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Efficient partnership formation in networks
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We analyze the formation of partnerships in social networks. Players need favors
at random times and ask their neighbors in the network to form exclusive long-
term partnerships that guarantee reciprocal favor exchange. Refusing to provide a
favor results in the automatic removal of the underlying link. Players agree to pro-
vide the first favor in a partnership only if they otherwise face the risk of eventual
isolation. In equilibrium, players essential for realizing every maximum matching
can avoid this risk and enjoy higher payoffs than inessential players. Although the
search for partners is decentralized and reflects local partnership opportunities,
the strength of essential players drives efficient partnership formation in every
network. Equilibrium behavior is determined by the classification of nodes in the
Gallai–Edmonds decomposition of the underlying network.
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1. I

The idea that the power of an individual depends on his or her position in a certain
social or economic network is well established in a variety of contexts cutting across
disciplines. For instance, social network analysis suggests that an individual’s power
cannot be explained by the individual’s characteristics alone, but must be combined
with the structure of his or her relationships with others. Power arises from occupy-
ing advantageous positions in the relevant network and leveraging outside options. In
particular, network exchange theory focuses on studying the relative bargaining power
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of individuals in bilateral exchanges with neighbors in social networks (see Willer 1999
for an overview). More recent research in economics develops game theoretical models
aimed at understanding how an individual’s position determines his or her bargaining
power and selection of trading partners in markets with a network structure (Jackson
2008, Chapter 10, Easley and Kleinberg 2010, Chapter 11, and Manea 2016 survey this
literature).

In this paper, we study the impact of the social and economic network structure
on the relative strength of different positions in the network, the pattern of bilateral
partnerships that emerge, and market efficiency. In our model, players form exclusive
partnerships to exchange favors with one another. Favors could be small (e.g., advice
on a particular issue, a small loan, and help on a school project) or large (e.g., sharing
one’s life with another person and forming a long-term business relationship). Every
player needs favors at random points in time and can receive them from neighbors in
the network. All players benefit equally from receiving favors and incur the same cost
for providing them. The benefit exceeds the cost, so it is socially desirable to exchange
favors. If a player agrees to provide a favor to another, the two players form an exclusive
partnership that requires that they leave the network together and do each other favors
whenever needs arise in the future. A player who needs a favor and has not yet formed
a partnership approaches his remaining neighbors in the network in random order to
request the favor. Each neighbor who is asked for the favor decides whether to provide it
and enter the partnership or refuse to do so and irreversibly lose his link with the player
requesting it.

Our modeling of the search for partners is admittedly specific, but captures impor-
tant features of applications such as marriage and joint business ventures. We implicitly
assume that the payoffs received by the favor seeker and favor giver are asymmetric. In
the context of courtship for example, the intensity of preferences of the two partners is
often asymmetric, and one partner is more eager than the other to form the partnership.
In our model, players are symmetric, but the favor seeker is always more eager to form
the partnership than the favor giver. This introduces an incentive for one of the two
parties to delay the formation of the partnership. However, this incentive is modulated
by the evolution of the network and the decline in partnership opportunities over time.
Turning down favor requests results in the loss of potential future partners both because
links leading to rejections are deleted from the network and because other neighbors
form exclusive partnerships and leave the network. Hence, players face a trade-off be-
tween the cost of accepting a partner and the risk of not finding one in the future. Re-
turning to the example of dating, players prefer not to commit to a relationship until
they start worrying that they will grow old alone. We find that precisely this feature of
the search process leads to efficient matching outcomes.

Since all partnerships create the same value in our game, efficiency for high dis-
count factors requires that a maximum number of partnerships be forged in the net-
work. In the language of graph theory, the emerging partnerships should form a maxi-
mum matching, i.e., a subset of disjoint links that has the greatest cardinality. Some links
are inefficient because they are not part of any maximum matching; efficiency dictates
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that favor requests are declined when such links are activated. Other links are indispens-
able for efficiency since they belong to every maximum matching; to achieve an effi-
cient market outcome, such links should result in partnerships when activated. Keeping
track of which partnerships are efficient in our dynamic game is challenging because
the structure of maximum matchings and the efficiency of links evolves as partnerships
form and favor requests are turned down.

Given the global considerations involved in identifying maximum matchings in a
general network and the local decentralized nature of the search for partners as favor
needs arise in our game, one might not expect a strong link between equilibrium out-
comes and efficiency in the game. Nevertheless, our main result proves that when play-
ers are sufficiently patient, the game admits a unique subgame perfect equilibrium and
that the equilibrium pattern of partnerships is efficient for every network structure. This
result is surprising in the context of existing research on matching and trade in networks.
Indeed, in a survey of the literature on bilateral trade in networks, Manea (2016) argues
that the disconnect between global efficiency and local incentives explains why decen-
tralized trade often generates inefficient market outcomes.1  Abreu and Manea (2012a,
2012b) and Elliott and Nava (2019) reach this conclusion for Markov perfect equilibria in
two natural models of bargaining in networks.2 By contrast, the seminal work in this area
of Kranton and Minehart (2001), Corominas-Bosch (2004), and Polanski (2007) showed
that centralized matching is conducive to efficient trade.

Somewhat paradoxically, the absence of prices or direct transfers in our model drives
the efficiency result and the divergence from the conclusions of Abreu and Manea
(2012a, 2012b) and Elliott and Nava (2019). Players can experience only three types of
outcomes in our model: remain single, commit to a partnership by granting a favor, and
enter a partnership by way of receiving a favor. A player has an incentive to provide
the first favor in a partnership only if refusing to do so puts him at risk of eventually
becoming single. We find that a key structural property of nodes determines whether
a player ever faces the risk of becoming single in equilibrium. Specifically, a node is
said to be essential if it belongs to all maximum matchings of the network and to be
under-demanded otherwise. A further partition of essential nodes into over-demanded
nodes—neighbors of under-demanded nodes—and perfectly matched nodes—the re-
maining ones—is central to the Gallai–Edmonds decomposition, which characterizes
the structure of maximum matchings.3 These concepts also play a prominent role in
the equilibrium analyses of Corominas-Bosch (2004), Polanski (2007), and Abreu and
Manea (2012a). We prove that in the equilibrium of our game, essential players always
find partners, while under-demanded players remain single with positive probability.
Hence, essential players obtain higher payoffs than under-demanded players.

1In a followup paper (Bloch et al. 2019), we show that if players meet and form partnerships randomly (in
the absence of any incentives to wait), efficiency is guaranteed only for networks embedding special link-
ing patterns: complete and complete bipartite networks, locally balanced bipartite networks with positive
surplus, and factor-critical networks.

2However, Abreu and Manea (2012b) construct a complex system of punishments and rewards with a
non-Markovian structure that implements an efficient subgame perfect equilibrium.

3The intuitive economic terminology for the Gallai–Edmonds partition of nodes was introduced by Bo-
gomolnaia and Moulin (2004) and Roth et al. (2005).
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The conclusion that under-demanded players are relatively weaker than essential
ones is common across the bargaining models discussed above.4 However, our model
highlights a new channel that leads to this conclusion. In previous models, the weakness
of under-demanded players is caused by their vulnerability to isolation following some
sequences of efficient trades. Thus, the fact that under-demanded nodes are left out
by some maximum matchings, which is their defining property, is directly involved in
the argument. In the present model, the analysis relies on a latent property of under-
demanded nodes: if an under-demanded node is removed from the network, all its
neighbors become essential in the remaining network. Backward induction then im-
plies that when an under-demanded player needs a favor, his neighbors have incentives
to turn him down in sequence and ultimately reach desirable essential positions. Hence,
every under-demanded player who requests a favor remains single.

Our characterization of the subgame perfect equilibrium relies on the intuition that
under-demanded players are weak, and players commit to partnerships via doing fa-
vors in order to avoid occupying under-demanded positions in the network formed by
surviving links. We prove that when an over-demanded player needs a favor, the first
under-demanded neighbor he approaches has to provide it. When a perfectly matched
player requests a favor, the last neighbor in the order with whom he shares an efficient
link—another perfectly matched player—agrees to provide the favor. Refusing to en-
ter this last possible efficient partnership and removing the corresponding link would
result in both players switching from essential to under-demanded positions, with the
player who requested the favor ending up single and the other player preserving his
under-demanded status in the ensuing network.

Our proof additionally shows that a player does not have an incentive to grant a fa-
vor to a neighbor if refusing to do so and losing the link with the neighbor leaves him in
an essential position. However, under-demanded players turn down favor requests from
other under-demanded neighbors and remain temporarily under-demanded, anticipat-
ing that no player will agree to provide the favor and they will become essential after
the chain of rejections and link removals. Therefore, our favor exchange game reveals a
deep connection between decentralized incentives for efficient partnership formation
and the Gallai–Edmonds structure.

We investigate the robustness of our theoretical conclusions with respect to several
modeling assumptions. One important ingredient for our analysis is the assumption
that links that generate rejections are permanently severed.5 We show that this assump-
tion is crucial for our conclusions: in a version of the model in which links are never
removed from the network, multiple equilibria may exist and equilibria are not nec-
essarily efficient. However, our equilibrium characterization continues to apply if the

4Polanski (2016) emphasizes this point in a range of bargaining environments, including the cooperative
game of Kleinberg and Tardos (2008) and the stationary market of Manea (2011) in addition to the models
already mentioned.

5This assumption appears in other models of favor exchange. For instance, Jackson et al. (2012) motivate
the removal of links following rejections on “behavioral (e.g., emotional) or pro-social grounds.” Gere and
MacDonald (2010) discuss psychological evidence indicating that rejected or ostracized individuals often
reciprocate with antisocial behavior. In our setting, players may also passively lose links and effectively
disappear from the network if they do not find a partner when needed.
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game is perturbed so that links that generate rejections are maintained with small prob-
ability.

