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1 Introduction

There has been a remarkable confluence in the study of CFT correlators and scattering

amplitudes in recent years. As is well known, scattering amplitudes can be extracted by

taking a suitable limit of appropriate CFT correlators - in position, momentum or Mellin

space [1–6]. This enables a CFT derivation of various flat space amplitude results [6, 7].

Conversely, amplitude methods have recently been used in the study of CFTs [8, 9].

One of the interesting relationships that exists for flat space scattering amplitudes is

the double-copy relation between gauge theory and gravity amplitudes, and the associated

color-kinematics duality [10–12]. Here, substitution of color factors by kinematic factors in

the numerators generates gravity amplitudes from gauge amplitudes, thereby manifesting

a quadratic relationship between these two theories. This means that amplitudes involving

gravitons can be built out from those involving gluons. The double copy relation was

first observed in Einstein gravity and pure Yang-Mills theory, and later it was extended

to a whole host of theories including higher derivative conformal gravity, higher derivative

gauge theories and bi-adjoint scalar theories [13–15]. The 3-point structure for the higher-

derivative theories is significant because it occurs in the momentum space form of CFT

correlators of conserved currents, stress tensors and scalars. Double copy relations also

exist for higher point tree amplitudes and loop amplitudes [16, 17]. For a comprehensive

review see [18]. The analyses in these works were for the parity-even sector. We will

show in this paper that similar relationships between amplitudes continue to hold with the

inclusion of possible parity-violating terms in the Lagrangian.

In this work we study 3-point CFT correlators in momentum space. Some recent

works where momentum space CFTs have been studied include [19–61]. In particular, the

double-copy structures of certain parity-even 3-point functions were inferred in momentum

space in [33, 43]. In three dimensions, in addition to the parity-even structures, one also

needs to consider parity-odd structures. The most general form of 3-point functions in 3d

CFTs is known to be of the form:

〈Js1
Js2

Js3
〉 = 〈Js1

Js2
Js3

〉even + 〈Js1
Js2

Js3
〉odd (1.1)

where Js is a spin s conserved current. In position space one can show that the parity-

even part can be obtained by adding contributions arising from the free-boson and the
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free-fermion theories [62–64]. However, interacting 3d CFTs such as Chern-Simons-Matter

theories can contain a non-trivial parity-odd sector as well [65–70].

In this paper we will demonstrate double copy relations between general parity-violating

CFT3 3-point correlators involving marginal scalars, spin one and spin two conserved cur-

rents. We will also show that a double-copy like structure exists for correlators involving

higher spin conserved currents.

To establish our claim, it is convenient to split up CFT correlators into two parts,

namely homogeneous and non-homogeneous parts. Their definition will be made clear in

the next section. In particular, we show that under double copy relations, the homogeneous

part maps to homogeneous part and the non-homogeneous part maps to non-homogeneous

part. Let us illustrate this point by considering 〈TTT 〉, the 3-point function of the stress

tensor and 〈JJJ〉, the 3-point function of the conserved spin-1 current. The correlators

can be written as:

〈JJJ〉 = 〈JJJ〉homogeneous + 〈JJJ〉non-homogeneous

〈TTT 〉 = 〈TTT 〉homogeneous + 〈TTT 〉non-homogeneous

(1.2)

The double copy relation is then given by:

〈TTT 〉homogeneous ∝ (〈JJJ〉homogeneous)
2

〈TTT 〉non-homogeneous ∝ (〈JJJ〉non-homogeneous)
2

(1.3)

where the proportionality factor is momentum dependent and is different for the two cases.

It is given explicitly in section 4.3.

We will show that double copy relations hold even with the inclusion of the parity

violating contributions. We demonstrate this using the results for parity even CFT corre-

lators from [20, 27, 29, 33] and parity odd correlators from [61, 71], where CFT correlators

were obtained by solving conformal Ward identities. There is another interesting way to

fix the form of these correlators, initiated in [56]. Here, late-time tree level boundary cor-

relators in Lorentzian dS4 can be computed by first doing an equivalent calculation in flat

Minkowski space. Thereafter, using certain conformal properties of the fields in dS4, the

corresponding dS4 correlators are obtained by simply dressing the result with a conformal-

time integral factor. This Lorentzian dS4 correlator also naturally computes a Euclidean

CFT3 correlator. We use this method to independently derive the parity-odd structures for

the CFT correlators. This method provides a route to obtaining general parity-violating

momentum space CFT3 correlators without solving conformal Ward identities.

The rest of the paper is organised as follows. In section 2, we introduce the notation

used in this paper. In section 3, we give the form of all the relevant CFT correlators. In

section 4, we study double copy relations between various pairs of correlators. In section 5,

we discuss the flat space limit and write down CFT correlators in terms of tree-level ampli-

tudes without energy conservation for general parity-violating theories of gravitons, gluons

and massless scalars in four dimensions. We also discuss here double copy relations for

tree level dS4 correlators and flat space scattering amplitudes. In section 6, we conclude

and give some directions for future study. In appendix A we give our results for the scat-

tering amplitudes and the CFT correlators in terms of the spinor helicity variables. We
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give the details of the 〈JJT 〉 correlator in appendix B. In appendix C we give the calcu-

lational details used in establishing double copy relations. In appendix D we give explicit

momentum space results for a few correlators involving higher spin currents. Appendix E

contains a few details regarding some constraints on OPE coefficients arising from double

copy relations.

2 Notation and conventions

In this paper we denote 4-dimensional Lorentzian momenta and polarisation vectors by

k
µ
i and z

µ
i respectively. Here i is a particle index and µ = 0, 1, 2, 3 is the Lorentz index.

For massless spin 2 particles the polarisation tensor can be written as an outer product

z
µν
i = z

µ
i zν

i . We choose the following gauge to work with null momenta:

k
µ
i = (ki,~ki), z

µ
i = (0, ~zi) (2.1)

where ki = |~ki| is the magnitude of the 3-momentum.

The 3-dimensional CFT will be Euclidean and current conservation constraints trans-

late to transversality: ki · zi = 0. We will also take zi · zi = 0 which in Euclidean signature

implies that the components of ~zi will be complex.

In our computation we will find it useful to introduce the following notation for various

combinations of magnitudes of momenta:

E = k1 + k2 + k3, bij = kikj , b123 = k1k2 + k2k3 + k3k1, c123 = k1k2k3 (2.2)

We also introduce the following notation:

J2 = (k1 + k2 + k3)(−k1 + k2 + k3)(k1 − k2 + k3)(k1 + k2 − k3) (2.3)

We will make use of spinor-helicity notation. The momentum vector pµ for massless scat-

tering in 4-dimensional flat space-time can be written as pµσ
µ
αα̇ = pαα̇ = λαλ̃α̇ where λ

denotes a spinor-helicity variable. Since 4d amplitudes are related to 3d CFT correlators

it will be useful to have a 3d version of this formalism by utilising the time-like vector

τµ = (1, 0, 0, 0), or ταβ̇ = ǫαβ̇ which can be used to go from dotted to undotted indices (see

appendix B of [33] and [43]). We use this to define λ̄α ≡ ταβ̇λ̃β̇.

For a correlator comprising conserved currents Jsi
the conformal Ward identity in

spinor-helicity notation takes the following form:

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉
= transverse Ward identity (2.4)

where Jsi
are conserved currents with spin si and dimension ∆ = si + 1 and the R.H.S of

the above equation is proportional to the transverse Ward identities associated with the

correlator. For instance, for the case of 〈JJJ〉 where J is the spin-1 conserved current, the

conformal Ward identity takes the form:

K̃κ〈J−J−J−〉 = 2

(
z−κ

1

k1µ

k2
1

〈JµJ−J−〉 + z−κ
2

k2µ

k2
2

〈J−JµJ−〉 + z−κ
3

k3µ

k2
3

〈J−J−Jµ〉
)

(2.5)

where we see that the r.h.s. of the equation is given by the transverse Ward identities.
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The correlator 〈Js1
Js2

Js3
〉 is given by the sum of two terms that satisfy the homoge-

neous and non homogeneous equations respectively:

〈Js1
Js2

Js3
〉 = 〈Js1

Js2
Js3

〉homogeneous + 〈Js1
Js2

Js3
〉non homogeneous (2.6)

where 〈Js1
Js2

Js3
〉homogeneous satisfies:

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉

homogeneous

= 0 (2.7)

and 〈Js1
Js2

Js3
〉non homogeneous satisfies:

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉

non homogeneous

= transverse Ward identity (2.8)

The transverse Ward identity is determined in terms of two-point functions. Hence in the

momentum space expression for the correlator 〈Js1
Js2

Js3
〉, we identify the part proportional

to the 2-point function coefficient to be the solution to the non-homogeneous Ward identity

and the part obtained by setting the coefficient of the 2-point function to zero to be the

solution to the homogeneous Ward identity. We will use subscripts h and nh to denote

the solutions to the homogeneous and non-homogeneous equations respectively.

