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India confines more than 17% of the world’s population and has a diverse genetic makeup

with several clinically relevant rare mutations belonging to many sub-group which are

undervalued in global sequencing datasets like the 1000 Genome data (1KG) containing

limited samples for Indian ethnicity. Such databases are critical for the pharmaceutical and

drug development industry where diversity plays a crucial role in identifying genetic

disposition towards adverse drug reactions. A qualitative and comparative sequence

and structural study utilizing variant information present in the recently published, largest

curated Indian genome database (IndiGen) and the 1000 Genome data was performed for

variants belonging to the kinase coding genes, the second most targeted group of drug

targets. The sequence-level analysis identified similarities and differences among different

populations based on the nsSNVs and amino acid exchange frequencies whereas a

comparative structural analysis of IndiGen variants was performed with pathogenic

variants reported in UniProtKB Humsavar data. The influence of these variations on

structural features of the protein, such as structural stability, solvent accessibility,

hydrophobicity, and the hydrogen-bond network was investigated. In-silico screening of

the known drugs to these Indian variation-containing proteins reveals critical differences

imparted in the strength of binding due to the variations present in the Indian population. In

conclusion, this study constitutes a comprehensive investigation into the understanding of

common variations present in the second largest population in the world and investigating its

implications in the sequence, structural and pharmacogenomic landscape. The preliminary

investigation reported in this paper, supporting the screening and detection of ADRs specific

to the Indian population could aid in the development of techniques for pre-clinical and post-

market screening of drug-related adverse events in the Indian population.
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1 INTRODUCTION

The presence of single nucleotide polymorphisms imparts a
genetic basis for human complex diseases and human
phenotypic variations (Marian, 2012). Those single nucleotide
variants (SNVs) which are present in more than 1% of the
population qualify as single nucleotide polymorphisms (SNPs).
As per various reports, SNPs are found to be responsible for
defining the risk of an individual’s susceptibility to various drug
responses and illnesses (Alwi, 2005). The distribution of allele
frequency of SNVs provides relevant information about the
evolution, migration, and genetic structure of a population
(Sanghera et al., 2008; Bomba et al., 2017). Genetic variability
is among many factors contributing to the inter-individual
differences in drug response and individuals of various
geographic ancestry exhibit genetic variations with varying
frequencies (Henn et al., 2016; Schärfe et al., 2017; Lauschke
et al., 2019). Thus, an individual’s risk differs for many drugs with
respect to geographic ancestry. Those variants which have a
functional effect on a target for commonly prescribed drugs
could alter drug pharmacokinetics (PK) and
pharmacodynamics (PD) resulting in adverse drug reaction.
Most of the genetic variant-related data come from databases
like the 1000 Genome database (Auton et al., 2015) and gnomAD
(Karczewski et al., 2020) database containing ethnicity-wise
variant information which is largely Eurocentric. It is so
because the majority of the studies that are performed to
associate genetic variants with diseases, like the Genome-Wide
Association Studies (GWAS) have been conducted mainly on the
European population (78%) followed by Asian (10%), African
(2%), Hispanic (1%), and other ethnicities (< 1%) (Sirugo et al.,
2019) neglecting the Indian population. It creates an information
bias leading to a population-specific disease assessment analysis
leaving the African and Indian populations under-studied and
under-consulted. These population-specific SNVs deviate in
variation patterns from other over-represented populations
causing health and diagnosis disparities (Wei et al., 2012;
Chan et al., 2015).

Globally, adverse drug reactions (ADRs) are a major
contributor to morbidity and mortality (Khalil and Huang,
2020). The presence of a genomic variation in genes coding
for drug transport and metabolism has been associated with
inter-individual differences in drug response and ADR risks.
Several SNV-related studies have shown that variants can
modulate the efficacy of a drug leading to adverse drug
reactions (ADRs) (Impicciatore et al., 2001; Sanghera et al.,
2008). Drug Gene Interaction Database (DGIdb) organizes the
drug-gene interactions from various papers, databases, and web
resources (Freshour et al., 2021). dbSNP (Sherry et al., 2001), a
curated database alone contains 38 million SNPs which makes
timely maintenance, integration, and correction a cumbersome
process (Sherry et al., 2001). SNVs are a vital and decisive factor
for finalizing a therapeutic approach and selection of drug and
their dosages (Alwi, 2005). European population being the
primary conduct of drug trials prior to approval and
marketing of drugs could be one of the factors on the
occurrence of ADRs (Alteri et al., 2005). Hence, this

prioritizes the need for population-specific pharmacogenomic
analysis and integration of gene, drug, pathway, and potential
drug-target-related information.

Indian genetic diversity is very fascinating due to the diverse
ancestral components, social categorization of people, endogamy
practiced in different cultures, and dynamic and ancient
admixture events that the Indian population has experienced
over a long period of time (Bamshad et al., 2001; Sengupta et al.,
2016; Nakatsuka et al., 2017). The presence of these genetic
differences will lead to differential drug responsiveness,
thereby leading to adverse drug effects in some populations
(Roden et al., 2011). Globally, India is the largest generic drug
provider (Bhosle et al., 2016). Regardless of the Indian genetic
diversity, the current healthcare system in India follows the same
drug therapy as in Europe and America. The use of genetic
information, experiments, and other types of molecular screening
help a practitioner to choose an appropriate therapy for the first
time, avoiding the time-consuming and expensive trial-and-error
medication cycle. Extensive research on the population diversities
and related SNVs causing the different inter-individual drug
responses is the need of the hour for efficient treatment
design. IndiGen program was initiated with an aim to collect
sequencing data of thousands of individuals from diverse ethnic
groups in India and develop public health technologies
applications using this population genome data (Jain et al., 2021).

In our present work, we conducted an exhaustive and
comparative study of common Indian-specific variants (using
IndiGen data) with other populations to identify the population-
specific variations causing a difference in drug responses and
ADRs. This pharmacogenomic study was executed by keeping a
focus on druggable genes of kinase’s family, the second most
targeted group of drug targets after the G-protein coupled
receptors (Bhullar et al., 2018). The human genome encodes
538 protein kinases (Bhullar et al., 2018). Many of these kinases
are associated with deadly diseases like cancer (Paul and
Mukhopadhyay, 2012). Most of the kinase targeting drugs
have been tested and approved based on the trials done on
European populations and it is possible that the same drugs
might exhibit a deviation in efficacy and response in the Indian
population. The presence of an SNV in functionally important
genes has a higher chance of deleterious impact by either affecting
drug-gene interaction or by causing structural changes at the
protein level leading to disruption of the drug-binding sites (Lee,
2010). As a result, interpreting the number of mutations and their
effect on the structure, stability, and function of the protein is
crucial. Any destabilizing non-synonymous SNV (nsSNV) will
cause the drug’s metabolic process to be disrupted. This study was
carried out at both sequence and structure levels to examine the
effect of missense mutations in Drug-Gene interaction as well as
the structural changes caused by these mutations at the protein
level. The sequence-level analysis was implemented to perceive
the similarities and differences among different populations
based on the single nucleotide variants (SNVs) and amino
acid exchange frequencies. The effect of these variants on
structural properties of the protein, like structural stability,
solvent-accessibility, hydrophobicity, and the hydrogen-bond
network was measured by utilizing different structural analysis
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tools. Any modification in protein-ligand binding due to the
presence of SNVs was analyzed by the molecular docking
method. A comparative structural analysis was conducted
using UniProtKB Humsavar data. This work will help us
understand the variability caused by these variants and thus
could guide us in deciphering the effect of SNV on the
efficacy of the drug-protein/gene interaction.

2 MATERIALS AND METHODS

2.1 Variant Data Collection
The genetic variants and their allele frequencies in the Indian
population were curated from 1029 whole-genome sequences of
unrelated individuals across India collected as part of the IndiGen
program to represent diverse Indo-ethnicities (Jain et al., 2021).
The variant data consisted of single nucleotide variants and
indels, which were annotated according to the GRCh38
human reference genome using Annovar (Wang et al., 2010).
Only non-synonymous variants (nsSNVs) were considered for
our study (Jain et al., 2021). The publicly available variant calling
format (vcf) file 1000g2015aug_all was downloaded for 1000
Genome data (Clarke et al., 2016).