We find that our results are not sensitive to other modeling assumptions. In partic-
ular, the efficiency result does not change if we assume that the order in which a player
asks neighbors for favors is selected strategically or specified exogenously instead of be-
ing generated randomly as in the benchmark model. We extend our results to a setting
with reduced-form payoffs in which, in the spirit of standard matching and bargaining
models, all gains from a partnership are realized at its creation (or, equivalently, each
player requires a single favor at a random time), and the player who initiates a partner-
ship enjoys a first-mover advantage. We also discuss extensions of the model with payoff
heterogeneity and continuous time.

Bloch et al. (2018) test the predictions of the model in a laboratory experiment. They
find that a large fraction of subjects play according to the subgame perfect equilibrium,
but a subject’s ability to select the equilibrium action depends on the complexity of the
network as well as on his or her position in the network. Deviations from equilibrium
behavior primarily involve subjects agreeing to grant favors when equilibrium play pre-
scribes declining the request.

Besides the literature on bilateral trade in networks discussed above, our model con-
tributes to research on favor exchange. Möbius and Rozenblat (2016) survey existing re-
search in the latter area. Many models in this literature (in particular, Bramoullé and
Kranton 2007, Bloch et al. 2008, Karlan et al. 2009, Jackson et al. 2012, and Ambrus et al.
2014) share the basic structure of our model: players request favors or transfers at differ-
ent points in time and cooperation is enforced through reciprocation in the future. The
model of Jackson et al. (2012) is closest to ours. However, in that model favor needs are
link-specific and pairs of players meet too infrequently to sustain bilateral exchange in
isolation. Jackson et al. show that clustered social quilts support cooperation via the so-
cial threat of losing links with multiple neighbors following deviations from cooperative
behavior.

The rest of the paper is organized as follows. Section 2 introduces the partnership
formation game, and Section 3 illustrates its equilibria for two networks. In Section 4, we
formalize the relationship between efficient partnerships and maximum matchings and
review the Gallai–Edmonds decomposition. Section 5 presents the main result, which
establishes the uniqueness and the efficiency of the equilibrium, and shows that equi-
librium decisions are closely tied to the Gallai–Edmonds decomposition. In Section 6,
we analyze alternative versions of the model. Section 7 provides concluding remarks.

2. M

We study a partnership formation game played by a finite set N = {1�2� � � � � n} of play-
ers who constitute the nodes in an undirected network G. Since the network of po-
tential partnerships evolves over time and the collection of existing partnerships forms
a matching, it is useful to provide general definitions for networks and matchings. An
undirected network G that links the set of nodes N is a subset of N×N such that (i� i) /∈G

and (i� j) ∈G ⇔ (j� i) ∈G for all i� j ∈ N . The condition (i� j) ∈ G is interpreted as the ex-
istence of a link between nodes i and j in the network G; in this case, we say that i is
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linked to j or that i is a neighbor of j in G. We use the shorthand ij for the pair (i� j) and
identify the links ij and ji. A node is isolated in G if it has no neighbors in G. For any
network G, let G \ ij�kh� � � � denote the network obtained by removing links ij�kh� � � �

from G, and let G \ i� j� � � � denote the network in which all links of nodes i� j� � � � in G are
removed (but nodes i� j� � � � remain, isolated, in the network). A matching is a network
in which every node has at most one link. A matching of the network G is a matching
that is a subset of G. We say that a matching covers a node if the node has one link in the
matching (and that a matching covers a set of nodes if it covers every node in that set).

The partnership formation game proceeds in discrete time at dates t = 0�1� � � � . At
every date t, there is a set of partnerships that have already formed represented by a
matching Mt and a prevailing network of potential future partnerships Gt . At date t, one
player i randomly selected—each with probability 1/n—from the set N needs a favor.
Partnerships are assumed to be permanent and guarantee reciprocal favor exchange, so
if player i has a partner j under Mt , then j automatically provides the favor to i. Oth-
erwise, player i randomly chooses one of his neighbors j0 in the network Gt0 := Gt and
asks him for the favor. Player j0 decides whether to provide the favor. If player j0 de-
clines to do the favor for i, then the link ij0 is permanently removed from the network
and player i continues searching for a partner in the network Gt1 := Gt0 \ ij0. In general,
after k rejections, player i randomly chooses one of his neighbors jk in the remaining
network Gtk := Gt(k−1) \ ijk−1 to ask for the favor. If player jk agrees to provide the favor
to player i at date t, player i receives a payoff v > 0 and player jk incurs a cost c ∈ (0� v).
In this case, i and jk form a long-term partnership, so that the set of ongoing partner-
ships becomes Mt+1 = Mt ∪ ijk, and the game proceeds to date t + 1 on the network
Gt+1 = Gt \ i� jk. If none of i’s neighbors in Gt agrees to provide the favor to i, then i

remains isolated and the game continues to period t + 1 on the network Gt+1 = Gt \ i.
All players discount future payoffs by a factor of δ per period.

We assume that the game has perfect information and use the solution concept of
subgame perfect equilibrium. We allow for mixed strategies, but show that as players be-
come patient, the subgame perfect equilibrium is unique and involves only pure strate-
gies.

Let V denote the expected discounted payoff obtained by a player who is matched
with a partner with whom he reciprocates favors:

V =
v − c

n(1 − δ)
�

Since providing the first favor in a partnership costs c and leads to a continuation payoff
of δV , a necessary condition for a player to rationally agree to provide the first favor in
equilibrium is that δV ≥ c, which is equivalent to

δ≥ δ :=
n

r + n
�

where

r :=
v − c

c
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represents the return to favors. Hence, if δ < δ, then all favor requests are turned down
and every player receives zero payoff in equilibrium.

As customary, the normalized payoff of a player is defined by his expected payoff in
the game multiplied by 1 − δ. Thus, the normalized payoff accruing to a player who is
matched with a partner with whom he reciprocates favors is (v − c)/n.

Two types of networks will be useful for illustrations. The line network with n players
consists of the links (1�2)� � � � � (n − 1� n). A network is complete if it links every pair of
nodes.

3. E

In this section, we analyze the partnership formation game in the two examples shown
in Figure 1: the line and the complete networks with four players. Assume that δ ≥ δ, so
that at least one partnership forms in any equilibrium in either network.

Consider first the four-player line network. Suppose that player 1 needs a favor in
the first period of the game. In this case, only player 2 can provide the favor to 1. If 2

agrees to provide the favor, he obtains an expected payoff of −c + δV . If 2 turns 1 down,
then the link (1�2) is removed from the network. In the remaining network, if player 2

or 4 requests the next favor, then player 3 has no incentive to provide it. Indeed, de-
clining such a request leaves player 3 in a network with a single link, which generates
an expected continuation payoff of δV for player 3, while accepting such a request re-
sults in the lower expected payoff of −c + δV . If instead player 3 requires the first favor
in the remaining network, then he approaches each of players 2 and 4 with probability
1/2, and under the assumption that δ ≥ δ, either player accepts the request because he
would otherwise remain isolated.

It follows that the expected continuation payoff of player 2 following the rejection of
1’s favor request is δW L, where W L solves the equation

W L =
1

4

(

δW L +
1

2
(−c + δV )+ δV

)

�

In this equation, the term δW L represents the continuation payoff of player 2 in the
event that player 1 requires the second-period favor as well. Player 2 receives payoff 0 if
he needs the second-period favor (as player 3 refuses to provide it) and receives payoff
δV if 4 needs the favor (and 3 turns him down). The expected payoff of player 2 in the

F 1. The line and complete networks with four nodes.
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event that player 3 needs a favor in the second period is (−c + δV )/2, reflecting the fact
that 3 asks 2 for the favor with probability 1/2. The solution to the equation is

W L =
3δV − c

2(4 − δ)
�

Player 2 then has an incentive to grant the favor in the first period to player 1 only if
−c + δV ≥ δW L, which is equivalent to

δV (8 − 5δ)≥ c(8 − 3δ)�

Using the formula V = (v − c)/(4(1 − δ)), the inequality above can be rewritten as

r =
v − c

c
≥

4(1 − δ)(8 − 3δ)

δ(8 − 5δ)
�

For δ ∈ [0�1), this inequality is equivalent to

δ≥ δ∗L :=
2
(

11 + 2r −
√

25 + 4r + 4r2
)

12 + 5r
�

For instance, for r = 1, which means that v = 2c, we have that δ∗L ≈ 0�854.
When player 2 needs the first favor, player 3 does not have an incentive to provide

it because he can count on always receiving favors from 4. However, for δ ≥ δ, player 1

has an incentive to do the favor to 2 because refusing to do so would leave him isolated.
Symmetric arguments apply to the situations in which players 3 and 4 require the first
favor.

Therefore, the structure of equilibria in this network is as follows:

• For δ < δ, no favors are ever granted in equilibrium.

• For δ ∈ (δ�δ∗L), if player 1 (or 4) needs the first favor, then player 2 (3) turns him
down; in the remaining network, if player 2 or 4 (1 or 3) needs the next favor, player
3 (2) turns him down, while if player 3 (2) needs the next favor, the first neighbor
he approaches agrees to provide it. If player 2 (3) needs the first favor instead, then
player 1 (4) provides it.

• For δ ∈ (δ∗L�1), every player who needs a favor receives it and the partnerships
(1�2) and (3�4) form (players 2 and 3 reject each other’s favor requests on the equi-
librium path).

For any δ, welfare maximization requires that the partnerships (1�2) and (3�4) form, so
the equilibrium is efficient only for δ > δ∗L.