For a correlator with at least one scalar operator O∆ with conformal dimension ∆ the

conformal Ward identity has a trivial r.h.s. and is given by:

K̃κ

〈
O∆

k∆−2
1

Js2

ks2−1
2

Js3

ks3−1
3

〉
= 0 (2.9)

which holds true both when s2 = s3 and s2 6= s3.

We will denote flat space amplitudes by A. The corresponding correlators in dS4,1

with all insertions at the equal-time spatial-slice η = 0, will be denoted by M.

3 CFT correlators

In this section we present the momentum space expressions for 3-point CFT3 correlators

comprising spin-1 conserved current J , stress tensor T , higher spin conserved currents

Js with spin s > 2 and marginal scalar operators O3. The parity-even sector of 3-point

CFT correlators has been studied by solving the associated conformal Ward identities in

a series of works [20, 25, 27, 29]. In [61, 71] we studied the parity-odd sector of 3-point

correlators by solving conformal Ward identities and using the technique of spin-raising

and weight-shifting operators in momentum space [58, 59, 72].

We present our results after contracting the momentum space expressions with null

transverse polarization vectors.

1Up to overall conformal time integral factors as discussed in section 5.
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3.1 〈JsJsO3〉 for general spin s current

In this subsection we write down correlators of the form 〈JsJsO3〉 for a general spin s. For

s = 1, 2 we can write down their explicit form in momentum space easily. A similar momen-

tum space expression for a correlator involving general spin s current is very cumbersome.

However, it takes a very simple form when written in terms of spinor-helicity variables. We

also note that, as discussed in the previous section, a correlator of the form 〈JsJsO3〉 only

has a homogeneous part. The homogeneous correlator is given by the contribution from

the parity-even and the parity-odd sectors:

〈JsJsO3〉
h

= 〈JsJsO3〉even,h + 〈JsJsO3〉odd,h (3.1)

3.1.1 〈JJO3〉
Let us first consider the 3-point correlator comprising two spin-1 conserved currents and a

marginal scalar operator. The momentum space expression for the parity-even part of the

correlation function is [20, 29, 33]:

〈JJO3〉even,h =
(E + k3)

E2

[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]

〈JJO3〉even,nh
= 0.

(3.2)

The momentum space expression for the parity-odd part of the correlator is [61, 71]:

〈JJO3〉odd,h =
(E + k3)

E2

[
k2 ǫk1z1z2 − k1 ǫk2z1z2

]

〈JJO3〉odd,nh
= 0. (3.3)

3.1.2 〈TTO3〉
Let us now consider the 3-point correlator comprising two stress-tensor insertions and a

marginal scalar. The parity-even part of the correlator is given by [20, 29, 33]:

〈TTO3〉even,h = k1k2
E + 3k3

E4

[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]2

〈TTO3〉even,nh
= 0 (3.4)

whereas the parity-odd part of this correlator is [71]:

〈TTO3〉odd,h =
E + 3k3

E4
(k2ǫk1z1z2 − k1ǫk2z1z2)

× (~z1 · ~z2)(~k1 · ~k2 − k1k2)(~z1 · ~k2)(~z2 · ~k1)

〈TTO3〉odd,nh
= 0 (3.5)

3.1.3 〈JsJsO3〉
Correlators of the form 〈JsJsO3〉 have unwieldy expressions in momentum space. The

easiest way to determine them is to use weight-shifting operators [59]. For this, we first

– 5 –
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derive the momentum space expressions for correlators with spin-3 and spin-4 currents

using weight-shifting operators [59]:

〈J3J3O3〉even,h = P
(3)
1 P

(3)
2 H3

12〈O2O2O3〉
〈J4J4O3〉even,h = P

(4)
1 P

(4)
2 H4

12〈O2O2O3〉
(3.6)

where P
(s)
i are spin-s projectors [59] and H12 is a bi-local weight shifting operator which

raises the spin at points 1 and 2 and lowers the dimensions at points 1 and 2. In momentum

space the operator takes the form [59]:

H12 = 2(~z1 · ~K12)(~z2 · ~K12) − (~z1 · ~z2)K2
12 (3.7)

where Ki
12 ≡ ∂

∂ki
1

− ∂
∂ki

2

. The explicit form of the correlator in (3.6) is complicated and not

reproduced here. A similar expression can be written down for parity-odd contribution.

These correlators when expressed in spinor-helicity variables take a very simple form.

For this, let us consider the 3-point correlator of two higher spin conserved currents Js

with spin s and a marginal scalar. The parity-even part of the correlator is given by [71]:

〈J−

s J−

s O3〉even,h =
E + (2s − 1)k3

E2s
〈12〉2s

〈J+
s J+

s O3〉even,h =
E + (2s − 1)k3

E2s
〈12〉2s

(3.8)

whereas the parity-odd part of the correlator is [71]:

〈J−

s J−

s O3〉odd,h = i
E + (2s − 1)k3

E2s
〈12〉2s

〈J+
s J+

s O3〉odd,h = −i
E + (2s − 1)k3

E2s
〈12〉2s

(3.9)

As stated earlier, the non-homogeneous piece vanishes for both parity-even and parity-odd

correlators:

〈JsJsO3〉nh = 0. (3.10)

One can check that for the cases when s = 1 and s = 2, the momentum space results

in (3.2), (3.3), (3.4), and (3.5) when re-expressed in spinor-helicity variables match the

above results.

3.2 〈JsJsJs〉
In this subsection we write down correlators of the form 〈JsJsJs〉 for a general s. Unlike

〈JsJsO〉, these correlators have both homogeneous and non-homogeneous pieces:

〈JsJsJs〉
h

= 〈JsJsJs〉even,h + 〈JsJsJs〉odd,h . (3.11)

We give the explicit forms for 〈JJJ〉 and 〈TTT 〉 in momentum space. In both cases, there

are exactly two homogeneous pieces, one parity-even and another parity-odd. We also note

that there is only one parity-even non-homogeneous contribution. The non-homogeneous

part of the parity-odd correlator is always a contact term. For a general spin s, the

momentum space expression is very complicated. However, in spinor-helicity variables it

becomes simple and we express the homogeneous part in these variables. The analogous

expression for non-homogeneous part is not yet known.
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3.2.1 〈JJJ〉
Let us now consider the 3-point correlator comprising three spin-1 conserved current in-

sertions. The parity-even part of the correlator is given by2 [20, 27, 33]:

〈JJJ〉even,h =
ceven

JJJ

E3

[
2 (~z1 · ~k2) (~z2 · ~k3) (~z3 · ~k1) + E{k3 (~z1 · ~z2) (~z3 · ~k1) + cyclic}

]

〈JJJ〉even,nh
= −2ceven

JJ

E
[(~z1 · ~z2)(~z3 · ~k1) + cyclic] (3.12)

Note that ceven
JJ appears in two point function 〈Jµ(k)Jν(−k)〉

even
= ceven

JJ πµν(k)k where

πµν(k) is the transverse projector:

πµ
α(p) ≡ δµ

α − pµ pα

p2
. (3.13)

The parity-odd part of the correlator is given by [61, 71]

〈JJJ〉odd,h =
codd

JJJ

E3

[{
(~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)
+ (~k3 · ~z2)

(
ǫk1z1z3k2 − ǫk2z1z3k1

)

− (~z2 · ~z3)ǫk1k2z1E +
k1

2
ǫz1z2z3E(E − 2k1)

}
+ cyclic perm

]

〈JJJ〉odd,nh = codd
JJ ǫz1z2z3 (3.14)

where codd
JJ arises in parity-odd contribution to the two point function 〈Jµ(k)Jν(−k)〉

odd
=

codd
JJ ǫµνk. Let us also note that the non-homogeneous contribution to the parity-odd part

of 〈JJJ〉 (term proportional to codd
JJ ) in (3.14) is a contact term.

3.2.2 〈TTT 〉
Let us now consider the 3-point correlator comprising three stress-tensor insertions. The

parity-even contribution to the correlator is given by [20, 27, 33]:

〈TTT 〉even,h =
ceven

T T T c2
123

J2E5

[
(~z1 · ~k2 ~z2 · ~k3 ~z3 · ~k1)2

+
E

2
~z1 · ~k2 ~z2 · ~k3 ~z3 · ~k1 (k3 ~z1 · ~z2 ~z3 · ~k1 + cyclic)

]

〈TTT 〉even,nh
= 2ceven

T T

[(
c123

E2
+

b123

E
− E

)
(~z1 · ~z2 ~z3 · ~k1 + cyclic)2 + (k3

1 + k3
2 + k3

3)Act

]

(3.15)

where ceven
T T appears in the even part of the 2-point function 〈TT 〉 and

Act = (~z1 · ~z2)(~z2 · ~z3)(~z3 · ~z1). (3.16)

We note that the term proportional to Act in (3.15) is a contact term and will be ignored

below in establishing the double copy relation.