2.1.1 Assembling Druggable Genes
The Drug Gene Interaction Database (DGIdb) version 3 contains
information on all currently approved drugs as well as other future
targets of interest (Freshour et al., 2021). Genes were annotated in
this database with respect to known drug-gene interactions and
potential druggability. It normalizes its content from 30 open-source
databases like DrugBank (Wishart et al., 2008), therapeutic target
database (TTD) (Chen et al., 2002), PharmGKB (van den Boom
et al., 2013), and other web resources like Oncology Knowledge Base
(OncoKB) (Chakravarty et al., 2017), cancer genome interpreter
(CGI) (Tamborero et al., 2018), etc. A list of 545 druggable kinases
and associated FDA-approved drugs were retrieved from the DGIdb
using browse category search while limiting the categories to specific
resources i.e., “GuideToPharmacologyGenes” (Supplementary

Table S1). The Guide to Pharmacology is a curated repository of
ligand-activity-target relationships, with most of its information
derived from high-quality pharmacological and medicinal
literature. This druggable kinase gene list was further enriched by
adding features like Ensembl ID, PDB ID, RefSeq Match Transcript,
gene start—gene end, Uniprot ID, sequence length, structure length,
etc. using BioMart resource (Smedley et al., 2009).

2.2 Data Preparation
2.2.1 Sequence Data Preparation
The dataset used for sequence analysis contained 545 druggable
kinase genes (Supplementary Table S1) and their associated
variants. Protein sequences for these genes were downloaded
from NCBI Genbank, and mutant sequences were prepared by
altering the native sequence according to the Annovar data.

2.2.2 Structure Data Preparation
The data for structural analysis was prepared by applying a few
filters to the base sequence data. These filters were 1. Availability

of protein crystal structure, 2. Availability of drug molecules
against the protein, 3. SNV coverage to the crystal structure, 4.
Crystal structure and sequence coverage ≥70%, 5. Allele
frequency of the nsSNV observed in the IndiGen population
≥10%. After applying these filters, 12 genes and their
corresponding 22 variants were left and were referred to as
IndiGen Structure data (Supplementary Table S4). Among
these 12 genes, three genes, EPHA7, RET, and TAOK3 had a
structure coverage percentage of less than 70% for PDBs- 3NRU,
6I83, and 6BFN, respectively. Despite the lower crystal structure/
sequence coverage, these genes were considered because the
nsSNV positions reported in IndiGen data for them were
found to be crystallized in these protein structures, fulfilling
the SNV coverage requirement. In an attempt to conduct a
comparative structural analysis, Humsavar (Human
polymorphisms and disease mutations) data was taken. It lists
all missense variants annotated in human UniProtKB/Swiss-Prot
entries (Release: 2020_04 of 12-Aug-2020). In this data, the
variants were classified as disease-causing (31132- 64.1%),
Polymorphisms (39464-23%), and Unclassified (8381- 12.9%).
The variants associated with the genes present in IndiGen
Structure data were extracted from Humsavar’s complete list
of variants. This dataset was referred to as the Humsavar dataset,
which consisted of 217 variants and was used for benchmarking
structural analysis (Supplementary Table S12).

2.3 Data Processing and Visualization
2.3.1 Drug, Gene and Variant Tree
The primary goal of this analysis was to have a quantitative and
qualitative insight into the frequency of occurrence of variation in
the family of kinases and their drug availability. This study will
aid in gathering information related to the family of kinases with
more variations and drugs reported. An online tool, KinMap (Eid
et al., 2017), was used for an interactive exploration of kinase
coding genes present in IndiGen data. The genes associated with
327 druggable kinases, the number of variations, and drugs
reported against each gene in DGIdb were given as an input
to this tool (Supplementary Table S10).

2.3.2 Amino Acid Conversions and Mutabilities
The tendency to convert an amino acid type to another type and
identify any pattern in this conversion can help to understand the
change in a protein sequence’s physicochemical property. This
analysis was conducted using a python script (added to GitHub
repository: https://github.com/raylab-projects/
Pharmacogenomics, and the reported variants for kinases were
taken into account (Hunter, 2007; McKinney, 2010; Harris et al.,
2020). The script generated a 20X20 matrix that gave a
normalized count of each amino acid to other amino acids,
i.e., percent conversion of each amino acid. Normalized count
= (Amino acid count in samples)/(Amino acid count from
RefSeq)*100. This amino-acid exchange matrix was correlated
with the chemical properties of mutating amino acids by
analyzing the chemical shifts associated with variants among
different populations and databases. The overall amino acid
count for each class of amino acids was summed up for
reference and alternate residues and the difference in the
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counts was called a chemical shift. The mutability of an amino
acid is defined as the ratio of the total number of mutations for a
specific amino acid in the data and the frequency of occurrence
for that amino acid in the reference human genome. This
mutational frequency was calculated for all the variants in
IndiGen (AF > 10%).

2.3.3 Statistical Analysis of Amino Acid Conversions
To determine statistically significant amino-acid exchanges
among IndiGen and populations in 1000G data (EAS, AMR,
AFR, SAS, and EUR), one proportion z-test was used. Multiple
hypothesis testing corrections (FDR) were performed using the
Benjamini/Hochberg correction method. Corrected p-values of
less than 0.05 were considered significant (Supplementary

Table S11).

2.3.4 Multiple Sequence Alignment and Protein
Domain Analysis
To understand the effect of SNVs on protein’s function, it was
checked whether the observed variation (SNVs) is conserved and
falls under a protein domain or not. Clustal Omega (Sievers and
Higgins, 2014) was implemented to perform the multiple-
sequence alignment (MSA). The mutant protein sequence files
in FASTA format were generated using a python script. For
protein domain analysis, the PfamScan (Madeira et al., 2019) web
server maintained by EMBL-EBI was used. A single file of all
protein sequences in FASTA format was provided as input
(default parameters). It gave an output file consisting of a
domain name, its start and end position corresponding to
every input sequence (hmm_name, hmm_start, hmm_end),
and other information. Mutations observed within the domain
region (hmm_start - hmm_end) were annotated as 0. For others,
the distance of mutation from the domain region was also
calculated.

2.3.5 Variant Protein Structure Generation
Computational protein structure prediction helps in generating a
three-dimensional structure of proteins. The prediction is based
on in-silico techniques and relies on principles from known
protein structures primarily obtained by X-Ray
crystallography, NMR Spectroscopy, and physical energy
function. After applying the structure data filter, the native
crystal structure corresponding to 12 genes in the IndiGen
structure dataset was downloaded (PDB format) from RCSB
Protein Data Bank (Supplementary Table S4). These native
structures were considered as templates for mutant structure
generation by mutating a single amino acid position from
reference to an alternative amino acid type for a particular
gene/protein. This single reference amino acid of the protein
was mutated using the rotkit function of PyMol (Schrödinger and
DeLano, 2020) that allows access to its mutagenesis feature. Based
on the requirements mentioned above, the protein’s crystal
structure was downloaded from RCSB PDB and mutated using
the rotkit function. This process was automated by python code.
It was followed by energy minimization and refinement of these
mutant structures (22 variants) using Chimera (Pettersen et al.,
2004). The parameters used for energy minimization include

1000 steepest descent steps with a step size of 0.02 Å and force-
field AMBERff14SB. The impact of mutations on protein
conformation, flexibility, and stability was predicted by
Dynamut (Rodrigues et al., 2018). The structural differences in
native and mutant forms were analyzed using several tools like
DSSP (Kabsch and Sander, 1983) for secondary structure
annotation of mutated residue, HBPLUS (McDonald and
Thornton, 1994) to study gain or loss of hydrogen bonds after
the mutation and Naccess (Hubbard and Thornton, 1993) to
compare the solvent accessible surface area of the mutated
residue.