Consider next the complete network with four players. If player 1 needs the first fa-
vor and is rejected by all his neighbors, then the other three players are left in a complete
network. In this case, an argument similar to the one above shows that when one of the
remaining three players requires a favor, the other two turn him down. Thus, if all play-
ers refuse to do player 1 the favor, each player i ∈ {2�3�4} enjoys a continuation payoff



Theoretical Economics 14 (2019) Efficient partnership formation 787

δW C , where

W C =
1

4

(

δW C + 2δV
)

�

This payoff equation is analogous to the one defining W L. In particular, the term 2δV

captures the events in which one of two players different from 1 and i needs the next
favor and remains single, effectively leaving i in a bilateral partnership with the fourth
player starting in the third period. Solving the equation, we obtain

W C =
2δV

4 − δ
�

The last neighbor approached by player 1 has an incentive to provide the first-period
favor to 1 only if −c + δV ≥ δW C , which is equivalent to

r ≥
4(1 − δ)(4 − δ)

δ(4 − 3δ)
�

The last inequality reduces to

δ ≥ δ∗C :=
2
(

5 + r −
√

9 − 2r + r2
)

4 + 3r
�

For r = 1, we obtain δ∗C ≈ 0�906.
To summarize, the structure of equilibria in the complete network is as follows:

• For δ < δ, no favors are granted in equilibrium.

• For δ ∈ (δ�δ∗C), the player who needs the first favor is refused by all other players.
The next player requiring a favor is also turned down by his remaining neighbors.
The third player who needs a favor receives it from his only remaining neighbor
and a single partnership forms.

• For δ ∈ (δ∗C�1), the first player who needs a favor receives it from the last player
he approaches and two partnerships form.

As in the line network, for any δ, welfare maximization requires that every player who
needs a favor receives it, so the equilibrium is efficient only for δ > δ∗C .

Figure 2 depicts the thresholds δ, δ∗L, and δ∗C as a function of the return to favors r.
Note that δ < δ∗L < δ∗C for all values of r > 0. The inequality δ∗L < δ∗C reflects the
fact that player 2’s continuation payoff in the event that player 1 requires the first favor
and his neighbors turn him down is smaller in the line network than in the complete
network, W L < W C . Hence, it is easier to provide an incentive for player 2 to form an
efficient partnership with player 1 in the line than in the complete network. The two
examples demonstrate that adding links to a network does not always facilitate the ef-
ficient formation of partnerships. Enlarging the set of links increases the number of
potential matchings, but may also increase the continuation values of players after links
are severed, making it more difficult to sustain efficient partnerships.
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F 2. Thresholds δ, δ∗L, and δ∗C as a function of r.

We will prove that the conclusions regarding the uniqueness and efficiency of equi-
libria for high δ in the examples of this section extend to all networks. We will also show
that the equilibrium decisions to form partnerships for high δ are directly determined
by the classification of the corresponding pairs of nodes in the Gallai–Edmonds decom-
position, which we introduce next.

4. E    

The previous section reveals a close relationship between efficient partnership forma-
tion and maximum matchings. We say that a matching M is a maximum matching of G
if there exists no matching of G that contains a greater number of links than M . For any
network G, let µ(G) denote the size of the maximum matching of G, i.e., the number of
links in a maximum matching of G.

Any strategy profile σ along with the random moves by nature—the list of players
needing favors and the sequence of neighbors they approach at every date—induce a
probability distribution over outcomes at every date. We view (Mt)t≥0 and (Gt)t≥0 as
random variables in this space. Clearly, we have Mt ⊆ Mt+1 and Gt+1 ⊆ Gt for all t ≥ 0.
Let M̄ and Ḡ denote the limits as t → ∞ of the variables (Mt)t≥0 and (Gt)t≥0 defined by
M̄ =

⋃

t≥0 Mt and Ḡ =
⋂

t≥0 Gt . We call the random variable M̄ the long-run matching

induced by σ . This motivates the following definition.

D 1. A strategy profile is long-run efficient if the long-run matching it induces
is a maximum matching of G with probability 1.
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F 3. The line with five nodes and the complete network with three nodes.

In the Appendix, we confirm the intuition that a strategy profile maximizes the limit
of the sum of normalized expected payoffs of all players as δ → 1 only if it is long-run
efficient.

The welfare analysis of equilibria in our partnership formation game thus naturally
leads us to examine the structure of maximum matchings. Gallai (1964) and Edmonds
(1965) developed a characterization of maximum matchings that not only proves useful
in analyzing welfare properties of equilibria, but captures the structure of incentives in
our game in a precise way. Gallai and Edmonds’ result relies on the following partition
of the set of nodes in a network G. A node is under-demanded in G if it is not covered
by some maximum matching of G. A node is over-demanded in G if it is not under-
demanded but has an under-demanded neighbor in G. A node is perfectly matched in
G if it is neither under- nor over-demanded in G. For example, in both the line and the
complete networks with four players from Figure 1, all nodes are perfectly matched. In
the line with five nodes shown in the left panel of Figure 3, nodes 1, 3, and 5 are under-
demanded, while nodes 2 and 4 are over-demanded. In the complete network with three
nodes from the right panel of Figure 3, all nodes are under-demanded.

T GE (Gallai–Edmonds Decomposition Lovász and Plummer 1986). Every max-

imum matching of a network links each perfectly matched node to another perfectly

matched node and each over-demanded node to an under-demanded node.6

The following result, whose proof appears in the Appendix, describes the evolution
of the Gallai–Edmonds partition as partnerships form or as links are removed following
declined favor requests. We say that i is an efficient partner of j in G or that ij is an effi-

cient link if the link ij belongs to a maximum matching of G and that a node is essential

in G if it is either over-demanded or perfectly matched in G.

L 1. For every network G and any link ij ∈G, the following statements hold:

(i) If i is under-demanded in G, then i is under-demanded in the network G \ ij and j

is essential in the network G \ i.

(ii) Suppose that i is perfectly matched in G and that j is not the only efficient part-

ner of i in G. Then the sets of perfectly matched, over-demanded, and under-

demanded nodes coincide in G and G \ ij. Moreover, the set of efficient partners

6The original theorem provides a comprehensive description of the structure of maximum matchings.
We state only the part of the result needed for our analysis here.
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of i in G \ ij consists of all efficient partners of i in G except for j (in case ij is an

efficient link).

(iii) If i is perfectly matched in G, and j is i’s only efficient partner in G, then both i and

j are under-demanded in the network G \ ij and j is under-demanded in G \ i.

(iv) If i is over-demanded and j is under-demanded in G, then ij is an efficient link in

G and i is an essential node in G \ ij.

(v) If both i and j are perfectly matched and ij is an efficient link in G, then the sets of

under-demanded nodes different from i and j in G \ i� j and G coincide.

5. E   

We provide a complete characterization of subgame perfect equilibria in the partner-
ship formation game for high δ that relies on the classification of nodes in the Gallai–
Edmonds decomposition in the prevailing network. From this characterization, we in-
fer that equilibria are long-run efficient and that all essential players find partners when
players are patient. The characterization also implies that for δ → 1, all essential play-
ers receive limit normalized payoffs of (v − c)/n, while under-demanded players obtain
limit normalized payoffs of at most (n− 1)/n× (v − c)/n. Therefore, as players become
patient, essential players fare better than under-demanded players.

T 1. Fix a network G with n players. The following statements hold for suffi-

ciently high δ.

• Equilibrium Uniqueness. The partnership formation game played on the network

G has a unique subgame perfect equilibrium, which is in pure strategies.

• Outcomes. In the equilibrium, each essential player in G receives favors any time

he needs them and enjoys a limit normalized expected payoff of (v − c)/n, while

each under-demanded player in G remains single with probability at least 1/n and

obtains a limit normalized expected payoff of at most (n− 1)/n× (v − c)/n.

• Behavior and Partnerships. When player i requests a favor in the initial network

G, equilibrium strategies are characterized as follows:

– If i is under-demanded in G, all neighbors deny i’s request and i remains single.

– If i is perfectly matched in G, all neighbors turn i down until there is only one

remaining neighbor among i’s efficient partners in G; this neighbor agrees to pro-

vide the favor to i.

– If i is over-demanded in G, all neighbors turn i down until i approaches his first

under-demanded neighbor in G, who grants the favor.

• Efficiency. In equilibrium, µ(G) partnerships form with probability 1. The equilib-

rium is long-run efficient.
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As discussed in the Introduction, existing research (e.g., Abreu and Manea 2012a,
2012b and Elliott and Nava 2019) reveals a tension between decentralized trade in net-
works and efficient market outcomes. A combination of new modeling assumptions
delivers efficiency in our decentralized setting: direct transfers are not possible within
partnerships, so every player can experience only a discrete set of outcomes; a player
who needs a favor gets the opportunity to propose partnerships sequentially to all his
neighbors; and links leading to rejections are irreversibly removed from the network.
Corominas-Bosch (2004), Polanski (2007), and Abreu and Manea (2012a) also reach the
conclusion that under-demanded players are weaker than essential ones. Their results
rely on the vulnerability of under-demanded players to isolation as neighbors form part-
nerships and exit the network. This vulnerability stems from the fact that, by defini-
tion, under-demanded players are excluded by some maximum matchings. Our analy-
sis points to a conceptually distinct quality of under-demanded players in the structure
of maximum matchings: removing an under-demanded player from the network makes
all his neighbors essential. For this reason, when an under-demanded player requests a
favor, his neighbors anticipate that his other potential partners will refuse the request so
as to reach attractive essential positions. Hence, under-demanded players are marginal-
ized in the original network via immediate link deletions triggered by rejections rather
than being exposed to the standard gradual decline in partnership opportunities.