2Throughout this paper we suppress color indices and the structure constants.
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We see that apart from the physical pole at E = 0, 〈TTT 〉even,h displays an unphysical

pole at J = 0. However, this is only an artefact of the basis we have chosen to work with

and by working in a suitable basis we can get rid of the unphysical pole. For instance, it

can be shown that after a clever use of 3d degeneracies, one can express the correlator as

follows3

〈TTT 〉even,h =
ceven

T T T c123

E6
F2[1, 2, 3]F2[2, 3, 1]F2[3, 1, 2] (3.17)

where

F2[i, j, l] =
[
(~zi · ~zj)E(E − 2kl) + 2(~zi · ~kj)(~zj · ~ki)

]
. (3.18)

For details of this computation see appendix C.1.

The parity-odd contribution to the correlator is given by [71]

〈TTT 〉odd = A1ǫk3k1z1ǫk1k2z2ǫk2k3z3(~k2 · ~z1)(~k3 · ~z2)(~k1 · ~z3)

+ A2ǫk2k3z3(~k1 · ~z3)(~k3 · ~z2)2(~k2 · ~z1)2

+ A2(k2 ↔ k3)ǫk1k2z2(~k1 · ~z3)2(~k3 · ~z2)(~k2 · ~z1)2

+ A2(k1 ↔ k3)ǫk3k1z1(~k1 · ~z3)2(~k3 · ~z2)2(~k2 · ~z1)

(3.19)

where the homogeneous piece in the form factor is given by:

A1,h = codd
T T T

c2
123

2J4E4
, A2,h = −codd

T T T

b12c2
123

2J4E4
(3.20)

Just as in the parity-even case, we see that the form factors have an unphysical extra pole

at J = 0. This can again be gotten rid of by working in a suitable basis where it takes

the form4

〈TTT 〉odd = codd
T T T

c123

E6

[
2(~z1 · ~k2 ~z2 · ~k3 ~z3 · ~k1) + E

(
(~z1 · ~z2 ~z3 · ~k1)k3 + cyclic

)]

[
− (~k3 · ~z2)

(
ǫk3z1z3k1 + ǫk1z1z3(E−k3)

)
−(~k1 · ~z3)

(
ǫk2z1z2k1 + ǫk1z1z2(E−k2)

)

+ E(~z2 · ~z3)ǫk1k2z1 − 1

2
k1E(E − 2k1)ǫz1z2z3 + cyclic perm.

]
(3.21)

The non-homogeneous part of the parity-odd correlator is determined by the form

factors in (3.19):

A1,nh = −codd
T T

12(k2
1 + k2

2 + k2
3)

J4
(3.22)

A2,nh = codd
T T

(
k4

3 + 7k2
3(k2

1 + k2
2) + 4(k4

1 + 4k2
1k2

2 + k4
2)

)

J4
(3.23)

where codd
T T appears in the parity-odd part of the two point function 〈TT 〉. It can be shown

that, the parity-odd non-homogeneous contribution to the correlator is a contact term,

see [71] for details. Since the non-homogeneous part is a contact term, this will be ignored

while checking double copy relations.

3See section 5.3 for a derivation using gravity.
4See section 5.3.
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3.2.3 〈JsJsJs〉
Let us now consider the 3-point correlator comprising three higher spin conserved currents

Js with spin s. The parity-even contribution to the correlator is given by [71]:

〈
J−

s J−

s J−

s

〉
even,h

=
(k1k2k3)s−1

E3s
〈12〉s〈23〉s〈31〉s

〈
J+

s J+
s J+

s

〉
even,h

=
(k1k2k3)s−1

E3s
〈12〉s〈23〉s〈31〉s

(3.24)

The parity-odd contribution to the correlator is given5 by [71]

〈
J−

s J−

s J−

s

〉
odd,h

= i
(k1k2k3)s−1

E3s
〈12〉s〈23〉s〈31〉s

〈
J+

s J+
s J+

s

〉
odd,h

= −i
(k1k2k3)s−1

E3s
〈12〉s〈23〉s〈31〉s

(3.25)

4 Double copy structure of CFT correlators

In this section we discuss the double copy structure of CFT 3-point correlation functions in

momentum space. We will see that the double copy relations are such that homogeneous

terms are mapped to homogeneous terms and non-homogeneous terms are mapped to non-

homogeneous terms. We will establish our claims in momentum space for 〈TTO3〉 and

〈JJO3〉 and for 〈TTT 〉 and 〈JJJ〉. We use the spinor-helicity variables to show this for

correlators such as 〈JsJsO3〉 and 〈JsJsJs〉.

4.1 〈TTO3〉 and 〈JJO3〉
The following double copy structure of 〈TTO3〉even was established in [33]:

〈TTO3〉even,h =
(E + 3k3)k1k2

(E + k3)2
〈JJO3〉even,h〈JJO3〉even,h (4.1)

From the explicit expressions for the correlators in (3.2), (3.3) and (3.5) we notice that the

double copy relations extends to the parity-odd sector:

〈TTO3〉odd,h =
(E + 3k3)k1k2

(E + k3)2
〈JJO3〉odd,h〈JJO3〉even,h (4.2)

Remarkably, we also notice from (3.3) and (3.4) that 〈TTO3〉even is also given by the square

of 〈JJO3〉odd

〈TTO3〉even,h =
(E + 3k3)k1k2

(E + k3)2
〈JJO3〉odd,h〈JJO3〉odd,h (4.3)

5Let us note that the parity-odd correlator, when written in spinor-helicity variables, gets an extra factor

of i as compared to parity-even correlator. This arises due to the fact that when converting momentum

space parity-odd answer to spinor-helicity variables, the Levi-Civita tensor ǫijk is expressed in terms of

Pauli matrices and their algebra gives rise to this extra factor. More precisely

T r(σiσjσk) = 2iǫijk.
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The above double copy relations for 〈TTO3〉even and 〈TTO3〉odd immediately imply the

following double copy structure for the complete correlator:

〈TTO3〉even,h + 〈TTO3〉odd,h =
(E + 3k3)k1k2

(E + k3)2

(
〈JJO3〉even,h + 〈JJO3〉odd,h

)2

=⇒ 〈TTO3〉h =
(E + 3k3)k1k2

(E + k3)2
〈JJO3〉2

h (4.4)

In writing the above double copy relation it is crucial that we have the following relation

between 〈JJO3〉even and 〈JJO3〉odd:

〈JJO3〉2
even,h = c〈JJO3〉2

odd,h (4.5)

where c is some constant. As noted in section 2, for correlators such as 〈TTO3〉 and 〈JJO3〉
the conformal Ward identity (in spinor helicity variables) does not have a non-homogeneous

term. Hence the double copy structure that we obtained above is purely for correlators

that satisfy the homogeneous conformal Ward identity.

4.2 Double copy for higher-spin correlators

We will now extend our analysis of the double copy structure of 〈TTO3〉 to higher spin

correlators of the form 〈JsJsO3〉. Using (3.6) one can show that the higher spin correlators

take the following form:

〈J4J4O3〉even,h = k1k2
(E + 7k3)

(E + 3k3)2
〈J2J2O3〉2

even

〈J3J3O3〉even,h = k1k2
(E + 5k3)

(E + k3)(E + 3k3)
〈J2J2O3〉even〈J1J1O3〉even.

(4.6)

Calculating the parity-odd contribution to these three point functions is difficult due to the

high amount of degeneracy [61, 71]. However, in spinor helicity variables the computation

becomes easier. In these variables one has the following remarkable relation between the

parity-even and parity-odd contributions [71]:

〈Js
−Js

−O3〉even,h = i〈Js
−Js

−O3〉odd,h, 〈Js
+Js

+O3〉even,h = −i〈Js
+Js

+O3〉odd,h (4.7)

for any s and all the other spinor helicity components are zero. Using this one can gener-

alise (4.6) to include the parity-odd sector. The double copy relation (4.6) then becomes

〈J4J4O3〉even,h + 〈J4J4O3〉odd,h =
k1k2(E + 7k3)

(E + 3k3)2

(
〈J2J2O3〉even,h + 〈J2J2O3〉odd,h

)2

=⇒ 〈J4J4O3〉h =
k1k2(E + 7k3)

(E + 3k3)2
〈J2J2O3〉2

h

〈J3J3O3〉even,h + 〈J3J3O3〉odd,h =
k1k2(E + 5k3)

(E + k3)(E + 3k3)

(
〈J2J2O3〉even,h + 〈J2J2O3〉odd,h

)

×
(
〈J1J1O3〉even,h + 〈J1J1O3〉odd,h

)

=⇒ 〈J3J3O3〉h =
k1k2(E + 5k3)

(E + k3)(E + 3k3)
〈J2J2O3〉h〈J1J1O3〉h
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To write down the above double copy relations it is crucial that we have the following

relation between the parity-odd and parity-even parts of the correlators:

〈J2J2O3〉2
even,h = 〈J2J2O3〉2

odd,h

〈J2J2O3〉even,h〈J1J1O3〉even,h = 〈J2J2O3〉odd,h〈J1J1O3〉odd,h (4.8)

As we noted in the case of the double copy structure of 〈TTO3〉 in terms of 〈JJO3〉,
the conformal Ward identity for correlators of the form 〈JsJsO3〉 does not have a non-

homogeneous term. Hence the double copy relations that we arrived at here are purely for

the homogeneous terms.