2.3.6 Molecular Docking
Receptor-ligand docking was performed to analyze the effect of
SNV on the binding affinity of the drug with its target protein
before and after the occurrence of mutation. A set of kinase genes
with FDA-approved drugs available in DGIdb were considered
for this analysis. Only 10/12 genes (CHUK, EPHA7, GRK5,
MAPK11, MAPK13, PI4K2B, PIK3CG, GRK4, TAOK3, and
IRKA1) from IndiGen structure data were found to exhibit
drug-gene interactions with 69 FDA-approved drugs
(Supplementary Table S4). The protein structure files (in
Protein Data Bank as a PDB format) for these ten genes and
their 20 modeled variants were taken as receptors. Since our
dataset comprised 69 ligands that were to be docked with 30
receptors, virtual screening was performed using AutoDock vina
(Trott and Olson, 2009). The structure files for ligands were
downloaded fromDrugBank (Wishart et al., 2008) and PubChem
(Kim et al., 2019) in PDB format (Supplementary Table S5).
Receptor preparation was performed by removing water
molecules and heteroatoms, adding polar hydrogens, etc.,
followed by preparing ligands by assigning the correct
AutoDock 4 atom types, adding Gasteiger charges, and
detecting aromatic carbons. These prepared receptors and
ligands were saved in PDBQT format. In the absence of any
prior information about the target binding site, blind docking was
carried out for all the protein-ligand pairs. The docking was
performed to the center of the binding cavity using Cartesian
coordinates that differed for every protein calculated using PyRx
(Dallakyan and Olson, 2015). The docking grid with a dimension
of 60 Å x 60 Å x 60 Å was used in each docking calculation with
an exhaustiveness option of 100 (average accuracy). The
maximum number of binding modes to generate was kept at
500 with an energy range of 20 kcal/mol. Fifty iterations of these
parameters for every target protein were followed.

2.3.7 Ligand Similarity/Diversity and Toxicity Analysis
Bender et al. in their study established the correlation of chemical
substructure with ADRs (Bender et al., 2007). Yaminishi et al.
studied similar ADRs exhibited by chemically similar drugs
(Yamanishi et al., 2010). To identify chemically similar drugs
with ADRs in our dataset, the ligand similarity and toxicity
analyses were performed. The molecular similarity of the
ligands (drugs) can be assessed using their structural features
(e.g., shared substructures, ring systems, functional groups,
topologies, etc.) of the compounds and their representations in
the N-dimensional chemical space (Supplementary Table S6).
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FIGURE 1 | Dendrogram representation kinase coding genes in IndiGen data using KinMapbeta. The circle size represents the number of drug molecules available

for a gene with known drug-gene interaction. The class of kinase is highlighted with a unique color and the color gradient in each data circle represents the number of

variations present in IndiGen data for that gene.
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These descriptors are often defined by mathematical functions of
molecular structures. In this analysis, MACCS (Molecular
ACCess System) keys with 166 keys and circular -Morgan
fingerprints with radius 2 were used (Fernández-De Gortari
et al., 2017). These fingerprint-based similarity computations
were implemented using the popular chemoinformatics
package RDkit (Bento et al., 2020) in python. Tanimoto
similarity coefficient was used to compute a quantitative score
in order to measure the degree of ligand similarity and
dissimilarity (1-similarity)- using weighted values of molecular
descriptors. The toxicity of drugs was identified using the ProTox
II predictor (Banerjee et al., 2018).

2.3.8 Phenotypic Drug-Drug Similarity
The tendency of a drug to bind to multiple targets is called drug
polypharmacology; it is a well-known property of drugs. Reports
have suggested the association of drug polypharmacology with
the target protein family and binding site similarity of their
primary targets (Jalencas and Mestres, 2013). If two drug
molecules target the same gene product, then they are
expected to have similar activities and mechanisms of action
(Prinz et al., 2016). Thus, repurposed forms of similar drugs can
act as alternatives to the ones with adverse drug reactions. Based
on drug-gene interaction data obtained from DGIdb, several
drugs were observed to have the same target protein
(Supplementary Table S6).

3 RESULTS

3.1 Indian Variations in the Kinome
Landscape
To first get an overview of the Indian variations present in the
druggable kinome landscape, kinase coding genes present in the
IndiGen data drug-gene interactions in DGIdb (327) were used to
create a phylogenetic tree using KinMap (Eid et al., 2017)
(Figure 1). It was observed that atypical protein kinases
contain 148 drug-gene interactions and 1224 missense
mutations.It was observed that despite having more drug-gene
interactions, very few genes from the atypical protein kinases
family contained missense mutations. The SNVs in a conserved
protein region can influence the protein structure and its stability
and can affect the protein-protein or protein-drug binding
affinity. A gene with more variation and multiple marketed
drugs has a greater tendency of causing ADRs (Bachtiar and
Lee, 2013). It was found that the Tyrosine kinase family, which
has a maximum (1978) number of FDA-approved drugs, consists
of themaximum (5013) number of variations. The class of kinases
other than TK (Tyrosine Kinase) like the CMGC (cyclin-
dependent kinase (CDK), mitogen-activated protein kinase
(MAPK), glycogen synthase kinase (GSK3), CDC-like kinase
(CLK), TLK (Serine/threonine-protein kinase tousled-like 1)
and AGC (PKA, PKC, PKG) contain a large number of
variations i.e., 10518, 1193, and 2943 respectively but the
number of drugs with known Drug-Gene interactions were
limited to 213, 185, and 339 respectively, which was
comparatively less than the Tyrosine Kinase family. The CK1

(casein kinase 1) class, among all others, contains the lowest (275)
number of variations and lowest (18) drug-gene interactions.
Kinase families associated with 327 kinase coding genes with the
number of drugs and SNVs observed in each class are shown in
(Supplementary Table S10).

3.2 Analysis of Amino Acid Changes of
Druggable Kinase Genes Among Indian and
Populations in 1000G Data
The amino-acid mutation pattern in the Indian population was
elucidated by generating an amino acid exchange matrix for all
SNVs reported for 545 druggable kinase genes in IndiGen data.
The number of times a specific amino acid has been converted to
any other amino acid, resulting in the nsSNV was counted to
understand how frequently a specific amino acid is mutating in a
particular population. The AA-exchange frequency for every
reference (as per RefSeq sequence) and alternative amino-acid
pair (as per IndiGen data) i.e., was calculated and normalized in
Figure 2A. Results from the analysis revealed that nearly 68% of
Arginine(R) converts to Tryptophan (W), i.e., a hydrophobic
amino acid converting to a basic polar amino acid. Similarly, 58%
of Cystine (C) observed at reference SNV sites gets converted into
Tyrosine (Y) i.e, a polar uncharged amino acid converting to a
polar aromatic amino acid. Other amino acid conversions with
moderate frequency (40%–50%) were Leucine(L) to
Phenylalanine(F), both non-polar amino acids, Lysine(K) to
Glutamic acid(E), which involved basic to acidic conversion,
and Asparagine(N) to Aspartic acid(D), an amidic to acidic
conversion. It was worth noticing that regardless of having a
maximum number of codons (6) coding for Serine(S) and
Leucine(L), the amino acid exchange for these two residues
was comparatively lower than Tyrosine (Y) and Tryptophan
(W), which have only one associated codon.

In order to comprehend the inter-conversion distribution of
the chemical groups present in mutating amino acids and develop
a coherent relation of these amino-acid conversions with
physicochemical properties, a chemical shift analysis was
performed. The mutating amino acids were classified on the
basis of the nature of their side (R) groups into 12 chemical classes
(Aliphatic, Hydroxyl, Cyclic, Aromatic, Basic, Acidic, Sulpho,
Amides, Non-polar, Uncharged polar, Hydrophobic, and
Hydrophilic). In Figure 2B, a cluster map with 12 chemical
classes on both axes is shown with values representing the
number of amino acids changing from one chemical class to
another from reference (X-axis) to alternate sequence (Y-axis).
Chemical groups with similar-level of changes in amino acids
were clustered together. Intra-class conversions were observed for
amino-acids belonging to hydrophilic (Ser, Thr, Tyr, Asn, Gln,
Asp, Glu, Lys, Arg, His), hydrophobic (Gly, Ala, Val, Pro, Leu, Ile,
Met, Trp, Cys, and Phe), and non-polar classes (Gly, Ala, Val,
Pro, Leu, Ile, Met, Trp, Phe) supporting conservative replacement
(French and Robson, 1983). Many chemical groups have
undergone more inter-class conversions than intra-class
conversions, like Non-polar (Gly, Ala, Val, Pro, Leu, Ile, Met,
Trp, Phe), Hydroxyl (Ser, Thr), Aliphatic (Gly, Ala, Val, Leu, Ile)
and Uncharged polar groups (Ser, Thr, Cys, Tyr, Asn, Gln) have
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converted to Hydrophobic group. Similarly, amino acids from
Amides (Asn, Gln), Basic (Lys, Arg, His), Acidic (Asp, Glu),
Aromatic (Phe, Tyr, Trp), Cyclic (Pro), and Sulpho (Cys, Met)
groups have mostly converted to Hydrophilic group.