We present the proof of Theorem 1 in the Appendix. To develop some intuition for
this result, note that every player i can experience three types of outcomes in the part-
nership formation game in the network G: (a) remaining single; (b) entering a partner-
ship by way of providing a favor to a neighbor who requires one; (c) initiating a partner-
ship via having the first favor he needs granted. The expected payoffs of player i when
these situations arise are given by 0, −c + δV , and v + δV , respectively. For δ > δ, we
have that 0 < −c + δV < v + δV . In scenarios (b) and (c), player i always receives the
benefit v when he needs a favor and has to pay the cost c any time his partner requires
a favor. However, scenario (c) saves player i some early costs c of providing favors be-
fore he needs one, so i does not have an incentive to accept a partnership of type (b)
unless there is some risk that refusing to enter such a partnership exposes him to some
risk of facing scenario (a). Therefore, every player prefers scenario (c) most and would
like to delay accepting a partnership of type (b) for as long as this does not make him
vulnerable to remaining single as in scenario (a).

The proof shows by induction on the number of links in network G that in equilib-
rium, essential players always form partnerships and end up in scenario (b) or (c), while
under-demanded players reach scenario (a) with probability at least 1/n for δ close to 1.
It is then optimal for a player to provide a favor when asked only if he becomes under-
demanded in the network in which his link with the player needing the favor is severed.
Lemma 1(i) implies that if an under-demanded player i needs a favor and all his neigh-
bors turn him down, then i’s neighbors become essential in the remaining network. The
induction hypothesis and backward induction then imply that every neighbor of i is
guaranteed an outcome classified as scenario (b) or (c) above and thus does not have an
incentive to do i the favor. Hence, in any subgame, every player who is under-demanded
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in the remaining network faces scenario (a) in the event he needs the next favor, which
happens with probability 1/n.

When a perfectly matched player i requires a favor, we argue that his last efficient
partner j whom he asks should provide the favor to i. Otherwise, the link ij is removed
from the network, and the first part of Lemma 1(iii) shows that both i and j are under-
demanded in the resulting network G \ ij. The induction hypothesis for G \ ij implies
that no neighbor whom i approaches after j grants him the favor. Then the second part
of Lemma 1(iii) shows that j becomes under-demanded in the ensuing network G \ i.
By Lemma 1(ii), every player whom i asks for the favor before reaching his last efficient
partner is essential and maintains his role in the Gallai–Edmonds decomposition follow-
ing his refusal to do i the favor. Hence, these players do not have incentives to partner
with i.

When an over-demanded player i requires a favor, Theorem GE implies that no es-
sential neighbor changes status in the Gallai–Edmonds decomposition by refusing to
provide the favor and losing the link with i. Then no such neighbor has an incentive to
do i the favor. However, if the over-demanded player i asks an under-demanded neigh-
bor j for the favor, player j has an incentive to do it. This requires a more delicate anal-
ysis of the evolution of the positions of i and j in the Gallai–Edmonds decomposition
in the subgame in which the link ij is removed and i approaches other neighbors with
the request. Lemma 1(iv) shows that i remains essential in G \ ij, and the induction hy-
pothesis implies that i will eventually reach a neighbor k who is willing to partner with
him. However, it is possible that the partnership between i and his specific neighbor k
improves j’s position from being under-demanded in G (as well as G \ ij according to
Lemma 1(i)) to becoming essential in G \ i�k.

This situation is illustrated in the network from Figure 4. Suppose that in this net-
work, the over-demanded player i asks his under-demanded neighbor j for a favor, and
j turns him down. If i requests the favor from h next, then h accepts to provide the fa-
vor, anticipating that he would otherwise remain under-demanded. Following the for-
mation of the partnership (i�h), player j becomes perfectly matched in the remaining
network and eventually partners with g. Player j’s continuation payoff in this event is
δV , which is greater than the expected payoff δV − c derived from providing the favor
to i. However, if i asks player k instead of h for the favor after j’s rejection, k agrees to
provide the favor, in which case j is left under-demanded and exposed to a probability
1/2 of remaining single, which for high δ is significantly less desirable than the expected
payoff δV − c guaranteed by the partnership with i. This is where the assumption that

F 4. A key step in the proof of Theorem 1.
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player i asks his neighbors for the favor in random order is crucial for the argument: af-
ter being rejected by j, player i is equally likely to ask the favor from h and k; while j is
slightly better off not providing the favor to i in case i partners with h, he is considerably
worse off in case i partners with k. Then, for high δ, player j prefers to provide the favor
to i if asked first. The proof shows that a player acting like k—willing to form a part-
nership with i in equilibrium that leaves j under-demanded—always exists in a general
network in which i is over-demanded and j is under-demanded. Lemma 1(iv) is used
to conclude that the set of partnerships that emerge in equilibrium form a maximum
matching.

In Section 6.1, we discuss how the conclusions of Theorem 1 adjust if we alternatively
assume that the order in which a player asks neighbors for favors is selected strategically
or specified exogenously. Only the prediction of exactly which under-demanded player
provides the favor to an over-demanded player change in these alternative specifica-
tions of the model.

6. A 

In this section, we test the robustness of our predictions with respect to several model-
ing variations. We show that the assumption that players who need favors ask neighbors
in random order is not essential for our main findings. We also develop a version of the
model with reduced-form payoffs in which all benefits from a partnership accrue at the
time of its creation and there is some advantage for the player initiating the partnership.
The results extend to such settings. We then discuss extensions of the model with payoff
asymmetries and continuous time. Finally, we show that inefficient equilibria emerge if
we assume that links leading to rejections are not removed from the network, but effi-
ciency is preserved in a perturbation of the game whereby links that generate rejections
are maintained with small probability.

6.1 Requesting favors in strategic or exogenous order

We first comment on the implications of alternative modeling assumptions regarding
the order in which players ask neighbors for favors. The example from Figure 4 shows
that the fact that the player who needs a favor approaches neighbors in random order
without revealing the order at the beginning of the period and instead picking neighbors
sequentially is essential for the partnership outcomes described by Theorem 1. Indeed,
if player i in the network from Figure 4 chose the order in which he approaches neigh-
bors for the favor randomly and announced that it would be (j�h�k), then player j would
anticipate that i will form a partnership with h and would optimally decide to turn down
i’s request knowing that he will always have the option to partner with g at a later stage.
The same conclusion would carry over to a specification of the model in which players
who need favors approach neighbors in an exogenous deterministic order.

Furthermore, the equilibrium uniqueness established by Theorem 1 does not extend
to a version of the model in which unmatched players who need favors choose the order
in which they ask neighbors strategically. To fix ideas, assume that the player who needs
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a favor does not broadcast the order at the beginning of the period, but rather decides
whom to approach next following every rejection. Consider, for instance, the line net-
work with three players. In the model with endogenous orders, for every p ∈ [0�1], there
exists an equilibrium in which when player 2 needs the first favor, he approaches player
1 first with probability p. The limit normalized payoffs of player 1 range from (v − c)/9

to 2(v − c)/9 between the extreme cases p = 0 and p = 1.
While the characterization of partnerships formed by over-demanded players from

Theorem 1 does not extend to models with alternative assumptions regarding the or-
der in which players needing favors approach neighbors, we show that in any of these
model specifications, every over-demanded player who needs a favor receives it from
some under-demanded neighbor. All remaining properties of the structure of equilibria
uncovered by Theorem 1 extend to the alternative model specifications. The proof is
provided in the Appendix.

T 2. Subgame perfect equilibria of the version of the partnership formation game

with strategic or exogenous orderings for sufficiently high δ satisfy all the properties out-

lined in Theorem 1 with the following exceptions. The equilibrium is not unique in the

case with endogenous orderings. When an over-demanded player requests a favor, some

under-demanded neighbor provides the favor (possibly after rejections by other under-

demanded neighbors).

Given the binary nature of possible equilibrium outcomes for a player requiring a
favor—either finding a long-term partner or becoming isolated with probability 1—in
any subgame and every equilibrium for all game specifications, Theorems 1 and 2 imply
that players who need favors are indifferent among all orderings in which they can ask
neighbors. In particular, the equilibrium of the game with random orderings and the
equilibrium of the game with any exogenous orderings constitute equilibria for the game
with strategic choice of orderings.

6.2 Reduced-form one-time payoffs

Our model assumes that players who agree to form partnerships exchange favors and
collect payoffs at arbitrarily many dates. Nevertheless, Theorems 1 and 2 extend to a
setting in which, similarly to the models of bargaining in networks (Kranton and Mine-
hart 2001, Corominas-Bosch 2004, Polanski 2007, Kleinberg and Tardos 2008, Manea
2011, Abreu and Manea 2012a, 2012b, Elliott and Nava 2019), each player consumes all
benefits of a partnership immediately and receives a payoff only at the time the partner-
ship is created. An alternative interpretation of this modeling assumption is that each
player requires a single favor at a random time. If the player is unable to find a partner
willing to provide the favor at that time, he vanishes from the network along with all his
links. This interpretation of the model opens the door to applications with a “ticking
clock” such as fertility in mating, deadlines for collaborative projects, and emergencies
that require immediate support from a friend.

In this specification of the model, the need for a favor represents an opportunity for
a player to propose a partnership. When player i proposes a partnership to neighbor j,



Theoretical Economics 14 (2019) Efficient partnership formation 795

and j accepts the proposal, players i and j receive one-time payoffs v1 and v2, respec-
tively, and exit the game permanently. To match the premise of the benchmark model
that each player prefers receiving the first favor in a partnership, we assume that the pro-
poser enjoys a first-mover advantage, i.e., v1 > v2 > 0. Similarly, to capture the idea that
entering any partnership is more desirable than running the risk of remaining single, we
require that v2 > (n − 1)/n × v1. We maintain the assumptions of a common discount
factor δ and of a constant arrival rate of 1/n per period of opportunities for proposing
partnerships for players who have not yet entered partnerships.