Double copy relation for general spin. One can easily extend the above analysis to

correlators of the form 〈JsJsO3〉 in the spinor helicity variables, see [71]. The correlation

functions are given by:

〈J−

s J−

s O〉even,h = ks−1
1 ks−1

2

(E + (2s − 1)k3)

E2s
〈12〉2s

〈J+
s J+

s O〉even,h = ks−1
1 ks−1

2

(E + (2s − 1)k3)

E2s
〈1̄2̄〉2s

〈J+
s J−

s O〉even,h = 〈J−

s J+
s O〉even,h = 0.

(4.9)

The spinor helicity components of the odd part of the correlator can be computed us-

ing (4.7). One can then derive the following double copy relation for a general correlator

of the kind 〈JsJsO3〉 that satisfies the homogeneous conformal Ward identity:

〈JsJsO〉even,h + 〈JsJsO〉odd,h

=
k1k2(E + (2s − 1)k3)

(E + (2s′ − 1)k3)(E + (2s′′ − 1)k3)

(
〈Js′Js′O〉even,h + 〈Js′Js′O〉odd,h

)

×
(
〈Js′′Js′′O〉even,h + 〈Js′′Js′′O〉odd,h

)

=⇒ 〈JsJsO〉h =
k1k2(E + (2s − 1)k3)

(E + (2s′ − 1)k3)(E + (2s′′ − 1)k3)
〈Js′Js′O〉h〈Js′′Js′′O〉h

where s′ + s′′ = s.

We will now come to more complicated correlators such as 〈JJJ〉 and 〈TTT 〉 whose

conformal Ward identities have a non-homogeneous term and show more interesting double

copy relations.

4.3 Double copy relation for 〈JJJ〉 and 〈TTT 〉

The double copy relation between 〈JJJ〉 and 〈TTT 〉 is more subtle than those for corre-

lators with a scalar operator insertion. Unlike 〈TTO3〉 or 〈JJO3〉 these correlators have

a non-homogeneous term as well and we will see that the double copy structures map

homogeneous terms to homogeneous terms and non-homogeneous terms get mapped to

non-homogeneous terms.
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Homogeneous terms. The following double copy structure was noticed in [33] for the

homogeneous term in the even part of 〈TTT 〉:

〈TTT 〉even,h = k1k2k3〈JJJ〉even,h〈JJJ〉even,h (4.10)

From the explicit expressions for the correlators in (3.12), (3.14), and (3.19), we notice:

〈TTT 〉odd,h = k1k2k3〈JJJ〉odd,h〈JJJ〉even,h (4.11)

We also have the remarkable relation that the parity-even part of the homogeneous term

is given by the square of the odd part of the homogeneous term in 〈JJJ〉:

〈TTT 〉even,h = k1k2k3〈JJJ〉odd,h〈JJJ〉odd,h (4.12)

Combining these relations we obtain the following double copy relation for the complete

homogeneous term of the 〈TTT 〉 correlator:

〈TTT 〉even,h + 〈TTT 〉odd,h = k1k2k3(〈JJJ〉even,h + 〈JJJ〉odd,h)2

=⇒ 〈TTT 〉h = k1k2k3 〈JJJ〉2
h (4.13)

Non-homogeneous terms. From (3.12) and (3.15) we know that 〈JJJ〉even and

〈TTT 〉even also have non-trivial non-homogeneous parts between which there exists the

following double copy relation:

〈TTT 〉even,nh = (E3 − E(k1k2 + k2k3 + k1k3) − k1k2k3)〈JJJ〉2
even,nh (4.14)

This relation is independent of the double copy of the homogeneous part as the pre-factor

is different. The non-homogeneous parts of 〈TTT 〉odd and 〈JJJ〉odd are trivial as they are

contact terms.

4.4 Double copy structure for higher spin correlators

We will now discuss the double copy structures in higher spin correlators. This is most

easily done using the spinor-helicity variables. The parity-even part of the homogeneous

part of 〈JsJsJs〉 is given by [71]:

〈JsJsJs〉even,h =
(k1k2k3)s−1

E3s
〈12〉s〈23〉s〈31〉s (4.15)

As noted in [71], the odd part of the above correlator is given by the same expression up

to an overall factor of i:

〈JsJsJs〉odd,h = i
(k1k2k3)s−1

E3s
〈12〉s〈23〉s〈31〉s (4.16)

From this, we have the following double copy expression for the homogeneous part of the

higher spin correlator 〈JsJsJs〉:

〈JsJsJs〉h = k1k2k3(〈Js′

Js′

Js′〉〈Js′′

Js′′

Js′′〉) (4.17)

such that s′ + s′′ = s.

– 12 –



J
H
E
P
0
7
(
2
0
2
1
)
0
3
3

4.5 Spin s current correlator as s copies of the spin one current correlator

In this sub-section we note that we can write correlators of the form 〈JsJsO3〉 and 〈JsJsJs〉
as s copies of correlators of the spin-one current. Using the double copy relations in (4.2)

recursively we notice that:

〈JsJsO〉h = (k1k2)s−1 E + (2s − 1)k3

(E + k3)s
(〈JJO〉h)s (4.18)

Similarly using the double copy relations in (4.17) recursively we notice that:

〈JsJsJs〉h = (k1k2k3)s−1 (〈JJJ〉h)s (4.19)

5 CFT correlators from dS4 Feynman diagrams and the flat space limit

In this section, we relate CFT correlators discussed in the previous section to the tree-level

amplitude calculated using Feynman diagrams in dS4. We also relate CFT correlators to

flat space scattering amplitudes.

5.1 Amplitudes

Here we will study 3-point flat-space scattering amplitudes in general parity-violating theo-

ries of gravitons, gluons and massless scalars in 4d. These are calculated straightforwardly

from a Lagrangian whose cubic vertices will contribute to the 3-point amplitudes. We will

use the notation M to denote the flat space amplitude without energy conservation. This

is a useful quantity because E = k1 + k2 + k3 6= 0 in dS4 and the dS4 vertex is obtained

from M by multiplying with an overall conformal time integral factor. This also matches

the CFT correlators that we computed in section 3. We also take flat space limit of M
and resultant scattering amplitude will be denoted by A. More precisely

A = lim
E→0

M. (5.1)

We also express M in both 4d and 3d notations. See section 2 and the discussion below (2.1)

for how to express 4d amplitude in terms of 3d notation. The 3d notation is particularly

useful while comparing with the CFT correlators.

We will first describe the gauge theory action, the gravity action and the gravity-gluon

interactions that we consider.

Gauge theory action. The gauge theory action that we consider is:

SA = SEM + SA
even + SA

odd (5.2)

where SEM is the electromagnetic action and SA
even and SA

odd are gauge invariant parity-

preserving and parity-violating actions respectively, given by:

SEM
even = −1

4

∫
d4x

√
gF 2 (5.3)

SA
even =

∫
d4x

√
g(αA

1 F 3 + αA
2 φF 2) (5.4)

SA
odd =

∫
(βA

1 FµνFρσ + βA
2 FµνF τ

ρ Fστ + βA
3 φFµνFρσ)dxµ ∧ dxν ∧ dxρ ∧ dxσ (5.5)
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where

F 3 = F β
α F

γ
β F α

γ (5.6)

Depending on the background, gµν will be the four dimensional Minkowski or de Sitter

metric.

Gravity action. The gravity action that we consider is:

Sg = SEH + Sg
even + S

g
odd (5.7)

where SEH is the Einstein-Hilbert action and Sg
even and S

g
odd are parity-preserving and

parity-violating actions respectively, given by:

SEH =
1

16πG

∫
d4x

√
g(R + Λ) (5.8)

Sg
even =

∫
d4x

√
g(αg

1W 2 + α
g
2W 3 + α

g
3φW 2) (5.9)

S
g
odd =

∫
(βg

1WµνρσW
ρσ

αβ +β
g
2WρσαβW σγ

µτ W ρτ
γ ν +β

g
3φWµνρσW

ρσ
αβ )dxµ∧dxν ∧dxα∧dxβ

(5.10)

where

W 2 = WµνρσW µνρσ, W 3 = WµνρσW ρσαβWαβµν , g = det(gµν) (5.11)

and Wµνρσ is the Weyl tensor.

5.1.1 Gauge amplitudes

Gluon-gluon-scalar amplitudes. Let us first compute the contribution to the gluon-

gluon-scalar amplitudes due to the interactions corresponding to the coupling αA
2 and βA

3

in (5.4) and (5.5). From the Lagrangian, we first compute the amplitude without energy

conservation (M) and express it in both 4d and 3d notation (see (2.1))

MφF 2 = (k1 · z2)(k2 · z1) − (k1 · k2)(z1 · z2)

= (~k1 · ~z2)(~k2 · ~z1) +
E

2
(E − 2k3)(~z1 · ~z2)

M
φF F̃

= ǫz1k1z2k2 = −ǫz1z2k1k2 + ǫz1z2k2k1 (5.12)

To get actual flat space scattering amplitudes we have to impose energy conservation, i.e.