In support of this, one more analysis was performed in which
the reference amino acids were taken as per RefSeq hg38 sequence
whereas altered amino acid at the same SNV site was taken from
IndiGen data. These amino acids were classified into six different
chemical classes (Aliphatic (Gly, Ala, Val, Leu, Ile), Hydroxyl
(Ser, Thr), Cyclic (Pro), Aromatic (Phe, Tyr, Trp), Basic (Lys,
Arg, His) and Acidic (Asp, Glu)) to avoid any repetition of amino
acids. The difference in amino-acid counts at the SNV site for
each class was then plotted. A horizontal bar plot was generated
with (Supplementary Figure S1A) six chemical classes of amino
acids with respect to the amino acid counts in RefSeq (hg38) and
IndiGen data. This chemical shift analysis confirms a net loss in
basic, cyclic and aliphatic amino acid classes. In contrast, a net
gain is observed in the hydroxyl, aromatic, and acidic amino acid
classes. It is important to note here that while the hydroxyl,
Aromatic and Acidic amino acid class contains 2,3 and 2 amino
acids, respectively, it contributes to the net gain; while the
aliphatic class, with the maximum number of amino acids,

showed a net loss in the amino acid count. This observation
clarifies that the net gain or loss in any amino acid class is
independent of its size.

In order to understand the relationship between the
mutational frequency of specific amino acids with their
frequency of occurrence in the IndiGen data, a mutability
score for each amino acid type was calculated. In Figure 2C,
mutability scores for amino acids observed in IndiGen data are
shown. The plot shows that Arginine (R) is the most observed
amino acid with > 0.15 frequency of occurrence, whereas
Tryptophan(W) is the least observed residue at the reference
SNV site in IndiGen data. Amino acids like Valine, Serine, and
Threonine have shown a greater propensity to get mutated than
other amino acids. These observations are also in agreement with
the inferences made from the amino acid exchange matrix
(Figure 2A). In Figure 2A, Arginine(R) can be seen as the
most mutable amino acid with the most significant amino-acid
exchange frequency (maximum frequency −0.68) and
Tryptophan as the least mutable amino acid (maximum
frequency −0.14).

After establishing an in-depth description of the Indian
population, a comparative sequence analysis was performed

FIGURE 2 | Sequence Analysis using amino-acid exchanges reported for 545 druggable kinase Coding genes in IndiGen Data: (A). Amino-acid exchange matrix

for reference and alternate amino acids of SNVs in IndiGen data. (B)Clustermap showing chemical shift observed among the reference and alternate amino acids at SNV

sites reported in IndiGen data. (C) Scatter plot of mutability scores for each amino acid type in IndiGen data.
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FIGURE 3 | (A) Comparing the trend of amino acid exchange among different populations from 1000 genome data with the Indian population. Bubble-plot was

generated on the basis of the FDR corrected p-value associated with AA-exchange frequency for a particular Reference and Alternate AA observed in IndiGen data with

EUR and SAS populations of 1000 genome data. The size of the bubble is proportional to the −log10 (p-value) linked with the amino acid exchange. AA exchanges with

p-value < 0.05 are highlighted in blue color. (B) AnUpSet Plot of statistically significant AA exchanges observed in IndiGen w.r.t to other populations in 1000Gdata.

(C) A grouped bar plot showing the count of variations lying before (green), within (pink), and after the domain (violet) for variants in IndiGen and populations in 1000G

data. (D) A Box-plot for comparing allele-frequency distribution of common IndiGen variants (AF ≥10%) qualifying the filters used for structure data (22 variants) with

different populations in 1000 genome data. (E) IndiGen specific SNVs (22 variants in structure data) with AF ≥ 10% observed in different databases like 1000 genome

project, gnomAD exome data, and ExAC database; with IndiGen variations on X-axis and their allele frequencies in different databases on Y-axis.
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for the variants in IndiGen data with other populations, such as
European (EUR), American (AMR), African (AFR), South Asian
(SAS), and East Asian (EAS) populations from the 1000
genome data.

The count of each AA exchange from the RefSeq sequence to
any other amino acid type in the alternate sequence for
populations in 1000G data was calculated in a similar manner
as was done for IndiGen data in Figure 2A. The difference in the
AA-exchange frequency pattern found in IndiGen with other
populations in 1000G data was examined by performing a
proportion z-test. The frequency of AA exchange for each
reference to alternate AA pair (non-null, 144 Ref-Alt AA
pairs) in IndiGen data was compared with its frequency in
European (EUR), East-Asian (EAS), Ad Mixed American
(AMR), African (AFR) and South-Asian (SAS) population in
1000G data (Supplementary Table S11). For every amino-acid
exchange, a p-value and z-statistic were evaluated. The p-value
obtained was adjusted, and a negative logarithm of this value was
plotted in Figure 3A. In Figure 3A, a bubble plot is shown with
reference AA and exchanged AA on theX and Y-axis respectively.
The size of each bubble is inversely proportional to FDR corrected
p-value, i.e., with the decrease in p-value the size of the bubble
increases. The significant AA exchanges observed in IndiGen-
EUR and IndiGen-SAS (for other population pairs-
Supplementary Figure S1) population pair were highlighted
in blue color. The number of statistically significant AA
exchanges (FDR p-value < 0.05) between IndiGen and AMR,
AFR, EUR, EAS, and SAS were 17, 16, 14, 12, and 5, respectively,
suggesting that IndiGenic variations are more similar to the
variations in the South Asian population as compared to
others. The South-Asian population contains samples for
Gujrati Indian from Houston (GIH), Punjabi from Lahor,
Pakistan (PJL), Bengali from Bangladesh (BEB), Sri Lankan
Tamil from the UK (STU) and Indian Telugu from the UK
(ITU) due to which it shares a similarity with IndiGen data in
terms of AA exchange frequency.

The amino-acid exchanges which were prevalent and specific
across each population pair were studied by generating an UpSet
plot (Figure 3B) using all the significant AA exchanges observed
in Figure 3A. This UpSet Plot has four pieces, a bar plot (shows
intersection size among the datasets), a graphical table below it
(shows intersecting population pairs), common AA exchanges
among the datasets shown above each bar) and a small bar chart
left to the graphical table (shows the dataset size). The AA
exchanges specific to each population were represented by the
bars above single dots in the graphical table. There were five AA
conversions unique to IndiGen-AMR and IndiGen-EAS datasets;
four conversions were unique in the IndiGen-SAS and IndiGen-
EUR datasets, and two AA exchanges were unique to the
IndiGen-AFR dataset. The AA exchange of Alanine to
Threonine (A to T) was common in all the datasets except
IndiGen-SAS. The conversion in amino acids common among
three population pairs was Ser to Ala and Arg to Ser in IndiGen
vs. AFR, EAS and AMR, Leu to Pro in IndiGen vs. EAS, AFR and
AMR, and Leu to Arg in IndiGen vs. AFR, EUR, and AMR (non-
polar converted to the non-polar and basic group). Population
pairs, IndiGen vs. AMR and EUR and IndiGen vs. AFR and AMR

had a larger overlap among them with three common AA
exchanges which were Phe to Cys; Val to Gly; Asn to Lys; and
Gln to Glu; Gln to Arg; Gln to Leu (Uncharged polar converted to
Acidic, basic and non-polar groups).