The statements regarding equilibrium uniqueness or existence, the structure of
equilibrium partnerships, and efficiency of equilibrium outcomes from Theorems 1 and
2 carry over to this setting. For Theorem 1, we need to impose the stronger hypothesis
that v2 > (1 − 1/((n − 1)n))v1. This condition is needed for the more detailed charac-
terization of equilibrium partnerships from Theorem 1 that establishes that an over-
demanded proposer reaches an agreement with the first under-demanded player he en-
counters and is involved in checking incentives for the step of the proof illustrated in Fig-
ure 4. Intuitively, the conditions v1 > v2 > (n−1)/n×v1 and v1 > v2 > (1−1/((n−1)n))v1

require that the risk of not finding a partner outweighs the first-mover advantage in a
partnership, so the first-mover advantage should not be too large.

The proofs of the results for this setting rely on exactly the same structural properties
of nodes invoked by the analogous steps in the proofs of Theorems 1 and 2 and minor
modifications in payoff bound computations. In particular, the optimality of accepting
a proposal whose rejection would leave a player vulnerable to isolation is driven by the
assumptions that v2 > (1−1/((n−1)n))v1 and v2 > (n−1)/n×v1, respectively. Similarly,
the inequality (v1 + (n − 1)v2)/n > v2 implies that a player has an incentive to reject a
proposal and forgo the second-mover payoff v2 if doing so does not put him at risk of
not finding a partner and makes him eligible for the first-mover payoff v1 in the event
he has the opportunity to propose a partnership in the remaining network in the next
period.

6.3 Player heterogeneity and continuous time

The conclusions of Theorems 1 and 2 extend to a setting in which time is continuous
and players require favors at random times that have independent and identical Pois-
son distributions. The structure of equilibria does not change and maximum matchings
always emerge in equilibrium if the benefit of receiving favors and the cost of providing
favors are player specific.7 It should be noted that the connection between efficiency
and maximum matchings breaks down for this generalization. Indeed, if the benefit
from receiving favors and the cost of providing favors for player i are vi and ci (with
vi > ci), respectively, then long-run efficiency requires that the long-run matching M̄

that describes the structure of partnerships satisfies

M̄ ∈ arg max
matchings M of G

∑

i covered by M

(vi − ci)�

7However, the analysis becomes intractable if benefits and costs are link-specific. The homogeneity as-
sumptions embedded in our model allow us to neatly separate network effects from other player asymme-
tries.
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There is no general relationship between maximizers of the expression above and maxi-
mum matchings. Nevertheless, for small levels of variation in vi − ci over i ∈N , the value
achieved by maximum matchings is close to the optimal solution, so we can conclude
that equilibria of our partnership formation game are approximately efficient.

6.4 No link removal

Our results rely critically on the assumption that refusing to provide a favor over a link
results in its removal from the network. Let us now consider a version of the model in
which if a player refuses to provide a favor to a neighbor, the underlying link is not re-
moved from the network and can be used to exchange favors in the future (but cannot be
reactivated to request the same favor in the current period). As in the benchmark model,
the player who needs a favor asks neighbors in random order and partnerships are per-
manent once formed. The main conclusions of Theorem 1—uniqueness of the subgame
perfect equilibrium and its asymptotic efficiency—do not extend to this model.

To illustrate equilibrium multiplicity, consider a network with two players, 1 and 2,
linked with each other. For high discount factors δ, we can identify the following sub-
game perfect equilibria. In one equilibrium, player 1 always refuses to provide the first
favor, while player 2 always agrees to provide the first favor. Under these strategies, it is
optimal for player 1 to refuse to provide favors as long as a partnership is not in place
because player 2 will grant favors to player 1 whenever player 1 requires them. The op-
timality of player 2’s strategy can be checked using the single-deviation principle. The
described strategies require that if player 1 needs the first favor at date t, player 2 should
provide it. This behavior generates an expected payoff of −c + δV > 0 for player 2. If
player 2 deviates from the date t action by turning player 1 down and then play con-
forms to the prescribed strategies, player 2 will enter a partnership the next time player
1 requires a favor. If this happens t ′ > 0 periods later, player 2’s conditional expected pay-
off is δt

′
(−c + δV ), which is smaller than −c + δV for all t ′. This clearly constitutes the

best equilibrium outcome for player 1 and the worst equilibrium outcome for player 2.
To obtain another stationary equilibrium, we can simply switch the behavior of play-

ers 1 and 2 in the strategies constructed above. Nonstationary equilibria can be built
based on these two equilibria. For instance, another equilibrium prescribes that the
player who asks for the first favor receives it and a partnership forms in the first period.
This equilibrium relies on the threat that if a player turns down the first favor request,
then play reverts to the equilibrium in which the opponent never provides the first favor.
Note that this equilibrium generates expected payoffs of V for each player and is welfare
optimal.8

Every subgame perfect equilibrium in the two-player network is long-run efficient.
To see this, note that for δ close to 1, if an equilibrium involves only a small probability

8In another equilibrium, the first-period favor request is turned down and then play proceeds accord-
ing to the welfare optimal equilibrium. These strategies constitute an equilibrium because providing the
first favor generates an expected payoff of −c + δV , while refusing to do so results in a continuation pay-
off of δV > −c + δV . There exists also a symmetric stationary equilibrium in mixed strategies, in which,
conditional on not having entered the partnership, both players agree to provide the next favor with equal
probability.
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F 5. Long-run inefficient equilibria without link removals.

of agreement after a certain date, then either player would have an incentive to deviate
and provide the favor at that date.

We next present an example in which long-run inefficient subgame perfect equilib-
ria exist. Consider the four-player network from Figure 5, which is also used to illus-
trate inefficient equilibria in Abreu and Manea (2012a). In the Appendix, we verify that
the following strategies constitute a subgame prefect equilibrium for high δ. Before any
partnership forms, players 1, 3, and 4 always provide favors to any neighbor who asks for
one regardless of the set of players who previously refused to do the same favor, while
player 2 never agrees to provide a favor. In a subgame in which partnership (1�2) or
(3�4) formed, play between the remaining pair of (linked) players proceeds according to
certain equilibrium strategies for the two-player setting discussed above.9 In subgames
in which the partnership (3�4) formed, the strategies specify that the best equilibrium
for player 2 is played in the relationship between players 1 and 2. In subgames in which
player 2 requires a favor and is first refused by both players 3 and 4 (in either order) and
then ends up partnering with player 1, the strategies prescribe that the worst equilib-
rium for the second player who turned 2 down is played in the relationship between
players 3 and 4. In other subgames with two linked players remaining, equilibrium play
can be specified arbitrarily.

Under these strategies, each of the inefficient partnerships (2�3) and (2�4) forms
with probability 1/4 × 1/3 = 1/12 in the first period of any subgame in which no partner-
ship has formed (in the event player 2 requests a favor from player 3 or 4, respectively),
with probability 1/4 × 1/12 in the second period (in the event player 1 requested the
first-period favor and got turned down, then 2 requested the second-period favor), and
so on.

Long-run efficient equilibria also exist in this example. Such an equilibrium can be
constructed as follows. Player 2 never agrees to provide the first favor to a neighbor in
any subgame. Player 1 provides a favor when asked by player 2 in every subgame. As long

9Note that the payoffs induced by these strategies are not the same as in the two-player setting because
in these subgames, each player requires favors with probability 1/4 rather than 1/2, but the verification of
equilibrium incentives for high δ is analogous.
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as no partnership has formed, there are two regimes, depending on whether 3 and 4 ever
refused a favor request from each other. Play starts in the “cooperative” regime, in which
players 3 and 4 agree to provide favors to each other whenever one asks the other. If the
pair (3�4) ever deviates from this norm, play switches to a “non-cooperative” regime, in
which players follow the inefficient equilibrium strategies constructed above. In sub-
games in which the partnership (1�2) has formed, players 3 and 4 play according to the
welfare optimal equilibrium strategies for the two-player game whereby they exchange
favors on the equilibrium path in every period.

Given these strategies, it is not optimal for players 3 and 4 ever to provide favors to
2 as long as they have not deviated from the norm of the cooperative regime, because
they know that they can always count on each other to exchange favors when needed.
By refusing to partner with 2, each of the players 3 and 4 receives the benefit v of fa-
vors when needed, but postpones paying the cost c. Players 3 and 4 have incentives to
provide favors to each other in the cooperative regime, because failing to do so results
in player 2 also refusing the favor request (if asked second in the order by either 3 or
4), and the ensuing inefficient continuation play in the non-cooperative regime leaves
each of them isolated with probability greater than 1/12. Incentives in other interactions
involving players 1 and 2 can be checked as in the case of the inefficient equilibrium.10

6.5 Small probability of link preservation

The weakness of each under-demanded player i driving our main result stems from the
incentives of i’s neighbors to decline his favor request so as to achieve essential posi-
tions following the removal of all of i’s links. When rejections do not always trigger link
removals, i’s neighbors are not guaranteed to land essential positions following their re-
jections of i. If links are preserved with significant probability following rejections, then
some of i’s neighbors would prefer to grant the favor and enter a partnership with i in-
stead of running the risk of remaining under-demanded and eventually being left single.
Hence, equilibrium dynamics and bargaining power depend crucially on the probability
with which rejection-generating links are preserved. However, we argue that our main
result is robust with respect to small probabilities of link preservation following rejec-
tions.

Consider a perturbation of the partnership formation game in which rejections do
not necessarily lead to link removals. Instead, assume that a player whose favor request
has been declined by all his neighbors maintains each of his links independently with
some small probability ǫ ≥ 0.11 We refer to this version of the partnership formation
game as the ǫ-perturbed game.

10There also exists a mixed-strategy efficient equilibrium that generates identical payoffs for all players
similar to the symmetric stationary equilibrium for the two-player setting described in footnote 8. In this
equilibrium, only the efficient partnerships (1�2) and (3�4) form, and each of the four players mixes with
the same probability between providing and not providing the first favor across these two links. Every player
is indifferent between doing a favor when asked and waiting for the game to proceed to the next period with
the same structure of partnerships in place.