E → 0. This gives:

AφF 2 = lim
E→0

MφF 2 = (~k1 · ~z2)(~k2 · ~z1),

A
φF F̃

= lim
E→0

M
φF F̃

= −ǫz1z2k1k2 + ǫz1z2k2k1. (5.13)
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Gluon-gluon-gluon amplitudes. Let us now compute the contribution to the gluon-

gluon-gluon amplitudes due to interactions corresponding to couplings αA
1 and βA

2 in (5.4)

and (5.5). The parity-even amplitude is given by:

MF 3 =
1

2
z[1µk1ν]z[2νk2ρ]z[3ρk3µ]

= (~k2 · ~z1)(~k3 · ~z2)(~k1 · ~z3) +
E

2

(
k1(~k2 · ~z1)(~z2 · ~z3) + cyclic perm.

)
(5.14)

The parity-odd amplitude is given by:

M
F 2F̃

= z[2αk2τ ]z[3τ k3β]ǫ
αβz1k1 + cyclic perm.

=

[
− (~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)
+ (~k3 · ~z2)

(
ǫk1z1z3k2 − ǫk2z1z3k1

)

− (~z2 · ~z3)ǫk1k2z1E +
k1

2
ǫz1z2z3E(E − 2k1)

]
+ cyclic perm. (5.15)

The flat space scattering amplitudes is obtained by taking the E → 0 limit. This gives:

AF 3 = lim
E→0

MF 3 = (~k2 · ~z1)(~k3 · ~z2)(~k1 · ~z3)

A
F 2F̃

=
[
−(~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)
+ (~k3 · ~z2)

(
ǫk1z1z3k2 − ǫk2z1z3k1

)]
+ cyclic perm.

(5.16)

We also have contributions to the 3-gluon amplitude from F 2 and FF̃ . To obtain these we

first calculate:

MYM = (k2 · z1)(z2 · z3) + cyclic perm. = (~k2 · ~z1)(~z2 · ~z3) + cyclic perm.

M
F F̃

= ǫk1z1z2z3 + cyclic perm. = E ǫz1z2z3 (5.17)

The actual flat space scattering amplitudes are then given by:

AYM = (~k2 · ~z1)(~z2 · ~z3) + cyclic perm.

A
F F̃

= 0 (5.18)

5.1.2 Gravity amplitudes

Working with a traceless, transverse perturbation around the flat metric, we obtain the

following for the Weyl tensor to first order in perturbation:

Wµνρσ = k[µzν]k[ρzσ] (5.19)

where kµ and zµ are defined in (2.1).

Graviton-graviton-scalar amplitude. Let us consider now the parity-odd graviton-

graviton-scalar amplitude due to the interaction corresponding to the coupling β
g
3 in (5.10).
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From the Lagrangian we have:

M
φW W̃

=
1

2
ǫαβγδW(1)µναβ

W(2)
µν

γδ

= ǫ(z1k1z2k2)

(
(k2 · z1)(k1 · z2) +

E

2
(E − 2k3)z1 · z2

)

=

(
(~z1 · ~k2)(~z2 · ~k1) +

E

2
(E − 2k3)~z1 · ~z2

) (
−k1ǫz1z2k2 + k2ǫz1z2k1

)
(5.20)

The flat space amplitude is given by:

A
φW W̃

= (~z1 · ~k2)(~z2 · ~k1)
(
−k1ǫz1z2k2 + k2ǫz1z2k1

)
(5.21)

Similarly, one can compute the parity-even graviton-graviton-scalar amplitude due to the

interaction corresponding to the coupling α
g
3 in (5.9) from MφW 2 :

MφW 2 =
1

4
W(1)µνρσ

W(2)
µνρσ

=
1

4
(2(z1 · k2)(z2 · k1) + E(E − 2k3)z1 · z2)2

=

(
(~z1 · ~k2)(~z2 · ~k1) +

E

2
(E − 2k3)~z1 · ~z2

)2

(5.22)

The flat space amplitude is obtained by taking the E → 0 limit:

AφW 2 =
(
(~z1 · ~k2)(~z2 · ~k1)

)2
(5.23)

Graviton-graviton-graviton amplitude. Here we calculate graviton-graviton-

graviton amplitude from interactions corresponding to couplings α
g
2 and β

g
2 in (5.9)

and (5.10). The parity-even amplitude is given by:

MW 3 = F1(1, 2, 3)F1(2, 3, 1)F1(3, 1, 2)

= F2(1, 2, 3)F2(2, 3, 1)F2(3, 1, 2) (5.24)

where

F1(i, j, l) = [−(zi · zj)ki · kj + (zi · kj)(zj · ki)]

F2(i, j, l) =

[
(~zi · ~kj)(~zj · ~ki) +

1

2
(~zi · ~zj)E(E − 2kl)

]
(5.25)

– 16 –



J
H
E
P
0
7
(
2
0
2
1
)
0
3
3

The parity-odd contribution to the amplitude is given by:

M
W 2W̃

=
1

2

(
z[1µk1ν]z[2νk2ρ]z[3ρk3µ]][z[2αk2τ ]z[3τ k3β]ǫ

αβz1k1

)

=
1

2
[2(z1 · k2 z2 · k3 z3 · k1) + E ((z1 · z2 z3 · k1)k3 + cyclic)]

[{(z3 · k2)ǫ(z2k3z1k1) − (k2 · k3)ǫ(z1z2z3k1) − (z2 · z3)ǫ(z1k1k2k3)

+(z2 · k3)ǫ(k2z3z1k1)} + cyclic]

=

[
(~z1 · ~k2 ~z2 · ~k3 ~z3 · ~k1) +

E

2

(
(~z1 · ~z2 ~z3 · ~k1)k3 + cyclic

) ]

[
(~k3 · ~z2)

(
ǫk3z1z3k1 + ǫk1z1z3(E − k3)

)
+ (~k1 · ~z3)

(
ǫk2z1z2k1 + ǫk1z1z2(E − k2)

)

− E(~z2 · ~z3)ǫk1k2z1 +
1

2
k1E(E − 2k1)ǫz1z2z3 + cyclic

]
(5.26)

The flat space amplitude, as before, is obtained by taking the E → 0 limit:

AW 3 = (~z1 · ~k2)(~z2 · ~k1) × (~z2 · ~k3)(~z3 · ~k2) × (~z3 · ~k1)(~z1 · ~k3)

A
W 2W̃

=
[
(~z1 · ~k2 ~z2 · ~k3 ~z3 · ~k1)

]

[
(~k3 · ~z2)

(
ǫk3z1z3k1 − ǫk1z1z3k3

)
− (~k1 · ~z3)

(
ǫk1z1z2k2 − ǫk2z1z2k1

)
+ cyclic

]

(5.27)

The EH term in (5.8) gives

MEH = ((k2 · z1)(z2 · z3) + cyclic perm.)2 =
(
(~k2 · ~z1)(~z2 · ~z3) + cyclic

)2
. (5.28)

In the flat space limit this gives

AEH =
(
(~k2 · ~z1)(~z2 · ~z3) + cyclic

)2
. (5.29)

5.2 Double copy structure of parity-violating amplitudes

In this section, we see how the double copy structure arises directly at the level of 3-point

scattering amplitude when parity-violating terms are taken into account. The 3-point

amplitudes involved may be written down directly on symmetry grounds, or computed

from the action given above. The double copy relations of amplitudes also follows from that

for CFT correlators that we saw previously, but here we show that it can be demonstrated

directly in 4d flat space.

Scalar-graviton-graviton. From the momentum space expressions for MφF 2 and

M
φF F̃

in (5.12) and the expression for M
φW W̃

and MφW 2 in (5.20) and in (5.22) we

obtain:

M
φW W̃

= MφF 2M
φF F̃

, MφW 2 = (MφF 2)2 = M
φF F̃

M
φF F̃

MφW 2 + M
φW W̃

= (MφF 2 + M
φF F̃

)2 (5.30)
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In the flat space limit when E → 0 one has:

A
φW W̃

= AφF 2A
φF F̃

, MφW 2 = (AφF 2)2 = A
φF F̃

M
φF F̃

AφW 2 + A
φW W̃

= (AφF 2 + A
φF F̃

)2 (5.31)

Graviton-graviton-graviton. From the momentum space expressions for MF 3 and

M
F 2F̃

in (5.14) and (5.15) and the expression for M
W 2W̃

in (5.26) one can verify that:

M
W 2W̃

= MF 3M
F 2F̃

(5.32)

In the E → 0 limit one has:

A
W 2W̃

= AF 3A
F 2F̃

(5.33)

We also have the following relation:

MW 3 = M2
F 3 (5.34)

The details of how one obtains this relation in momentum space are given in appendix (C.1).