Upon having an in-depth understanding of the effects of
variations on the sequence, we next explored the effect on the
protein’s structure. Protein domain regions are stable conserved
parts of a protein sequence and its 3D structure. Therefore,
variants present in the protein domains are most likely to
affect the protein structure, stability, and function. To
determine the number of SNVs present in/out of a conserved
protein domain, the protein domain analysis was executed. The
variants in the IndiGen and 1000 genome data for European,
American, African, East Asian, and South Asian populations were
categorized into pre-domain, post domain, and within the
domain regions, depending on the position of a variant. In
(Figure 3C), a grouped bar chart was shown wherein X-axis
six populations are there, and Y-axis represents the number of
SNVs that fall inside (pink bars) or before/after a domain (green
and violet bars). In all the populations, SNVs falling in pre-
domain regions were less, suggesting that the populations from
1000 genome and IndiGen data revealed a larger bias for an SNV
to fall within the protein domain or post-domain region as
compared to the pre-domain region. The SNV count in the
post and within domain regions were almost identical in EAS,
AFR, AMR, and EUR variant data. In IndiGen, maximum
variants (952) were falling within the domain while 226
variants were present in the post domain region, whereas only
twelve variants were observed in the pre-domain region. Since,
the occurrence of SNVs is more frequent inside the domain
region, change in amino acid level can have a direct impact on
protein’s structures, thereby on its function and stability too.

Reports have suggested the relationship between allele
frequency and ethnicity of SNVs (Mori et al., 2005; Mattei
et al., 2009). The allele frequency distribution of common
variants from IndiGen data (AF ≥ 10%, 22 variants in
structure data) was compared with populations in 1000G data
(Supplementary Table S3) in the Allele Frequency box plot
shown in Figure 3D). The analysis revealed that the
distribution of allele frequency didn’t vary much among the
populations studied. The AF distribution of IndiGen, South
Asian, and East-Asian populations were alike with very close
median values and similar outliers rs1801058 and rs313549
belonging to the GRK4 gene, i.e, Y292A, and V486A. A
similar AF plot (Figure 3E) was generated using the same set
of variants wherein allele frequencies for common SNVs (22
variants in structure data) in IndiGen data were compared among
other databases like 1000 Genome data, gnomAD exome
database, and ExAC database (Supplementary Table S2).

3.3 Structure Level Comparison of IndiGen
and Disease-Causing Variants
To further understand the SNV’s effect on the protein structures,
the IndiGen structure dataset was constructed by taking into
account only variants of druggable kinases lying within the crystal
length, thus giving only twelve kinase genes and corresponding 22
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FIGURE 4 | Comparison of structural characteristics of variants in IndiGen and Humsavar data: (A) Solvent accessibility for the variants in both datasets. (B)

Secondary structure in which each of the variants occurs in both datasets. (C)Conservation score and ΔHydrophobicity distribution of variants in Humsavar and IndiGen

data. (D) The area under the curve present on the left of −2 (ΔHydrophobicity) belongs to the percentage of residues for which a significant increase in hydrophobicity

after the mutation was observed while a decrease in hydrophobicity was observed the for percentage of residue present on the right of +2 on X-axis. (E) Alluvial plot

representing a change in folding energy (in kcal/mol) (δ δG) and vibrational entropy by Dynamut energy for 22 variants. (F) Sunburn Plot representing secondary structure

assignment done by DSSP for mutant residues. (G) A circle packing plot is showing relative solvent accessibility of mutated residues of 22 variants corresponding to 12

proteins calculated using Naccess. (H) HBPLUS results showing the number of hydrogen bonds made by mutated residue before mutation (green -bar), after mutation

(blue-bar), and ΔH-bonds (yellow bars).
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variants. Disease-causing variants corresponding to these 12
genes were extracted from Humsavar data (217 variants) and
compared (Supplementary Table S12). The structural
characteristics like distribution of solvent-accessibility,
secondary structure, conservation score, and change in
hydrophobicity of variants/variant residues in IndiGen
structure data and Humsavar data were compiled and
compared. For solvent accessibility comparison (in
Figure 4A), a cutoff of 5% solvent exposure was applied to
the Naccess (Hubbard and Thornton, 1993) results for
variants in both datasets to distinguish between buried and
exposed residues. It was observed that exposed residues are
more prone to mutations in both datasets. A similar
observation was reported by Gong and Blundell (2010) in
their work and they also stated that more than 60% of
solvent-exposed SNVs have a disease association. In IndiGen
data, 81.8% of variant residues (22 residues) were found to be
exposed which was roughly equal to solvent exposure of residues
in Humsavar data with 81.1% exposed residues (74 residues). No
significant difference was observed in solvent accessibility for
variants in both datasets. The secondary structure preference of
variants in both the datasets revealed that variant residues in
IndiGen data have a slight preference to occur on the alpha-helix
part of the protein while the variants in Humsavar data share
equal secondary structure preference for their occurrence either
in alpha-helix or in loop/random coil of a protein (Figure 4B).

To study the evolutionary conservation of mutated residues,
residue conservation scores for variants in IndiGen structure data
(22 residues) and in Humsavar data (74 residues) were calculated
using Consurf (Ashkenazy et al., 2016). The distribution of
conservation scores for variants in both datasets is shown in
Figure 4C. The distribution followed by the Humsavar dataset
was nearly normal while the IndiGen curve follows a bimodal
distribution with two peaks. Moreover, the median line divides
the area under the curve into two equal halves. The median line
for Humsavar data (0.007) was present closer to 0 than IndiGen
data’s median (0.358). Hence, in order to elucidate the percentage
of residues with more or less conservation, a threshold value of
−1/+1 relative conservation score was considered. It was observed
that the percentage of highly conserved residues (with Consurf
conservation score greater than −1) was more in the Humsavar
distribution (steeper) than in IndiGen. Likewise, the percentage
of highly variable residues (with conservation score > 1) adhering
to the area under the curve on the right of +1 was more for
IndiGen data than for Humsavar data, indicating that Humsavar
data has a higher percentage of residues that are involved in
variations, being more conserved.

The distribution of change in hydrophobicity from reference
to the altered residue for variants in Humsavar and IndiGen
structure data is shown in Figure 4D. The medians for both the
distributions were found next to each other and very close to 0,
suggesting that the percentage of variations with increase or
decrease in hydrophobicity is almost equal in both datasets. In
order to find out the percentage of residues with some significant
change in hydrophobicity, a threshold value of −2 was considered
for an increase in hydrophobicity whereas a +2 threshold was
taken for the decrease in hydrophobicity. It was observed that the

percentage of varying residues with a significant increase in
hydrophobicity was observed for IndiGen structure data
whereas the percentage of residues with a significant decrease
in hydrophobicity was found for Humsavar data.

3.4 Effect of nsSNVs on Structural
Properties of the Protein
3.4.1 Structural Stability of Generated Variants
Prior to the investigation of the structural properties of nsSNVs in
IndiGen structural data, the impact of mutations on protein
stability and flexibility was assessed using Dynamut (Rodrigues
et al., 2018). It performs normal mode analysis and follows a
machine-learning algorithm to predict Δ ΔG (change in folding
energy, kcal/mol) and Δ Δ S (kcal/mol/K), Vibrational Entropy
difference between native and mutant forms of a protein
structure. The results from Dynamut revealed that 11/22
variants had Δ ΔG negative suggesting destabilization after
mutation and 14/22 variants had positive Δ Δ S indicating an
increase in structural flexibility after mutation, shown in
Figure 4E. The plot shows 12 genes, and their native protein
structures codes (PDB IDs: 4YHJ, 5TQY, 3NYO, 6GQ7, 4TNB,
6BFN, 3GC9, 6BDN, 6I83, 4EYJ, 3NRU, and 3D2R) and 22
mutants linked with their corresponding energy values. As per
Dynamut predictions, a variants F454A and F110V of gene GRK4
(PDB ID: 4YHJ) have shown Δ ΔG of −2.767 kcal/mol and
−1.024 kcal/mol (Destabilizing) and change in vibrational
entropy energy between wild-type and mutant (Δ ΔS-Vib) as
1.178 kcal/mol/K and 0.844 kcal/mol/K showing a high structural
destabilization leading to increased molecular flexibility after
mutation. The loss of aromaticity due to conversion of an
aromatic amino acid, Phenylalanine to aliphatic forms,
Alanine, and Valine in F454A and F110V variants could be
the reason behind the instability of mutants since aromatic
rings are very stable and difficult to break thereby enhancing
the stability of the system (Supplementary Table S8).