11The argument holds for any specification whereby nonempty subsets of rejection-generating links are
maintained with small (history-dependent) probabilities.
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The proof of Theorem 1 shows that incentives in the subgame perfect equilibrium of
the unperturbed game are strict in every subgame for sufficiently high discount factors.
A standard continuity argument implies that the subgame perfect equilibrium of the
unperturbed game (described by ǫ = 0) also constitutes a subgame perfect equilibrium
of the ǫ-perturbed game for ǫ close to 0. The proof of Theorem 1 can be straightforwardly
adjusted to establish that this is the only equilibrium of the ǫ-perturbed game.

The conclusion that a maximum matching emerges in equilibrium in the long run
extends to a version of the perturbed game in which links that lead to rejections are
immediately removed with high probability and players subsequently asked for favors
observe which prior rejections generated link removals. However, short-run dynamics
are sensitive to the realizations of perturbed paths under this model specification. It is
no longer the case that perfectly matched players find a partner as soon as they need
a favor. Indeed, when a perfectly matched player i who has multiple efficient partners
needs a favor and some of these partners turn him down without losing their links with i,
then all neighbors subsequently approached by i must turn him down since i is not their
unique efficient partner in the remaining network. Nevertheless, with probability 1, re-
peated rejections eventually leave i with a single efficient partner who should agree to
form a partnership with i in equilibrium. The prospects of under-demanded players
who require favors are also affected by perturbations. When an under-demanded player
i is rejected by a neighbor but maintains the link with that neighbor, another neigh-
bor may risk remaining under-demanded if he turns i down and loses his link with i.
This neighbor should then partner with i in equilibrium, and the ensuing partnership is
efficient (since all links of under-demanded players are efficient).

7. C

This paper studies the formation of bilateral partnerships that guarantee reciprocal ex-
change of favors in social and economic networks. We find that the structure of equilib-
rium partnerships, the strengths of players, and market efficiency are driven by the con-
figuration of nodes that are essential for achieving all maximum matchings. In particu-
lar, essential players always find partners, while inessential players remain single with
positive probability in equilibrium. This implies that essential players obtain higher
equilibrium payoffs than inessential players. Even though the search for partners is
decentralized and incentives for entering partnerships depend on local network con-
ditions, we prove that the possibility that each inessential player might be unable to find
a partner implies that partnerships form efficiently in every network. This result is strik-
ing in the context of existing research, which has found that local incentives for forming
partnerships are not usually aligned with global welfare maximization in markets with
decentralized matching.

More generally, we show exactly how each player’s equilibrium decisions are deter-
mined by his (evolving) position in the Gallai–Edmonds decomposition. Prior research
on trade in networks has established similar but less detailed connections between equi-
librium outcomes and the Gallai–Edmonds decomposition (mainly in markets with cen-
tralized matching). However, there is a conceptual novelty in the mechanism that under-
lies our result. In our setting, the weakness of inessential players is inflicted by neighbors
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who actively marginalize them via severing links with them when they request favors in
the original network, while in previous models, it is indirectly precipitated by the pos-
sibility of remaining isolated in the network as neighbors forge agreements with other
players.

The contribution of this research lies at the intersection of game theory and graph
theory. Our analysis delivers a precise relationship between the classic Gallai–Edmonds
structure of maximum matchings and incentives that drive the efficient formation of
partnerships in a natural favor exchange game with decentralized matching.

A: P

L-    . To understand the connection between
long-run efficiency and total welfare in our model, fix a strategy profile σ . Let P denote
the probability measure over outcomes induced by σ . Let T denote the lowest t such that
Mt = M̄ and Gt = Ḡ. For t ≥ T , we have that Mt = M̄ and only players who are matched
under M̄ are granted favors at date t. Hence, players collectively receive the net benefit
of v− c from favor exchange at date t ≥ T with probability 2µ(M̄)/n. Starting at any date
t < T , there is a sequence of n or fewer draws by nature of unmatched players asking for
favors for the first time and either entering partnerships or becoming isolated, which
leads to Mt+n = M̄ and Gt+n = Ḡ. The probability of such a sequence being drawn by
nature conditional on (Gt�Mt) is at least 1/nn. Therefore, P(T > t + n|T > t) ≤ 1 − 1/nn,
so

P(T > t + n)= P(T > t)P(T > t + n|T > t)≤ P(T > t)
(

1 − 1/nn
)

�

It follows that P(T > kn)≤ (1 − 1/nn)k for all k ≥ 0. Given this exponential bound on the
tail of the distribution of T and the fact that the total expected payoffs of all players un-
der σ average to 2µ(M̄)/n(v−c) at dates t ≥ T , the limit of the total normalized expected
payoffs of all players under σ as δ→ 1 does not exceed 2µ(G)/n(v− c) and achieves the
maximum of 2µ(G)/n(v − c) only if M̄ is a maximum matching of G with probability 1.
We conclude that σ maximizes the limit of the sum of normalized expected payoffs of
all players as δ→ 1 only if it is long-run efficient.

P  L 1. Fix the network G and the link ij ∈G.
(i) Suppose that i is under-demanded in G and let M be a maximum matching of G

that does not cover i. Since µ(G \ ij) ≤ µ(G) and M is a matching of G \ ij, it must be
that µ(G \ ij) = µ(G) and M is also a maximum matching of G \ ij. As M does not cover
i, it follows that i is under-demanded in G \ ij. Similarly, µ(G \ i)≤ µ(G) combined with
the fact that M constitutes a matching for G \ i implies that µ(G \ i) = µ(G). If j is not
essential in G\ i, then there exists a maximum matching M ′ of G\ i that does not cover j.
Adding the link ij to M ′ generates a matching of G with µ(G \ i) + 1 = µ(G) + 1 links,
contradicting the definition of µ(G).

(ii) Suppose that i is perfectly matched in G and that j is not the only efficient part-
ner of i. If j is over-demanded in G, then Theorem GE implies that ij is not an effi-
cient link in G, so G and G \ ij have the same set of maximum matchings and the same
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Gallai–Edmonds decomposition. Moreover, the set of efficient partners of i in G does
not contain j and is identical to the set of efficient partners of i in G \ ij.

Suppose next that j is perfectly matched in G. Since j is not the only efficient partner
of i, we have that µ(G \ ij) = µ(G) and every maximum matching of G \ ij is a maximum
matching of G. In particular, every player who is under-demanded in G\ ij is also under-
demanded in G and all efficient partners of i in G \ ij are his efficient partners in G as
well. Consider now a player k who is under-demanded in G. Then there exists a maxi-
mum matching M of G that does not cover k. Since j is not the only efficient partner of
i, there exists a maximum matching M ′ of G that does not contain the link ij. By The-
orem GE, both M and M ′ link perfectly matched players with one another. Construct
a third matching M ′′ that consists of the links of M among under- and over-demanded
players in G along with the links of M ′ among perfectly matched players in G. Then M ′′

is a maximum matching of G \ ij that does not cover k. Thus, k is under-demanded in
G \ ij. The arguments above show that the sets of under-demanded players in G and
G \ ij coincide. Since neither i nor j is under-demanded in G, the sets of neighbors in
the two networks of the common set of under-demanded players in G and G \ ij are also
identical. This implies that the sets of over-demanded players in G and G \ ij are the
same. It follows that the sets of perfectly matched players in G and G \ ij also coincide.
To prove that every efficient partner k = j of i in G is also an efficient partner of i in
G \ ij, it is sufficient to note that every maximum matching of G that contains the link ik

continues to be a maximum matching of G \ ij.
(iii) Suppose that i is perfectly matched in G and that j is i’s only efficient partner

in G. We know that µ(G)− 1 ≤ µ(G \ ij) ≤ µ(G). If µ(G \ ij) = µ(G), then there exists a
maximum matching of G that does not contain the link ij, contradicting the assumption
that i is perfectly matched in G and j is i’s only efficient partner in G. Hence, µ(G \ ij) =

µ(G) − 1. Let M be a maximum matching of G. As i is perfectly matched in G and j

is i’s only efficient partner in G, the link ij is necessarily contained in M . Removing ij

from M produces a matching in G \ ij with µ(G) − 1 = µ(G \ ij) links. This constitutes
a maximum matching for G \ ij, which does not cover i or j. It follows that both i and j

are under-demanded in the network G \ ij.
Since i is perfectly matched in G, we have that µ(G \ i) = µ(G)− 1. Then removing

the link ij from any maximum matching of G generates a maximum matching for G \ i

that does not cover j. It follows that j is under-demanded in G \ i.
(iv) Suppose that i is over-demanded and j is under-demanded in G. Then there

exists a maximum matching M of G that does not cover node j and, hence, excludes the
link ij. As i is over-demanded in G, M must cover i. If we replace i’s link under M with ij,
we obtain another maximum matching of G that contains the link ij. Therefore, ij is an
efficient link in G. Since µ(G \ ij) ≤ µ(G) and M is a matching of G \ ij, it must be that
µ(G \ ij) = µ(G), so any maximum matching of G \ ij is also a maximum matching of G.
As any maximum matching of G covers i, it must be that every maximum matching of
G \ ij also covers i, so i is essential in G \ ij.

(v) Suppose that both i and j are perfectly matched and ij is an efficient link in G.
Then we have that µ(G \ i� j) = µ(G) − 1 and every maximum matching of G \ i� j can
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be completed to a maximum matching of G by adding the link ij. Hence, every under-
demanded player in G \ i� j different from i and j is under-demanded in G. Conversely,
reasoning similar to the proof of part (ii) shows that any maximum matching of G that
does not cover a given node can be transformed into a maximum matching of G \ i� j

with the same property by rewiring the links among perfectly matched players in G us-
ing a maximum matching of G that contains the link ij. It follows that every under-
demanded node in G is under-demanded in G \ i� j.