Thus we notice that the following double copy structure

AW 3 = A2
F 3 (5.35)

extends beyond the E → 0 limit. We also notice using the momentum space expressions

in (5.15) the following:

(MF 3)2 = (M
F 2F̃

)2 (5.36)

Similarly one has the following double copy relation:

MW 3 + M
W 2W̃

= (MF 3 + M
F 2F̃

)2 (5.37)

AW 3 + A
W 2W̃

= (AF 3 + A
F 2F̃

)2

and, also, the well-known relation between Einstein gravity and Yang-Mills amplitudes:

MEG = (MYM)2 (5.38)

5.3 CFT correlators from dS4

In this section we will compute tree level dS4 cosmological correlators using the method

of [56] and also including the relevant parity-odd 3-point vertices in the Lagrangian. The

calculation with parity-even vertices was done in appendix A of [33].

The idea, due to Maldacena and Pimentel [56], that will be central to our analysis in

this section is that certain cosmological correlators in de Sitter can be constructed directly

from the corresponding flat-space amplitudes by dressing with conformal time integrals

arising from using conformally covariant transformation properties of fields in dS4. These
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Lorentzian dS4 correlators also compute boundary (Euclidean) CFT3 correlators, thereby

establishing a relationship between these three quantities.6

We will work in (Lorentzian) dS4 with the metric:

ds2 =
1

η2
(−dη2 + dx2

i ) (5.39)

For calculating dS4 correlators perturbatively, we first look at the on-shell wave-

functions for (linearised) free fields, which can be massless scalars, gauge or gravita-

tional perturbations. These kind of fields will suffice to calculate the correlators we

will be interested in. As is well known, for the scalar we have the Bunch Davies mode

function φ ∼ (1 − ikη) exp(ikη), the gauge field solution is a plane wave just like in

flat space Aµ ∼ zµ exp(ikη) and the linearised gravitational perturbation is given by

γµν ∼ zµzν(1 − ikη) exp(ikη). It was noted in [56], that this results in the Weyl tensors

for the linearised gravity perturbations about dS and flat backgrounds being conformally

related:

W
µ
(dS) νρσ

(
exp(ikη)(1 − ikη)zµzν

)
= (−ikη)W µ

(flat) νρσ

(
exp(ikη)zµzν

)
, (5.40)

whereas the gauge field strength is the same in both backgrounds. This means that the dS

correlators of interest to us are the same as corresponding flat space amplitudes without

energy condervation (M) upto conformal time integrals which are easily evaluated. In

this section, we will calculate the contribution to 3-point functions from parity-violating

interaction terms in the Lagrangian of the form FF̃φ, WW̃φ, F 2F̃ and W 2W̃ . We will take

all parity-odd two-point functions to be vanishing as this is the case for the dS4 actions

considered here.

We will find that our tree-level dS4 computations will generate the different parts of the

corresponding CFT3 correlator (both parity-even and odd). Therefore, this perturbative

approach provides a simple method of fixing the form of CFT correlators without taking

recourse to solving conformal Ward identities.

5.3.1 〈JJO3〉
The term in the action which contributes to the odd part of 〈JJO3〉 is given by:

∫
φFµνFρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ (5.41)

The tree-level dS4 correlator corresponding to this interaction is given by:

〈JJO3〉odd = Im

[∫ 0

−∞

dη(1 − ik3η)eiηE

]
M

φF F̃
=

E + k3

E2
M

φF F̃
(5.42)

Substituting for M
φF F̃

from (5.12) we see that this matches the expression for the homo-

geneous part of the correlator in (3.3). In the flat space limit we get:

lim
E→0

〈JJO3〉odd =
k3

E2
A

φF F̃
(5.43)

where A
φF F̃

is given in (5.13).
6It is of course true that flat space amplitudes can be generated by an appropriate limit of CFT corre-

lators, the non-trivial part is that we can do the converse at least for certain correlators.
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The corresponding parity-even correlator is given by [20, 29, 33]:

〈JJO3〉even =
(E + k3)

E2
MφF 2 (5.44)

This matches the expression for the homogeneous part of the correlator in (3.2) if we use

the expression for MφF 2 in (5.12). In the flat space limit the correlator takes the form:

lim
E→0

〈JJO3〉even =
k3

E2
AφF 2 (5.45)

where AφF 2 is given in (5.13).

5.3.2 〈TTO3〉

Let us now consider the parity-odd part of the correlator 〈TTO3〉. The only contribution

to 〈TTO3〉odd comes from the term:

∫
φ WαβµνW αβ

ρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ (5.46)

The corresponding dS4 correlator is given by:7

〈TTO3〉odd = k1k2Im

[∫ 0

−∞

dη η2(1 − ik3η)eiηE

]
M

φW W̃

=
k1k2(E + 3k3)

E4
M

φW W̃
(5.47)

We can easily check that with the expression for M
φW W̃

in (5.20), this matches the ho-

mogeneous part of the correlator in (3.5). In the flat space limit we get:

lim
E→0

〈TTO3〉odd =
3k1k2k3

E4
A

φW W̃
(5.48)

where A
φW W̃

is given in (5.21).

The parity-even part of the corresponding correlator is given by [20, 29, 33]:

〈TTO〉even = k1k2
E + 3k3

E4
MφW 2 (5.49)

which matches (3.4) if we use the expression for MφW 2 given in (5.22).

In the flat space limit we get:

lim
E→0

〈TTO〉even =
3k1k2k3

E4
AφW 2 (5.50)

where AφW 2 is given in (5.23).

7Since the dS4 correlators match CF T3 correlators we will use the notation 〈JJO3〉 instead of 〈γγφ〉.

We will continue to use similar CFT notations for all dS4 correlators in this section.
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5.3.3 〈JJJ〉
Let us now compute the odd part of 〈JJJ〉. The contribution to 〈JJJ〉odd comes from the

following terms:
∫

Fµτ F τ
ν Fρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ,

∫
FµνFρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ (5.51)

The parts of the tree-level correlator corresponding to these interactions are given by:

C
F 2F̃

= Im

[∫ 0

−∞

dη η2 eiηE

]
M

F 2F̃

C
F F̃

= Im

[∫ 0

−∞

dη eiηE

]
M

F F̃
(5.52)

Combining the two, we get the total correlator to be:

〈JJJ〉odd = codd
JJJC

F 2F̃
+ codd

JJ C
F F̃

= codd
JJJ

M
F 2F̃

E3
+ codd

JJ

M
F F̃

E
. (5.53)

One can check using the explicit expression for M
F 2F̃

in (5.15) that the first term in

the above equation corresponds to the homogeneous term in (3.14). Similarly, using the

explicit expression for M
F F̃

in (5.17) one can see that the second term in the above

equation corresponds to the non-homogeneous term in (3.14). As noted earlier, the term

proportional to codd
JJ in (5.53) is a contact term. In the flat space limit we obtain:

lim
E→0

〈JJJ〉odd = codd
JJJ

A
F 2F̃

E3
+ codd

JJ

A
F F̃

E
= codd

JJJ

A
F 2F̃

E3
(5.54)

where A
F F̃

= 0 as shown in (5.18) and the expression for A
F 2F̃

is as in (5.16). The even

part of the correlator is given by [20, 27, 33]:

〈JJJ〉even =
ceven

JJJ

E3
MF 3 − 2ceven

JJ

E
MYM. (5.55)

From the explicit expression for MF 3 in (5.14) we see that the first term in the above

equation corresponds to the homogeneous term in (3.12). Using the expression for MYM

in (5.17) one can see that the second term in the above equation corresponds to the non-

homogeneous term in (3.12). In the flat space limit we obtain:

lim
E→0

〈JJJ〉even =
ceven

JJJ

E3
AF 3 − 2ceven

JJ

E
AYM (5.56)

where the expression for AF 3 and AYM are as in (5.16) and (5.18) respectively.

5.3.4 〈TTT 〉
The contribution to 〈TTT 〉odd comes from the following term in the action:

∫
WρσαβW σγ

µτ W ρτ
γ νdxµ ∧ dxν ∧ dxα ∧ dxβ (5.57)
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The tree-level dS4 correlator corresponding to this term is given by:

〈TTT 〉odd = codd
T T T k1 k2 k3 Im

[∫ 0

−∞

dη η5eiηE

]
M

W 2W̃

= codd
T T T

c123

E6
M

W 2W̃
(5.58)

Using the result for M
W 2W̃

given in (5.26), one can check that this matches the homoge-

neous part of the correlator in (3.5). This contribution was also calculated in [56]. In the

flat space limit one obtains:

lim
E→0

〈TTT 〉odd = codd
T T T

c123

E6
A

W 2W̃
(5.59)

where expression for A
W 2W̃

is given in (5.27). The parity-even contribution to the corre-

lator is given by [20, 27, 33]:

〈TTT 〉even =
ceven

T T T c123

E6
MW 3 + 2ceven

T T

(
c123

E2
+

b123

E
− E

)
MEG (5.60)

which upon using MW 3 given in (5.24) and MEH given in (5.28) produces (3.15) upto

contact term.8

In the flat space limit we obtain

lim
E→0

〈TTT 〉even = ceven
T T T

c123

E6
AW 3 + 2ceven

T T

c123

E2
AEG (5.61)

where AW 3 and AEG are given in (5.27) and (5.29).

6 Discussion

In this paper we established various double copy relations for parity-violating CFT3 mo-

mentum space 3-point correlators. The double copy structure is a very special property of

CFT correlators in momentum space, the analogue of which does not exist in position space.