3.4.2 Secondary Structure Annotation and Relative
Solvent Accessibility of Mutated Residues
The secondary structure of a protein includes largely α-helix and
β-pleated sheet structures, which is involved in local interactions
between stretches of a polypeptide chain. The ability of a protein
to interact with other molecules depends on amino acid residues
located on the surface with high solvent accessibility. Any
alterations in these residues may affect the protein’s
functioning thereby increasing the importance of the study of
the structural properties of mutated residues. Solvent accessibility
(using Naccess (Hubbard and Thornton, 1993)) and the
secondary structure properties (using DSSP (Joosten et al.,
2011)) of mutated residues were studied. Figure 4F is a
sunburn plot showing results for secondary structure
assignment by DSSP. The plot consists of four concentric
circles with the innermost circle comprising 12 PDB IDs, the
second-inner circle comprising a 3-letter code of reference amino
acid present at the mutant site, the third-inner circle shows the
mutant position, and the outermost circle containing the
secondary annotation for that residue given by DSSP. The
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color-coding was done on the basis of native PDBs. The majority
of the variants were found to be present in the alpha-helix region
as compared to other regions of the protein.

In Figure 4G, a circle packing plot is shown, wherein relative
solvent accessibility of mutated residues of 22 variants
corresponding to 12 proteins are shown in different circles.
The size of the circle represents the relative solvent
accessibility value associated with mutated residue while the
color of the circle for nsSNPs from the same genes is identical.
The reference amino acid and its position in the protein sequence
are labeled in red color to depict the relative solvent-accessibility
related to it. The relative solvent accessibility of two mutated
residues belonging to PDB ID 4YHJ (Y53I and C215I) was zero.
The relative solvent accessibility of residues Arg275 and Val486 of
mutants R275H (PDB ID: 3GC9) and V486A (PDB ID: 4YHJ)
was greater than 75 suggesting that these two amino acids are
relatively more accessible than others. The results from this plot
disclosed that there were 5 residues with more than 60 relative
solvent accessibility (Arginine, Valine, Phenylalanine, and Serine)
belonging to 3GC9, 4YHJ, 6BDN, and 6BFN PDB IDs
(Supplementary Table S8).

3.4.3 Effect of nsSNV on Hydrophobicity and
Hydrogen Bonding
A single amino acid change may result in alteration of
hydrophobicity or disruption of the hydrogen-bond network
thus modifying the structure and function of the protein as
well (Kumar and Biswas, 2019). The change in hydrophobicity
observed in mutants in IndiGen structure data was arranged
according to Fauchere and Pliska scale (Fauchère et al., 1988)
(Supplementary Figure S3A). In the IndiGen structure data, 12
out of the 22 variants exhibited a decrease in hydrophobicity
whereas an increase in net hydrophobicity was observed in the
rest. The number of hydrogen bonds made by the alternate
residue before and after the mutation were calculated using
the HBPLUS program (Figure 4H). Variants 4YHJ_A142V
showed a loss of 1 hydrogen bond, while 4YHJ_V292A,
6GQ7_T857A and 6I83_R982C resulted in the loss of two
hydrogen bonds.

3.5 Effect of nsSNV on Ligand Binding
Given the pharmacological importance of kinase proteins,
molecular docking was performed to comprehend the effect of
SNV in the drug-gene interaction. All FDA-approved drugs
available in DGIdb for genes present in IndiGen structure data
were docked against the native and mutant protein structures.
The binding energy (also known as Gibbs free energy or ΔG in
kcal/mol) between the receptor and ligand molecules is evaluated
using AutoDock vina and compared among native and mutant
docked complexes. It was found that in 45 out of 69 protein-drug
pairs, change in binding energy ranges from 0.7 to −9.1 kcal/mol,
whereas for the remaining pairs, no change in binding affinity was
observed. Figure 5A represents the change in binding affinity
observed for the 45 protein-drug pairs. In 32 protein-drug pairs, a
decrease in binding energy was observed while 13 pairs have
shown an increase in binding energy; indicative that the presence
of an nsSNV destabilizes the complex. One protein-drug pair,

T857A mutant of gene PIK3CG (PDB ID: 6GQ7), which when
bound to drug Zinc sulfate (DrugBank id—DB09322) revealed a
stark decrease in binding energy (−9.1 kcal/mol) when comparing
the native- (−13.0 kcal/mol) versus mutant- (−3.9 kcal/mol) drug
pair. Forty-five protein-drug pairs with differences in binding
affinity were further considered for the binding site and ligand
similarity (Supplementary Table S6).

It was observed that the binding pocket of the ligands in native
and mutant forms for their respective receptors was the same,
stipulating that presence of SNV didn’t change the binding site of
drugs with their target protein. A snapshot of the first pose of
ligand docked in the protein was taken in PyMol for all native
protein-drug complexes (Supplementary Figures S2A–G). The
mutated residue in every complex is shown in red-color with
sticks representation which was away from the binding pocket of
the ligands in all cases (except in the case of 6GQ7-T857A).
Ligand binding pockets (post docking) are shown in mesh
representation with different colors in Supplementary Figures

S2A–G.
In an attempt to find out the reason behind the huge decrease

in binding affinity in the case of mutant T857A (PDB ID: 6GQ7)
when docked to zinc-sulfate (DrugBank ID—DB09322), the
binding site residues of this drug in the native and mutant
complex were compared and visualized in PyMol (Schrödinger
and DeLano, 2020) and LigPlot+ (Laskowski and Swindells,
2011), shown in Figures 5B,C. It was observed that the
location of the binding pocket-residues in mutant and native
forms was unchanged, and the main binding pocket was away
from the mutated residue. However, a decrease in one hydrogen
bond was observed in the ligand interaction diagram of native
and mutant complexes.

3.6 Gene, Variant and Disease Association
Several databases like Online Mendelian inheritance in man
(OMIM) (Amberger et al., 2011), disease-gene network
(DisGeNET) database (Piñero et al., 2017), PharmGKB (Thorn
et al., 2013) and Comparative Toxicogenomic Database (CTD)
(Davis et al., 2019) could be used to retrieve diseases and/or ADRs
associated with target genes or variants. DisGeNET is a database
that collects information from Comparative Toxicogenomics
DatabaseTM (CTDTM) (Davis et al., 2019), UniProt (UniProt
Consortium, 2021), Orphanet (Rath et al., 2012), the Mouse
Genome Database (MGD) (Eppig et al., 2015) and the Rat
Genome Database (RGD) (Shimoyama et al., 2015) for finding
gene-disease relationship and ClinVar (Landrum et al., 2016), the
NHGRI-EBI GWAS Catalog (Welter et al., 2014), and the GWAS
db (Becker et al., 2004) for variant-disease association. It assesses
the relation between gene/variant with a disease using Gene-
Disease-Association (GDA) score or Variant-Disease-
Association score (VDA). The score ranges from 0 to 1 on a
scale of 1–10 and depends on the number and kind of sources/
publications (degree of curation, organisms) supporting the
association. The list of rsIDs of variants in the structure
dataset was given as input to the DisGeNET webserver, and
the summary of results obtained is shown in Figure 5D. It is an
alluvial plot with genes, variants, and disease-associated, where
the thickness of the variant-disease line is proportional to the
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FIGURE 5 | (A) Bar plot showing docking results for 45 protein-drug pairs on the x-axis and change in binding affinity observed on the y-axis. Red bars represent a

decrease in binding affinity and green bars represent an increase in binding affinity after mutation. (B) Ligand interaction diagram of native 6GQ7 (PIK3CG gene) bound to

