ A4 ensures that both the sites θ+m and θ−m are

percolating points and have infinite oriented open paths in the orthants Λ(θ+m) and Λ(θ−m)

respectively. We will show that dormant particles at a site x ∈ Λ(θ+m) with ||x− θ+m||1 = l,

connected to θ+m through an oriented open path, gets activated by a type 1 particle

exactly at time md+ l. We will prove this using method of induction.

For l = 0, this is guaranteed by the event A1∩A2. Assuming that this is true for l = l0,

we show that this holds for l = l0+1 as well. Consider x ∈ Λ(θ+m) with ||x− θ+m||1 = l0+1,

connected through an oriented open path to θ+m. Let w ∈ Λ(θ+m) be such that:

(i) w is connected to θ+m through an oriented open path (which means w must be open)

and

(ii) ||w − θ+m||1 = l0 and ||w − x||1 = 1.

The last condition suggests that x must be an oriented neighbour of w. Since, x is

connected to θ+m through an oriented open path, such a w must exist. Further, by our

induction hypothesis, dormant particles at w must be activated at time l0 by type 1

particle(s) only. This implies that, at time md+ l0 all the dormant particles at w become

type 1 and there are at least M + 1 many type 1 active particles present at w at time

md+ l0. As w itself is an open vertex and x is an oriented neighbour of w, site x must

be reached by a type 1 active particle at time md+ l0 + 1 jumping from w. Earlier, we

proved that no type 2 particle can reach x by time md + l0 + 1. This implies that the

dormant particles at x must be activated by a type 1 particle only at time md + l0 + 1.

This completes our induction argument. This also shows that for an infinite oriented
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open path starting from θ+m in Λ(θ+m), dormant particles at each (open) site on such a

path must belong to Nn(1) for some n. This implies occurrence of the event G1.

By the same argument, there will also be an infinite oriented path of open sites

starting from the point θ−m in Λ(θ−m) and dormant particles at each site on such an

infinite path must belong to Nn(2) for some n. Hence, the event G2 occurs as well. This

completes the proof.

As we commented earlier, we note that Theorem 3.1 holds for any tie-breaking

mechanism. We extend the above construction for random i.i.d. initial configuration

naturally. For i.i.d. initial configuration if probability of having large number of initial

particles is high enough, we can still apply the same argument as in Theorem 3.1.

Proposition 3.2. Fix p1, p2 ∈ (0, 1] and consider an initial configuration of i.i.d. non-

negative integer valued random variables {η(x) : x ∈ Z
d}. There exist M = M(p1 ∧ p2, d)

as in Theorem 3.1 and θ ∈ (0, 1), depending on M , such that if P(η(0) ≥ M) ≥ θ, then

under the probability measure P0,y(.), coexistence occurs with positive probability.

Proof: The proof follows from the same argument as in Theorem 3.1 with the observation

that as g(M,p1 ∧ p2) > p↑c , we can choose θ = P(η(x) ≥ M) ∈ (0, 1) so that we have

θg(M,p1 ∧ p2) > p↑c .

Remark 3.3. In [4], regarding coexistence of two types of particles with different p1
and p2, it has been conjectured that equality of the (complete) limiting shapes would

imply coexistence (Conjecture 1.6 of [4]). Extending this further, the authors of [4] posed

an interesting question: whether equality of the limiting shapes along some specific

direction only would imply coexistence. In the set up of Theorem 3.1 as well as in

Proposition 3.2, i.e., initially each dormant site has sufficiently many particles with high

probability, we have equality of the limiting shapes for both the types along the directions

of the diagonals (±1/d, · · · ,±1/d). For discrete time frog model, the limiting shape is

always contained in the full diamond B1(0, 1) := {x ∈ R
d : ||x||1 ≤ 1}, the L1 unit ball.

For supercritical oriented percolation, almost surely there are infinite oriented open

paths along the directions of diagonals (Theorem 1.3 of [6]). Our coupling with oriented

percolation ensures that along those infinite oriented open paths, active particles take

oriented steps without being lazy and hence, the limiting shape must coincide with D

along the diagonals. Hence, in the set up of Theorem 3.1 and Proposition 3.2, the limiting

shapes for frog models with laziness parameters p1 and p2 coincide with the full diamond

B1(0, 1) along the diagonals. We don’t think that in this set up, we have equality of the

complete limiting shapes for p1 6= p2. But we don’t have a proof at the moment.

Motivated by the question of coexistence of two types of particles, one can ask the

question of coexistence for more than 2 types of particles. In the next section we explore

such questions.

4 Coexistence of l ≥ 2 many types

Main results of this section show coexistence of competing discrete time frog models

for more than two types. The first result shows coexistence of 2d many types of frogs

on Z
d for d > 2. In particular, we can show coexistence of 4 types of particles on Z

2.

Further, we show an instance of coexistence of infinitely many types of frogs on Z
d for

d ≥ 3. All these results are applicable for general laziness parameters provided each

dormant site has sufficiently large number of particles with high probability.