To understand this structure, we divided the momentum space CFT correlation function

two parts, which we called homogeneous and non-homogeneous pieces. It was crucial for

our analysis that the homogeneous part consist of two pieces of conformally invariant struc-

tures, namely one parity-even and one parity-odd structure whereas the non-homogeneous

part has only one parity-even conformally invariant piece - all other contributions are con-

tact terms. Squaring the homogeneous piece could in principle generate three structures.

However, interestingly it turns out that squaring the parity-odd and even part produces

exactly the same structure, whereas the cross-term which is generated by multiplying the

parity-odd and parity-even part gives rise to the needed parity-odd structure.

8This expression matches upto a number with the expression for the stress tensor correlator that appears

in equation 4.12 of [33] once we identity

MW 3 = −
c123E

16J2
AF 3 MF 3 .

See appendix C.1 for details.
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This paper leaves various interesting directions to be followed upon. For example, for a

general correlator of conserved currents of the form 〈Js1
Js2

Js3
〉, we need to understand its

structure better to be able make any detailed statement about its double copy. For instance,

if we want to understand the parity-odd contribution we need to understand analogue of

triangle inequality [64]. We looked only at marginal scalars, but it is of interest to find out

if the double copy structure shows up in 〈JsJsO∆〉 if O is a general scalar operator (that is,

∆ is arbitrary). Holographic correlators corresponding to gluon and graviton amplitudes

in AdS have been computed recently in [73–75]. It would be interesting to explore the

double copy structure in this context.

It is also of interest to see whether the double copy relations continue to hold for

higher point functions [49]. Establishing double copy relations for 4-point functions is a

significantly harder problem. In this case it would be interesting to see if the double copy

structure is visible even in some tractable limit or if one can infer the existence of a double

copy structure for specific conformal blocks or Polyakov blocks. In this paper we have

focused mainly on conformally invariant structures but it would be interesting to see what

kind of constraints one needs to impose on OPE coefficients to get double copy relations.

Another interesting direction to study is a momentum space analogue of the analysis

of [64]. In [64] conformally invariant parity-even and parity-odd structures were identified

in position space. These could then be appropriately composed to get conformally invariant

parity-even and parity-odd correlators in position space. The double copy structure of the

momentum space CFT correlators that we investigated in this paper already hints towards

the existence of such structures in momentum space. See appendix D for some details. We

leave such questions for a future investigation.
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A Expressions in spinor-helicity variables

In this section we write down various amplitudes in spinor helicity variables. Establishing

a double copy at the level of spinor helicity variables is easy and obvious.

Gluon-gluon-scalar amplitudes. In spinor-helicity variables, the non-zero components

of M take the following form:

M0−−

φF 2 = 2〈12〉2, M0−−

φF F̃
= 2i〈12〉2. (A.1)

Also by complex conjugation ++ helicity results also exist. However here as well as below

we do not write them explicitly. In spinor-helicity variables flat space amplitudes the take
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the form

A0−−

φF 2 = 2〈12〉2, A0−−

φF F̃
= 2i〈12〉2 (A.2)

where we have written down answer for negative helicity component. Although (A.1)

and (A.2) might look similar, later is obtained from former in the E → 0 limit.

Graviton-graviton-scalar amplitudes. In spinor-helicity variables, the non-zero com-

ponents of M take the following form:

M0−−

φW 2 = 〈12〉4 M0−−

φW W̃
= 4i〈12〉4. (A.3)

In spinor-helicity variables flat space amplitudes the take the form

A0−−

φW 2 = 〈12〉4, A0−−

φW W̃
= 4i〈12〉4 (A.4)

where we have written down answer for negative helicity component. Although (A.3)

and (A.4) might look similar, the latter is obtained from the former in the E → 0 limit.

Double copy. Comparing (A.1) and (A.2) with (A.3) and (A.4) we immediately see the

double copy structure between gauge and gravity answers shown in (5.30) and (5.31).

Gluon-gluon-gluon amplitudes. In spinor-helicity variables, the non-zero components

of M are given by:

M−−−

F 2 =
E

k1 k2 k3
〈12〉〈23〉〈31〉, M−−+

F 2 =
(E − 2k3)

k1 k2 k3
〈12〉〈23̄〉〈3̄1〉 (A.5)

M−−−

F F̃
= i

E

k1 k2 k3
〈12〉〈23〉〈31〉, M−−+

F F̃
= i

E

k1 k2 k3
〈12〉〈23̄〉〈3̄1〉 (A.6)

M−−−

F 3 = 〈12〉〈23〉〈31〉, M−−−

F 2F̃
= i〈12〉〈23〉〈31〉 (A.7)

In the flat space limit we get

A−−−

F 2 = 0, A−−+
F 2 = −2k3〈12〉〈23̄〉〈3̄1〉 (A.8)

A−−−

F F̃
= 0, A−−+

F F̃
= 0

A−−−

F 3 = 〈12〉〈23〉〈31〉, A−−−

F 2F̃
= i〈12〉〈23〉〈31〉 (A.9)

Graviton-graviton-graviton amplitudes. In spinor-helicity variables, the non-zero

components of M are given by:

M−−−

W 3 = 〈12〉2〈23〉2〈31〉2, M−−−

W 2W̃
= i〈12〉2〈23〉2〈31〉2 (A.10)

In the flat space limit we get

A−−−

W 3 = 〈12〉2〈23〉2〈31〉2, A−−−

W 2W̃
= i〈12〉2〈23〉2〈31〉2 (A.11)

Double copy. Comparing (A.5) and (A.8) with (A.10) and (A.11) we immediately see

the double copy structure between gauge and gravity answers shown in (5.37).
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B 〈T JJ〉

We calculate 〈TJJ〉 using gravity techniques for completeness. This result is not used in

the main text.

B.1 Mixed gauge-graviton amplitudes

Gluon graviton interaction. Let us consider interactions between gluons and gravitons

which contribute to mixed CFT correlators of the spin-one conserved current J and the

stress-tensor T . The interactions we consider are:

SI =

∫
d4x

√
gF 2 + SI

even + SI
odd (B.1)

where

SI
even = γ

∫
d4x

√
g WµνρσF µνF ρσ (B.2)

SI
odd = γ̃

∫
WµνρσF µνFαβ dxρ ∧ dxσ ∧ dxα ∧ dxβ (B.3)

are the parity-preserving and parity-violating actions, respectively. The tree-level scatter-

ing amplitude for parity-even case is given by

AF 2 = −(z1 · z2)(z1 · k3)(z3 · k2) − (z1 · k2)(z1 · z3)(z2 · k3) + (z1 · k2)(z2 · z3)(z1 · k3)

AW F 2 = 4(z1 · k2)(z2 · k1)(z1 · k3)(z3 · k1)

Let us now compute the odd part of 〈TJJ〉. The contribution to 〈TJJ〉odd comes from the

following term in the action:
∫

WµνρσF µνFαβ dxρ ∧ dxσ ∧ dxα ∧ dxβ (B.4)

This gives the following parity odd contribution:

M
W F F̃

= [2(z1 · k2)(z2 · k1) + 2(k1 · k2)(z1 · z2)] ǫ(z1k1z3k3)

=
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]
ǫ(z1k1z3k3) (B.5)

The flat space amplitudes are obtained by taking E → 0:

A
W F F̃

= 2(z1 · k2)(z2 · k1)ǫ(z1k1z3k3) (B.6)

The non-zero spinor-helicity components of M are given by:

M−−+
F 2 =

〈12〉2〈13̄〉2

2k2
1

, M−−−

W F 2 = 4〈12〉2〈13〉2, M−−−

W F F̃
= 4〈12〉2〈13〉2. (B.7)

In spinor-helicity language the non-zero components of the flat space amplitude are

given by:

A−−+
F 2 =

〈12〉2〈13̄〉2

2k2
1

, A−−−

W F 2 = 4〈12〉2〈13〉2, A−−−

W F F̃
= 4〈12〉2〈13〉2. (B.8)
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Now the parity-odd contribution to correlator 〈TJJ〉 is given by

〈TJJ〉odd = k1Im

[∫ 0

−∞

dη η3eiηE

]
M

W F F̃

=
k1

E4
M

W F F̃
(B.9)

One can check that the correlation function given in (B.9) satisfies the appropriate confor-

mal Ward identity.

C Proof of some double copy relations

C.1 MW 3 ∝ (MF 3)2

Here, we briefly show how (5.34) can be derived in momentum space. M2
F 3 is given by

M2
F 3 = (~k2 · ~z1)2(~k1 · ~z3)2(~k3 · ~z2)2 + E

(
(~k2 · ~z1)2(~k1 · ~z3)(~k3 · ~z2)(~z2 · ~z3) + cyclic perm.