P  T 1. Fix a set of n nodes and consider a network G linking them. The
result follows from claims (I1)–(I7) below concerning subgame perfect equilibrium be-
havior and outcomes in the network G for sufficiently high δ.

(I1) When player i asks player j for a favor in G, player j refuses to provide the favor if
j is essential in G \ ij.

(I2) When a player i who is under-demanded in G first asks a neighbor for a favor, the
neighbor turns him down. In equilibrium, no neighbor of i grants the favor and i

remains single.

(I3) When a player i who is perfectly matched in G first asks a neighbor j for a favor,
j does the favor for i if and only if j is the only efficient partner of i in G.12 In
equilibrium, the last efficient partner of i in G whom i approaches grants the
favor to i.

(I4) When an over-demanded player i in G asks his first neighbor for a favor, the
neighbor agrees to provide the favor if and only if he is under-demanded in G.
In equilibrium, the first under-demanded player j in G whom i approaches pro-
vides the favor to i; the resulting partnership between i and j is efficient in G.

(I5) In a subgame in which an essential player in G happens to need a favor at the be-
ginning of a period (before asking any neighbor), each under-demanded player
in G remains single with probability at least 1/((n− 1)n) and receives a limit nor-
malized expected payoff of at most (1 − 1/((n− 1)n))× (v − c)/n.

(I6) In every subgame perfect equilibrium for the network G, each essential player in
G receives favors any time he needs them and enjoys a limit normalized expected
payoff of (v − c)/n, while each under-demanded player in G is left single with
probability at least 1/n and obtains a limit normalized expected payoff of at most
(n− 1)/n× (v − c)/n.

(I7) There exists a unique subgame perfect equilibrium for the network G. In equi-
librium, exactly µ(G) partnerships form with probability 1. The equilibrium is
long-run efficient.

We prove claims (I1)–(I7) simultaneously and in this sequence by induction on the
number of links in G. The induction base case for a network G with a single link can

12If i is perfectly matched in G, the condition that j is the only efficient partner of i in G is equivalent to
the condition that i is the only efficient partner of j in G.
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be verified without difficulty. We need to establish the claims for a network G under the
assumption that they are true for any network with fewer links. The proof of the induc-
tive step relies on the existence and uniqueness of the subgame perfect equilibrium for
subnetworks of G different from G, which follows from the induction hypothesis (I7).
For brevity, we do not explicitly state this fact at every instance it is needed.

Let V = v/((1 − δ)n) denote the expected value of favors provided to a player in a
partnership and let C̄ = (1 + δ/((1 − δ)n)c denote the maximum expected cost a player
pays upon committing to a partnership via providing a favor in the current period.

To prove the inductive step for claim (I1), suppose that player i first asks player j for a
favor in G and that j is essential in G\ ij. If j decides to grant the favor, then his expected
payoff is δV − C̄. If j refuses to provide the favor, then i continues to ask for favors in
G \ ij. By the induction hypothesis (I6) applied to network G \ ij, player j is guaranteed
to receive favors whenever he needs them in the future. Hence, j enjoys the same favor
benefits, with an expected discounted value of δV , regardless of whether he agrees to
partner with i. However, the cost C̄ of partnering with i is greater than the expected cost
of entering another partnership at any later date, which is at most δC̄, so j has a strict
incentive to refuse i’s request in any subgame perfect equilibrium for G.

To establish claim (I2), suppose that an under-demanded player i in G first asks his
neighbor j for a favor. Player j obtains an expected payoff of δV − C̄ if he grants the favor
to i. If j refuses to provide the favor, then Lemma 1(i) implies that player i continues to
be under-demanded in the resulting network G \ ij. By the induction hypothesis for the
second part of (I2) applied to the network G\ij, all of i’s other neighbors refuse to partner
with him after j turns him down. Then player j is left in G \ i following his rejection of
i’s request. Since j is linked to the under-demanded player i in G, Lemma 1(i) implies
that j is essential in G \ i. By the induction hypothesis (I6) for the network G \ i, player
j always finds a partner when he needs a favor. Player j’s payoff following his rejection
of i’s request is thus at least δV − δC̄, which is greater than δV − C̄. Hence, j has a strict
incentive to turn i down as asserted. In a subgame perfect equilibrium, player j must
turn i down and then, as argued above, all other neighbors of i in G should also turn
him down in sequence, leaving him ultimately isolated.

To prove the first part of claim (I3), suppose that a player i who is perfectly matched
in G first asks his neighbor j for a favor. Since there are no links between under-
demanded and perfectly matched nodes in G, is must be that j is an essential player
in G. If j is not the only efficient partner of i in G, then Lemma 1(ii) implies that j con-
tinues to be essential in G \ ij. Then (I1) implies that j should refuse i’s request in any
subgame perfect equilibrium.

Suppose instead that j is the only efficient partner of i in G. Then, by Lemma 1(iii),
both i and j are under-demanded in G \ ij. Assume that j refuses i’s request. Since i is
under-demanded in G \ ij, the induction hypothesis (I2) for network G \ ij implies that
no neighbor whom i approaches after j grants the favor to i. Hence, player j ends up
in the network G \ i following his refusal to partner with i. By Lemma 1(iii), player j is
under-demanded in G \ i. Then the induction hypothesis (I6) for network G \ i implies
that player j’s limit normalized expected payoff following the rejection of i’s request does
not exceed (n − 1)/n × (v − c)/n. Since j can attain a limit normalized expected payoff
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of (v − c)/n by partnering with i, player j has a strict incentive to accept i’s request for
high δ.

To prove the inductive step for the second part of claim (I3), note that repeated use
of Lemma 1(ii) implies that the sets of perfectly matched, over-demanded, and under-
demanded nodes do not change as we remove i’s links following rejections from neigh-
bors until we reach his last efficient partner in G, while his set of efficient partners in
the remaining network consists of his efficient partners in G except for those neighbors
who have already rejected him. When i approaches his last efficient partner j in G, it
is the case that j is also his only efficient partner in the remaining network. Then the
induction hypothesis (I3) applied for the subnetworks of G resulting from the sequence
of rejections (along with the arguments for the first part of claim (I3) above) implies that
j must grant the favor to i in any subgame perfect equilibrium.

To demonstrate the first part of claim (I4), suppose that an over-demanded player i
in G asks his first neighbor j for a favor. If j is essential in G, then Theorem GE implies
that no maximum matching of G contains the link ij and, thus, j is essential in G \ ij.
Then (I1) implies that j should refuse i’s request in any subgame perfect equilibrium.

Suppose instead that j is under-demanded in G. Then Lemma 1(i) shows that j con-
tinues to be under-demanded in G \ ij, while Lemma 1(iv) implies that i remains essen-
tial in G \ ij. If j refuses to grant the favor to i, then he finds himself under-demanded in
the network G \ ij in a subgame where the essential player i needs a favor. By the induc-
tion hypothesis (I5) for the network G \ ij, player j obtains a limit normalized expected
payoff of at most (1 − 1/((n − 1)n)) × (v − c)/n in this subgame, which is smaller than
the limit normalized expected payoff of (v − c)/n guaranteed to him upon committing
to a partnership with i. Hence, player j has a strict incentive to grant the favor to i for
sufficiently high δ.

The second part of claim (I4) follows from observing that the removal of any set of
links between i and essential players in G does not affect the set of maximum matchings
or the Gallai–Edmonds partition because none of these links belongs to a maximum
matching in G according to Theorem GE. We can then apply the induction hypothe-
sis (I4) to all subnetworks of G resulting from i’s request being denied by his essential
neighbors in G. By Lemma 1(iv), the eventual partnership that i forms with the first
under-demanded neighbor in G whom he asks for a favor is efficient in the remaining
network as well as in G.

To prove the inductive step for claim (I5), suppose that an essential player i in G

needs a favor at the beginning of a period and fix an under-demanded player j. Consider
first the case in which i is perfectly matched in G. In this case, (I3) implies that one of
i’s efficient partners k in G agrees to grant the favor and forms a partnership with i. By
Lemma 1(v), player j remains under-demanded in G \ i�k. With probability 1/n, player
j needs a favor in the network G \ i�k in the next period. Since j is under-demanded in
G \ i�k, the induction hypothesis (I2) for network G \ i�k implies that in this event, all
neighbors turn j down and j remains single.

Consider next the case in which i is over-demanded in G. Since j is under-demanded
in G, there exists a maximum matching M of G that does not cover j. Player i has to be
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matched under M because he is over-demanded in G. Let k be player i’s partner un-
der M . By Theorem GE, player k is under-demanded in G. With probability at least
1/(n − 1), player k is the first neighbor whom i asks for the favor. In this event, (I4)
implies that k grants the favor to i. Note that the matching M without the link ik con-
stitutes a maximum matching of G \ i�k that does not cover j. Hence, player j is under-
demanded in G \ i�k. By the same argument as the one used in the first case, j remains
single with a conditional probability of at least 1/n following the agreement between i

and k.
In either case, we have shown that conditional on player i needing a favor in network

G, player j remains single with probability at least 1/((n − 1)n). Since the payoff from
being single is 0 and the limit normalized expected payoff from forming a partnership
is (v − c)/n, player j’s limit normalized expected payoff in the subgame cannot exceed
(1 − 1/((n− 1)n))× (v − c)/n.