Zinc Sulfate (DB09322) .(C) Ligand interaction diagram of mutant T857A of PIK3CG gene (PDB ID 6GQ7) bound to Zinc Sulfate (DB09322) and main binding pocket

(grey colour) where the majority of ligands were docked. (D) An alluvial plot with showing association of genes, variants, and diseases, where the thickness of the

variant-disease line is proportional to the VDA score obtained from DisGeNET.
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VDA score obtained from DisGeNET. Variants rs428073,
rs1059702, and rs17158558 were reported to be linked with a
risk to Systemic Lupus Erythematosus, risk of association with
hematological traits, and HIRSCHSPRUNG disease with a VDA
score equivalent to 0.7, indicating at least one curated source in
support of this variant-disease association. The effect of genetic
variation in the drug-response present in our structure dataset
was investigated using the PharmGKB (Thorn et al., 2013) tool.
The gene-set in our structure data were found to be interacting
with 69 drugs as per DGIdb and there were 22 variants associated
with it. The phenotypic information due to the association of
these genes, drugs, and variants was collected from PharmGKB
data. It was observed that pharmacogenetic variants, rs1024323
and rs1801058 (F110V, A142V, Y292A, V486A, and F454A)
evoked a phenotypic effect (Hypertension, Nephrosclerosis and

Kidney issues) on the interaction between GRK4 gene and
Metoprolol drug (Supplementary Table S9).

3.7 Ligand Similarity/Diversity and Toxicity
Analysis
The 45-protein drug pairs with delta binding energy observed
after docking were considered for this analysis. In total there were
seven different PDB structures (6GQ7, 5TQY, 3GC9,4TNB, 6I83)
with sixteen respective mutations and 28 drugs as shown in
(Supplementary Table S6). All drug-like chemicals from our
ligand dataset were considered for chemical similarity analysis.
From this analysis, it was observed that all the associated drugs
exhibit a great molecular diversity (Figure 6). The maximum
pairwise similarity for Morgan2 fingerprints and MACCS

FIGURE 6 | (A) Heatmap showing pairwise ligand dissimilarity using MACCS fingerprints. (B) Heatmap showing ligand similarity using MACCS fingerprints. (C)

Ligand dissimilarity using Morgan fingerprints. (D) Heatmap showing ligand similarity using Morgan fingerprints. Similarity and dissimilarity (1-similarity) score is

represented using the Tanimoto coefficient (taking a value between 0 and 1, with 1 corresponding to maximum similarity).
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fingerprints has a Tanimoto score of 0.40 and 0.70, respectively.
On the other hand, the pairwise dissimilarity (1-similarity) for
Morgan2 fingerprints and MACCS fingerprints has a Tanimoto
score of 0.98 and 0.90, respectively. The computational prediction
platform ProTox-II (Banerjee et al., 2018), which includes
cheminformatics-based machine learning models for predicting
46 toxicity endpoints, was used to predict toxicity profiles of
compounds/drugs. For the prediction of various toxicity
endpoints, such as acute toxicity (LD50 values), hepatotoxicity,
cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity,
adverse outcomes pathways (Tox21), and toxicity targets,
ProTox-II (Banerjee et al., 2018) integrates many statistical
methodologies such as molecular similarity, pharmacophores,
and fragment propensities, as well as machine learning models
(off-targets). In vitro assays (e.g., Tox21 assays, Ames bacterial
mutation assays, hepG2 cytotoxicity assays, Immunotoxicity
assays) and in vivo cases were used to create the predictive
models (e.g., carcinogenicity, hepatotoxicity).

As per the predictions made by ProToxII (Supplementary

Table S7), it was observed that the mycophenolic acid (DB01024)
is an immunosuppressant drug which was predcited to be
hepatotoxic, immunotoxic, and cytotoxic and was found to
have an interaction with gene PIK3CG (PDB ID:6GQ7,
Mutant T857A). It also inhibits SR-MMP(mitochondrial
membrane potential) with a confidence score of 0.79. Another
interesting observation was the drug Regorafenib (DB08896)
which was also predicted to be hepatotoxic and was active in
two different stress response pathways SR-MMP and SR-p53.
Regorafenib is associated with adverse events like hypertension,
stomatitis, the abnormal liver function (Krishnamoorthy et al.,
2015). However, the exact mechanism of developing
hypertension is not very well-defined. Abnormalities in liver
function were also reported in the case of Regorafenib (De
Wit et al., 2014). The drug progesterone (DB00396) was
predicted to be active in six adverse outcome pathways
(AOPs). Like progesterone, many other drugs can result in
such molecular inhibition/activation of NR-AR by
progesterone, and can result in reduced AR signaling/impaired
follicle recruitment as cellular or tissue level response and may be
impaired fertility in organism (Pivonello et al., 2020).

3.8 Phenotypic Drug-Drug Similarity
A single drug can bind to multiple proteins, similarly, a single
protein (molecular target) can interact with several drugs. These
kinds of interactions between molecular targets and drugs can
result in therapeutic effects along with clinically relevant adverse
effects (Kanji et al., 2015). The analysis of the drug-target
interactions is an important step in the discovery of additional
applications of the drugs already approved in the market, also
called-drug repurposing, and in drug safety through the
explanation of undesirable adverse effects caused by drug
administration.

In order to look for phenotypically similar drugs in IndiGen
data a list of protein IDs and drug molecules associated with them
was considered (Supplementary Table S6). This information
could be useful to get insights into similar drugs present in
IndiGen structure data. A correlogram was plotted with drug

names on the x/y axis. The positive and negative correlation was
shown by blue and red color circles. The color intensity depends
on the correlation coefficient (Supplementary Figure S3B). A
strong correlation (more blue dots) can be observed from this plot
indicating the promiscuous nature of drugs (binding to multiple
targets) or target proteins. For instance drugs, Fulvestrant and
Rizatriptan are chemically dissimilar (similarity score 0.20 in
Figure 6). However, in terms of phenotypic drug-drug similarity -
they are highly similar as they bind to the same protein target
highlighting the differential binding ability of kinases to a set of
fairly specific inhibitors. Another interesting example drug pair
that is evident from the Figure 6 and Supplementary Figure S3B

are the drugs Metoprolol (β1 receptor blocker) and Atenolol
(beta-blocker), where both these drugs have a ligand similarity of
Tanimoto Coefficient of 0.20. However, the same drugs are
similar in terms of their phenotypic profiles and have a
correlation coefficient of 1. The ADRs associated with drugs
used in this analysis are listed in Supplementary Table S14.
Interestingly, both the drugs have similar ADRs profile-renal and
urinary disorders and hypertension (Marian, 2012; Charles and
Ferris, 2020). This is also documented by the RWE data from EU
ADRs reporting system (Supplementary Table S13). Both the
drugs are associated with the gene GRK4 (Supplementary Table

S6) and several studies have been published in literature
supporting genetic variation in GRK4 gene and drug-induced
hypertension (Frey et al., 2017) and renal disorders (Armando
et al., 2015; Sanada et al., 2016). Understanding the role of genetic
variants related to blood pressure regulations and salt sensitivity
may reveal new therapeutic drug targets and optimise the
therapeutic effects of the drugs in the Indian population.
Furthermore, Metoprolol is known to be a poor metabolizer of
CYP2D6 which results in higher systemic concentrations
(Banerjee et al., 2020). Several studies have been reported on
the importance of CYP2D6 polymorphisms on the therapeutic
responses of cardiovascular presents treated with beta-blockers
(Rau et al., 2002).