)

+
E2

4

(
2k1k2(~k2 · ~z1)(~k3 · ~z2)(~z1 · ~z3)(~z2 · ~z3) + k2

1(~k2 · ~z1)2(~z2 · ~z3)2 + cyclic perm.
)

(C.1)

MW 3 is given by

MW 3 =A1 (k1, k2, k3) (~k2 · ~z1)2(~k3 · ~z2)2(~k1 · ~z3)2

+

(
A2 (k1, k2, k3) (~z1 · ~z2)(~k2 · ~z1))(~k3 · ~z2)

(
~k1 · ~z3

)2
+ cyclic perm.

)

+

(
A3 (k1, k2, k3) (~z1 · ~z2)2

(
~k1 · ~z3

)2
+ cyclic perm.

)

+
(
A4 (k1, k2, k3) (~z1 · ~z3)(~z2 · ~z3)(~k2 · ~z1)(~k3 · ~z2) + cyclic perm.

)

+ A5 (k1, k2, k3) (~z1 · ~z2)(~z2 · ~z3)(~z1 · ~z3)

(C.2)

where [33]

A1 = 1, A2 =
E

2
(2k3 − E) , A3 = 0, A4 =

E2

4
(E − 2k1) (E − 2k1) , A5 = −J2E2

8

We can use the following two degeneracies to set A4 and A5 to zero [20] in (C.2)

(~k2 · ~z1)2(~k3 · ~z2)2 + (k2
3 − k2

1 − k2
2)(~k2 · ~z1)(~k3 · ~z2)(~z1 · ~z2) − J2

4
(~z1 · ~z2)2 = 0 (C.3)

(~k2 · ~z1)(~k3 · ~z2)(~k1 · ~z3)2 + k2
3(~z1 · ~z2)(~k1 · ~z3)2 +

1

2
(k2

1 − k2
2 + k2

3)(~z2 · ~z3)(~k2 · ~z1)(~k1 · ~z3)

+
1

2
(k2

2 − k2
1 + k2

3)(~z1 · ~z3)(~k3 · ~z2)(~k1 · ~z3) +
J2

4
(~z1 · ~z3)(~z2 · ~z3) = 0 (C.4)

Using this MW 3 can be related to AF 3MF 3 , where

AF 3MF 3 = 2(~k2 · ~z1)2(~k1 · ~z3)2(~k3 · ~z2)2

+ E
(
(~k2 · ~z1)2(~k1 · ~z3)(~k3 · ~z2)(~z2 · ~z3)k1 + cyclic perm.

)
(C.5)
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Using the same two degeneracies on (C.1) to remove the term proportional to E2, we obtain

the following relation.

−32
c123E

J2
AF 3MF 3 = (MF 3)2 = MW 3 (C.6)

Therefore, we see that (MF 3)2 = MW 3 which implies that the double copy structure holds

beyond the flat space limit for the 〈JJJ〉 and 〈TTT 〉.

C.2 (MφF 2)2 ∝ (M
φF F̃

)2

Some of the equality relation in (5.30) was established in [33]. Here we establish the second

part of (5.30). Consider the identity

ǫµνρσǫαβγδ =

∣∣∣∣∣∣∣∣∣∣

δα
µ δβ

µ δγ
µ δδ

µ

δα
ν δβ

ν δγ
ν δδ

ν

δα
ρ δβ

ρ δγ
ρ δδ

ρ

δα
σ δβ

σ δγ
σ δδ

σ

∣∣∣∣∣∣∣∣∣∣

(C.7)

Since, we have

M
φF F̃

= ǫ(z1k1z2k2) (C.8)

Therefore, we may write

(M
φF F̃

)2 =

∣∣∣∣∣∣∣∣∣∣

0 0 ~z1.~z2 ~z1.~k2

0 0 ~z2.~k1 k1.k2

~z1.~z2 ~z2.~k1 0 0

~z1.~k2 k1.k2 0 0

∣∣∣∣∣∣∣∣∣∣

= [(~z1.~z2)k1.k2 − ~z1.~k2~z2.~k1]2 (C.9)

Since, in 4D we have k1.k2 = −E(E−2k3)
2 , using (5.22)

(M
φF F̃

)2 ∝ (MφF 2)2 (C.10)

C.3 (MF 3)2 ∝ (M
F 2F̃

)2

Here we establish the relation (5.36). Consider the identity (C.7). Since, we have

M
F 2F̃

= ǫµνρσF(1)
τ

µ
F(2)τνF(3)ρσ (C.11)

Therefore, we may write

(M
F 2F̃

)2 = ǫµνρσF(1)
τ

µ
F(2)τν

F(3)ρσ
ǫαβγδF(1)

λ
α

F(2)λβ
F(3)γδ

=

∣∣∣∣∣∣∣∣∣∣

0 δνα z3α k3α

δµβ 0 z3β k3β

z3µ z3ν 0 0

k3µ k3ν 0 0

∣∣∣∣∣∣∣∣∣∣

F(1)
τ

µ
F(2)τν

F(1)
λ

α
F(2)λβ

= (F(3)
µνF(3)

αβ)F(1)
τ

µ
F(2)τν

F(1)
λ

α
F(2)λβ

= (MF 3)2 (C.12)
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D Momentum space expression of higher spin correlators

In this section we give the momentum space expression for the parity-even and parity-odd

parts of higher spin correlators 〈JsJsO3〉 and 〈JsJsJs〉 using the relations in sub-section 4.5

and the expressions for 〈JJO3〉 and 〈JJJ〉 given in section 3:

〈JsJsO3〉even,h = (k1k2)s−1(E + (2s − 1)k3)

[
1

E2

{
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

}]s

〈JsJsO3〉odd,h = (k1k2)s−1
(E + (2s − 1)k3)

E2s

[
k2 ǫk1z1z2 − k1 ǫk2z1z2

]

×
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s−1

〈JsJsJs〉even,h = (k1k2k3)s−1

[
1

E3

{
2 (~z1 · ~k2) (~z2 · ~k3) (~z3 · ~k1) + E{k3 (~z1 · ~z2) (~z3 · ~k1) + cyclic}

}]s

〈JsJsJs〉odd,h = (k1k2k3)s−1
1

E3

[{
(~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)
+(~k3 · ~z2)

(
ǫk1z1z3k2 − ǫk2z1z3k1

)

−(~z2 · ~z3)ǫk1k2z1E +
k1

2
ǫz1z2z3E(E − 2k1)

}
+ cyclic perm

]

×
[

1

E3

{
2 (~z1 · ~k2) (~z2 · ~k3) (~z3 · ~k1) + E{k3 (~z1 · ~z2) (~z3 · ~k1) + cyclic}

}]s−1

.

(D.1)

One can use the Todorov operator [76] to strip off the polarization vectors from the ex-

pressions in (D.1). This operator is given by

Di
z =

(
1

2
+ ~z · ∂

∂~z

)
∂

∂zi
− 1

2
zi ∂2

∂~z · ∂~z
(D.2)

Therefore, we have

〈Jµ1···µsJν1···νsO3〉even,h =
s∏

i=1

Dµi
z1

Dνi
z2

〈JsJsO3〉even,h

〈Jµ1···µsJν1···νsO3〉odd,h =
s∏

i=1

Dµi
z1

Dνi
z2

〈JsJsO3〉odd,h

〈Jµ1···µsJν1···νsJρ1···ρs〉even,h =
s∏

i=1

Dµi
z1

Dνi
z2

Dρi
z3

〈JsJsJs〉even,h

〈Jµ1···µsJν1···νsJρ1···ρs〉odd,h =
s∏

i=1

Dµi
z1

Dνi
z2

Dρi
z3

〈JsJsJs〉odd,h (D.3)

E Double copy relations in spinor-helicity notation

In our discussion of double copy relations we have mostly focussed on the momentum

dependent structures of the correlators. However, a strict doubly copy relation would in

addition relate the OPE like coefficients in the correlators. In this section we make this

clear using the spinor-helicity notation and the double copy structure of 〈J2sJ2sJ2s〉.
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We have the following non-zero spinor-helicity components of 〈JsJsJs〉:

〈J−

s J−

s J−

s 〉h = (cs,even + i cs,odd)
(k1k2k3)s−1

E3s
〈12〉s〈23〉s〈31〉s

〈J+
s J+

s J+
s 〉h = (cs,even − i cs,odd)

(k1k2k3)s−1

E3s
〈1̄2̄〉s〈2̄3̄〉s〈3̄1̄〉s (E.1)

The non-zero spinor-helicity components of 〈JJJ〉 are:

〈J−J−J−〉h = (c1,even + i c1,odd)
1

E3
〈12〉〈23〉〈31〉

〈J+J+J+〉h = (c1,even − i c1,odd)
1

E3
〈1̄2̄〉〈2̄3̄〉〈3̄1̄〉 (E.2)

Demanding the s-copy relations of subsection (4.5) we get the following equations that

constrain the coefficients cs,even and cs,odd in terms of c1,even and c1,even:

cs,even + i cs,odd = (c1,even + i c1,odd)s

cs,even − i cs,odd = (c1,even − i c1,odd)s (E.3)

Specifically when s = 2, for which the conserved current is the stress tensor we obtain:

cT T T,even = c2
1,even − c2

1,odd

cT T T,odd = 2c1,evenc1,odd (E.4)
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