Theorem 4.1. (i) On Z
d for d ≥ 2, we start with 2d types. For 1 ≤ i ≤ 2d the

laziness parameter corresponding to the i-th type is given by pi ∈ (0, 1]. Let

p̃ = min{p1, · · · , p2d}. Fix 2d many distinct points x1, · · · ,x2d ∈ Z
d such that for

all 1 ≤ i ≤ 2d, the site xi has a single active type i particle at time zero. The
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corresponding conditional probbaility measure is denoted as Px1,··· ,x2d
(·). There

exist M = M(p̃, d) ∈ N and γ1 ∈ (0, 1) such that if P(η(0) ≥ M) ≥ γ1, then

coexistence probability (of all 2d types) is positive w.r.t. Px1,··· ,x2d
(·).

(ii) On Z
d for d ≥ 3, we consider infinitely many types with laziness parameters pi

for i ≥ 1 such that inf{pi : i ≥ 1} = p0 ∈ (0, 1]. We start from infinitely many

distinct sites xi : i > 1 each having an active particle of type i. We further require

a condition that for all i1, i2 ≥ 1 we have xi1(j) = xi2(j) for all 1 ≤ j ≤ d− 1. Then

there exists M = M(p0, d) ∈ N and γ2 ∈ (0, 1) such that if P(η(0) ≥ M) ≥ γ2, then

there is a positive probability of coexistence of infinitely many types.

Proof: For (i) the idea of the proof is very similar to that of Theorem 3.1 or Propo-

sition 3.2. We present only a sketch here. We choose m such that ||xi||1 ≤ m for all

1 ≤ i ≤ 2d. We consider a bijective map

f : {xi : 1 ≤ i ≤ 2d} 7→ {θ : θ ∈ {+1,−1}d}.

Set ki := ||xi −mf(xi)||1 for 1 ≤ i ≤ 2d. Following the notation in Section 2, we consider

the f(xi) oriented orthants Λf(xi)(mf(xi)) for 1 ≤ i ≤ 2d, and by an abuse of notation

we shall call them Λi for 1 ≤ i ≤ 2d respectively. For each 1 ≤ i ≤ 2d, we consider a

path πi := {xi0 := xi,xi1, · · · ,xiki
= mf(xi)} of length ki from xi to mf(xi) such that

||xij ||1 < m for all 0 ≤ j ≤ ki − 1. Choose M = M(p̃, d) ∈ N and γ1 ∈ (0, 1) so that

γ1g(M, p̃) > p↑c . Following the coupling in Section 2, for the orthant Λi we consider the

oriented percolation model for the choice p = p̃,M = M(p̃, d) and ℓ = ki.

We consider the event that for all 1 ≤ i ≤ 2d, the initially active particle of i-th type

follows the path πi and reaches the sitemf(xi) exactly at time ki. We further require that

for all 1 ≤ i ≤ 2d, the site mf(xi) is a percolating point, i.e., it has an infinite oriented

open path in the orthant Λi. We need to control the movement of the newly activated

particles also. Let Ln(i) denote the set of location(s) of all i-type particles at time n. The

event ∩2d

i=1 ∩
ki

n=0 (Ln(i) = {xin}) controls movement of all the newly activated particles.

We observe that for any 1 ≤ i 6= j ≤ 2d the orthants Λi and Λj are disjoint. Finally, the

same argument as in Theorem 3.1 gives us that intersection of all the above events is of

positive probability and implies coexistence of all 2d types.

For (ii), our assumption ensures that we must have xi1(d) 6= xi2(d) for all i1 6= i2.

Let us recall that we start with one active particle of type i from the site xi at time 0,

and let P⊗
i
xi
(.) denote the corresponding conditional probability measure. For i ≥ 1 we

consider the oriented orthant

Λ+
i := {y ∈ Z

d : y(d) = xi(d),y(j) ≥ xi(j) for all 1 ≤ j ≤ d− 1}.

We can chose M = M(p0, d) ∈ N, where p0 = inf{pi : i ≥ 1} > 0, large so that

g(M,p0) > p↑c(d− 1)

where p↑c(d − 1) is the threshold for oriented site percolation on Z
d−1. Clearly, we

can chose γ2 ∈ (0, 1) such that γ2g(M,p0) > p↑c(d − 1). Now we refer to our coupling

construction in Section 2. For each i ≥ 1 for the orthant Λ+
i we consider the oriented

percolation model with p = p0,M = M(p0, d) and ℓ = 0.

For i ≥ 1 we define the event Ei as

Ei :=
{

The point xi has an infinite open path in the set Λ+
i

}

.

We observe that for i, i′ ≥ 1 with i 6= i′ events Ei and Ei′ are supported on disjoint

set of random vectors implying that the events El : l ≥ 1 are mutually independent.

Clearly, we have P⊗
i
xi
(E1) = P⊗

i
xi
(El) for all l ≥ 1 and our choice of γ2,M ensures
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that P⊗
i
xi
(E1) > 0. Hence, we have

∑∞
l=1 P

⊗
i
xi
(El) = ∞. An application of second

Borel Cantelli lemma gives us that El’s happen infinitely often with probability 1.

Now, Same argument as in Theorem 3.1 gives us that on the event Ei, any (open) site

on an infinite oriented open path starting from xi and on the set Λ+
i ∩ {x ∈ Z

d : x(d) =

xi(d)} must be activated by an i type particle only. This implies that, for d ≥ 3 infinite

number of types can co-exist.
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