4 DISCUSSION

Adverse drug reactions are often associated with genes that are
more prone to variations and targeted by multiple drugs (Wilke
et al., 2007). To have an understanding of distribution of
variations in IndiGen data in kinome landscape, the kinome
dendrogram for all the druggable kinase genes was constructed
(Figure 1). This revealed that the tyrosine kinase class consisted
of a large number of variations (5013) and was found to be
associated with numerous drugs (1978). Receptors tyrosine
kinases (RTKs) are involved in a broad range of functions
such as proliferation, differentiation, and apoptosis of cells and
have been extensively used as drug targets in cancer studies. Many
of the tyrosine kinase inhibitors are antibody-based drugs used in
the treatment of tumors, malignancies, and inflammatory
diseases (Bennasroune et al., 2004). In chemical shift analysis
the intra-class conversions of hydrophilic and non-polar AA class
was observed. The conservative mutations of such kind can affect
the protein’s stability which can modulate its functioning and
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catalytic pattern followed by it in different organisms (Rodriguez-
Larrea et al., 2010). Studies have shown there is a strong
correlation between the frequency of occurrence of amino
acids in the human genome and the number of associated
codons (Alwi, 2005). On the contrary, observations made in
the amino acid exchange matrix and chemical shift analysis
(Figure 2) suggested that mutation from one amino acid type
to another was independent of the number of codons coding for
any amino acid. It was also found that amino-acids have greater
tendency to convert into hydroxyl, aromatic and acidic amino
acid classes. The mutability plot (Figure 2C) revealed that
Arginine (R) is more mutable than other amino acids and the
probable reason behind this could be the presence of CpG
dinucleotide in the codons coding for Arginine which is
relatively vulnerable to mutations (de Beer et al., 2013).

Ancestry has a very important role to play in the evolution of
an SNV in different ethnic groups of a population. This also
indicates that there is a relationship between allele frequency and
ethnicity of the population. Even a fractional exchange of amino
acids can have a completely different impact on different
populations. The comparative study of amino acid exchange
frequency of IndiGen with other populations in 1000 Genome
data stipulated (Figure 3B) samples in AMR data have a
significant difference with IndiGen variations. In the contrary,
variations in SAS population share a significant similarity with
IndiGen data. An amino-acid exchange Alanine to Threonine (A
to T) was statistically significant and found to be common in all
the datasets except IndiGen-SAS suggesting the similarity of
Indian and South-Asian genetic variations.

Some variants were found to be common (high AF) in the
Indian population and rare (low AF) in other populations
(population-specific variants) indicating that it will be affecting
the Indian population with higher frequency than others
(Figure 3D). On comparing allele frequency of Indian
mutations with the ones present in publicly available databases
it was inferred that many conserved mutations in IndiGen data
are still understudied as none of the existing databases contains
these mutations (referring to IndiGen data = samples from 1000
individuals of strict Indian ethnicity) (Figure 3E). Protein
domain regions are stable conserved parts of a protein
sequence and its 3D structure. Therefore, variants present
inside the protein domains are more likely to affect the
protein structure, stability and function. The comparative
study of variants on the basis of their position with respect to
domain location suggested that many Indian variants were
present either within the domain or in the post-domain
region(Figure 3C).

One of the most useful predictors of the phenotypic effects of
missense mutations is protein structural information and
stability. Missense mutations can disrupt protein structure and
function in one of two ways: they can destabilise the entire protein
fold or they can change functional residues, such as active sites or
protein-protein interactions, and pathogenic mutations are
enriched in both the buried cores of proteins and in protein
interfaces (Gerasimavicius et al., 2020). Reports have claimed that
buried amino acids are often observed to be associated with
diseases and commonly observed in functional sites (Iqbal et al.,

2020). On the contrary, in relative structural analysis of IndiGen
and Humsavar dataset, it was found that residues with relatively
higher solvent accessible surfaces were more prone to mutations
(Figure 4A).

Mutations that occur in a properly structured part of a protein
are more likely to be pathogenic than mutations that do not, due
to their strong destabilizing effect on protein structure. According
to stability analysis performed by Dynamut, 11 variants were
found to destabilize protein’s structure and from 11 destabilizing
variants, 7 were found to be present in the helix region of the
protein. IndiGen variants occur more in the alpha-helix region
while Humsavar variants share equal secondary structure
preference for their occurrence either in alpha-helix or in
loop/random coil of a protein (Figure 4B). Several studies
have suggested that secondary structure elements like sheets
and helices vary a lot in their ability to tolerate mutations.
This differential tolerance of mutations could be due to a
difference in a number of non-covalent residue interactions
within these secondary structure units (Abrusán and Marsh,
2016). The conservation score distribution implied a higher
percentage of residues with greater conservation in that
Humsavar data than in IndiGen data. Since Humsavar
variants are reported to be associated with a disease it is
highly likely that their presence in highly conserved regions
could be a reason behind their disease occurrence.
Hydrophobic interactions and hydrogen bonds are the two
most prevalent interactions present in protein structure.
Hydrophobes as the name suggests tend to isolate themselves
from water molecules due to which many hydrophobic amino
acids are often found to be buried inside the protein structure.
Contrasting results were observed in hydrophobicity distribution
with the significant increase in hydrophobicity for varatioans in
IndiGen structure data whereas a decrease in hydrophobicity was
found for Humsavar variant data (Figure 4C).

Occurence of nsSNVs at the ligand-binding sites (LBSs) can
influence protein’s structure, stability and binding affinity with
small molecules. Interesting findings claimed that ligand binding
residues have a significantly higher mutation rate than other parts
of the protein (Kim et al., 2017). In order to validate whether a
single amino acid substitution can change the binding affinity of a
ligand with its target protein or not, molecular docking of ligands
(FDA-approved drugs) with native and mutant structure was
performed. The docking results suggested that since the mutated
residue was away from the binding pocket not much difference in
binding affinity was observed in native and mutant forms except
in T857A mutant in which a polar amino acid has converted to a
non-polar amino acid leading to loss of two hydrogen bonds
(4H), thereby decreasing the binding affinity of ligand (Zinc-
sulphate) with protein. Moreover, the molecular diversity of 12
drugs binding to 6GQ7 (PIK3CG) suggest the promiscuous
nature of the kinase and enables insights that are relevant for
understanding polypharmacology and negative side effects.
Further analysis of these and other inhibitors that bind to
PIK3CG, clustered by phenotype information, can give us
deeper insights into targeted kinase inhibitor design.
Additionally, structural dissimilar drugs can share similar
ADRs because of their strong phenotypic drug-drug similarity
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as explained in the case of Metoprolol and Atenolol. Both these
drugs interact with the genetic variants of the GRK4 gene.
Understanding the role of genetic variants related to blood
pressure regulations and salt sensitivity may reveal new
therapeutic drug targets and optimize the therapeutic effects of
the drugs in the Indian population.Within the scope of this study,
we have investigated and analyzed several factors that can
contribute to ADRs. From chemical space to molecular target
space including genetic variants and their relation to specific
ADRs. ADRs can be related to on-target interactions, or related to
the complexity of genome regulation and the heterogeneity of the
particular ADRs. From a perspective, our approach can be helpful
in identifying new ADRs and understanding the mechanism
behind existing ADRs and can guide further experimental studies.

While in this study, we have explored common variants
present in the Indian population, sampling lower allele
frequencies shall be also useful, in the future, to understand
the underlying fundamentals of rare diseases. Additionally,
experimental validation of the findings in this study shall
provide further credence to the results. This study on IndiGen
variant data may assist in redesigning the healthcare system from
“One Size Fits for All” to “Population or Individual Specific Drug
System” and a big step toward the effective treatment of patients
due to the utilization of drugs with fewer side effects.
Furthermore, a database of ADRs reporting systems needs to
be established to understand the risk associated with multiple
therapies resulting in drug-drug interactions and to safeguard the
health of the Indian population. The analysis presented in this
study, supporting the screening and detection of the ADRs
specific to the Indian population will certainly be more
meaningful when it is directly compared with known ADRs
data obtained for the Indian population. Currently, this
preliminary study may be helpful in devising strategies for the
pre-clinical and post-market screening of drug-related ADRs in
the Indian population. The European Medical Agency (EMA)

and FDA (The United States Food and Drug Administration) has
a current reporting system for ADRs, and this real-world
evidence data (RWE) are important to contribute to the
knowledge of where, when, and how ADRs take place. The
lack of awareness of ADRs and missing reporting system on
Indian ADRs which is publically accessible is a major obstacle to
the completeness of studies specific to Indian ADRs. Integrating
the RWE data along with the poly-pharmacological and poly-
toxicological data would pave the way for effective medicine
prioritizing patient safety.
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