We now establish claim (I6). Consider an essential player i in G. If i needs a favor in
the first period of the game, then claims (I3) and (I4) imply that one of i’s neighbors will
agree to provide the favor to him. If another player asks i for a favor in the first period,
then i forms a partnership with that player in the situation described by (I3) and receives
favors as needed thereafter. Otherwise, (I2), (I3), and (I4) imply that in the first period,
either an under-demanded player in G (different from the essential player i) needs a fa-
vor and is left single or a pair of players different from i form an efficient partnership.
Since every maximum matching for the remaining network is a maximum matching of
G in the former case and can be completed to form a maximum matching of G by adding
the link connecting the partners in the latter case, i continues to be an essential player in
the second-period network. Then the induction hypothesis (I6) for the remaining net-
work implies that i always receives favors when he needs them in the subgame starting
in the second period. We have shown that i receives favors at any instance he needs
them.

If i is an under-demanded player in G, then (I2) implies that i remains single in the
event that he needs a favor in the first period of the game. This event has probability
1/n.

The statements of claim (I6) regarding payoffs follow from the fact every player re-
ceives 0 payoff when left single and a limit normalized expected payoff of (v− c)/n upon
entering a partnership.

We finally prove claim (I7). Suppose that player i needs a favor and first asks neigh-
bor j in the network G. By the induction hypothesis (I7), there is a unique subgame
perfect equilibrium for the network G \ ij arising in the event that j turns i’s request
down. By (I2), (I3), and (I4), the optimal response of player j to i’s request is uniquely
determined given the equilibrium play in G \ ij. It follows that there exists at most one
subgame perfect equilibrium in G. Using the single-deviation principle, one can easily
prove that the strategies described by (I2), (I3), and (I4) indeed constitute a subgame
perfect equilibrium for G.

Claims (I2), (I3), and (I4) also show that the partnerships formed along any equi-
librium path constitute a maximum matching with probability 1. Indeed, (I2) proves
that when an under-demanded player i in G requires the first favor, no neighbor does
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i the favor and i remains single in the network G \ i. Since i is under-demanded in G,
there exists a maximum matching M of G that does not cover i. Then M is also a maxi-
mum matching of G \ i, so µ(G \ i) = µ(G). The inductive hypothesis (I7) implies that
µ(G \ i) = µ(G) partnerships emerge in the subgame played on the resulting network
G \ i. Similarly, (I3) shows that when a perfectly matched player i in G requires the first
favor, the last efficient partner j of i in G approached by i grants the favor to i. As the
link ij is efficient in G, we have that µ(G \ i� j) = µ(G) − 1. The inductive hypothesis
(I7) applied to G \ i� j implies that µ(G \ i� j) = µ(G) − 1 partnerships form in the sub-
game played in the network G \ i� j after i partners with j in G. Hence, a total of µ(G)

partnerships emerge in this case as well. An analogous argument deals with the case in
which an over-demanded player in G needs the first favor and, according to (I4), forms
an efficient partnership with the first under-demanded player in G he approaches. Since
every player needs favors at some points in time with probability 1, we conclude that ex-
actly µ(G) partnerships form with probability 1 and, hence, the equilibrium is long-run
efficient.

P  T 2. Fix a set of n nodes and consider a network G linking them. The
result follows from claims (J1)–(J7) below—which reflect appropriate modifications of
claims (I1)–(I7) from the proof of Theorem 1—concerning subgame perfect equilibrium

behavior and outcomes in either specification of the game on the network G for suffi-
ciently high δ.

(J1) When player i asks player j for a favor in G, if j is essential in G \ ij, then j refuses
to provide the favor to i.

(J2) When a player i who is under-demanded in G first asks a neighbor j for a favor, j
turns him down. In equilibrium, no neighbor of i grants the favor and i remains
single.

(J3) If player i needs a favor in network G and neighbor j agrees to provide it after
some sequence of rejections by other neighbors, then the link ij is efficient in G.

(J4) When a player i who is perfectly matched in G first asks a neighbor j for a favor,
j does the favor for i if and only if j is the only efficient partner of i in G. In
equilibrium, the last efficient partner of i in G whom i approaches grants the
favor to i.

(J5) When an essential player needs a favor in G, he forms a partnership with proba-
bility 1 in equilibrium.

(J6) In every subgame perfect equilibrium for the network G, each essential player in
G receives favors any time he needs them and enjoys a limit normalized expected
payoff of (v − c)/n, while each under-demanded player in G is left single with
probability at least 1/n and obtains a limit normalized expected payoff of at most
(n− 1)/n× (v − c)/n.

(J7) In equilibrium, exactly µ(G) partnerships form. The equilibrium is long-run ef-
ficient.
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As for Theorem 1, we prove claims (J1)–(J7) by induction on the number of links
in G. The main departure from the approach of Theorem 1 is that in the alternative
specifications of the game, the identity of the neighbor who agrees to provide the favor
to an over-demanded player depends on the order in which the over-demanded player
plans to request the favor from neighbors subsequently. The conclusion (I4) that an
over-demanded player receives favors from the first under-demanded player he asks is
not true in this setting, as the discussion from Section 6.1 demonstrates. That conclu-
sion is replaced by the weaker claims (J3) and (J5), which in light of Theorem GE jointly
imply that any over-demanded player who requests a favor receives it from some under-
demanded neighbor.

The induction base case for a network G with a single link can be verified immedi-
ately. We set out to prove the claims for a network G under the assumption that they
hold for any network with fewer links.

The proof of the inductive step for claim (J1) relies on hypothesis (J6) applied to
network G \ ij and parallels the arguments that establish that (I1) is a consequence of
the induction hypothesis (I6) in the proof of Theorem 1. Similarly, the inductive step
for claim (J2) follows by applying the induction hypotheses (J2) and (J6) and arguments
analogous to those proving that (I2) follows from (I2) and (I6) for networks with fewer
links.

We prove (J3) by contradiction. Suppose that player i receives a favor from player
j possibly after a sequence of rejections in network G and that the link ij is not effi-
cient in G. Then both players i and j must be essential in G. For instance, if i is under-
demanded in G, then there exists a maximum matching M of G that does not cover i.
If M does not cover j either, then the matching M ∪ ij of G has greater cardinality than
M , a contradiction. If M does cover j, then replacing j’s link in M with ij creates an-
other maximum matching of G. This matching contains the link ij, which contradicts
the assumption that ij is not an efficient link in G.

Suppose that i’s favor request is turned down by neighbors in the order j0� j1� � � � � jk
before j agrees to provide the favor. Note that µ(G)− 1 ≤ µ(G \ ij0� � � � � ijk)≤ µ(G).

If {j0� j1� � � � � jk} includes all efficient partners of i in G, then it cannot be that
µ(G \ ij0� � � � � ijk) = µ(G). Indeed, if that was the case, then any maximum matching
of G \ ij0� � � � � ijk should be a maximum matching of G. Since i is essential in G, it
must also be essential in G \ ij0� � � � � ijk. Then there exists a maximum matching of both
G \ ij0� � � � � ijk and G that contains a link ih with h /∈ {j0� j1� � � � � jk}, which means that h is
an efficient partner of i in G, a contradiction. This proves that if {j0� j1� � � � � jk} contains
all efficient partners of i in G, then µ(G \ ij0� � � � � ijk) = µ(G) − 1. We can then derive
a maximum matching of G \ ij0� � � � � ijk by removing i’s link in any maximum matching
of G. Therefore, i is under-demanded in the network G \ ij0� � � � � ijk. Claim (J2) for net-
work G \ ij0� � � � � ijk then shows that player j should not agree to provide the favor to j,
contradicting our original assumption.

We are left to consider the case in which {j0� j1� � � � � jk} does not contain all efficient
partners of i in G. Since j is assumed to not be an efficient partner of i in G, node i has a
neighbor h /∈ {j0� j1� � � � � jk� j} such that ih is an efficient link in G. Hence, ih belongs to a
maximum matching M of G. Since M is also a matching in the network G\ ij0� � � � � ijk� ij,
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it must be that µ(G \ ij0� � � � � ijk� ij) = µ(G). This implies that every maximum matching
of G \ ij0� � � � � ijk� ij is a maximum matching of G. Since j is essential in G, it is covered
by every maximum matching of G and, consequently, also by every maximum matching
of G \ ij0� � � � � ijk� ij. Therefore, j is also essential in G \ ij0� � � � � ijk� ij. Claim (J1) applied
to network G \ ij0� � � � � ijk then proves that it is not optimal for j to provide the favor to i,
again contradicting the original assumption.

The proof of the inductive step (J4) relies on the induction hypotheses (J2) for net-
work G \ ij and (J6) for network G \ i in the same fashion (I3) follows from the induction
hypotheses (I2) for G \ ij and (I6) for G \ i.

To demonstrate claim (J5), we proceed by contradiction. Suppose that in a sub-
game perfect equilibrium, the essential player i is rejected by all neighbors with posi-
tive probability when he needs a favor in G and asks them in the order j0� j1� � � � � jk̄. Let
jk be the last node in this sequence with the property that ijk is an efficient link in G.
Then there exists a maximum matching of G that contains the link ijk. This matching
also constitutes a maximum matching for the network G \ ij0� � � � � ijk−1. It follows that
µ(G) = µ(G \ ij0� � � � � ijk−1) and every maximum matching of G \ ij0� � � � � ijk−1 is a max-
imum matching of G. In particular, i should be an essential node in G \ ij0� � � � � ijk−1 as
it is essential in G. Moreover, if i had an efficient partner in G \ ij0� � � � � ijk−1 other than
jk, then that node would also be an efficient partner of i in G. Since jk is the last node
in the sequence j0� j1� � � � � jk̄ that is an efficient partner of i in G, it must be that that jk
is the only efficient partner of i in G \ ij0� � � � � ijk−1. As i is essential and jk is the only
efficient partner of i in G \ ij0� � � � � ijk−1, the link ijk must belong to all maximum match-
ings of G \ ij0� � � � � ijk−1. It follows that node jk is also essential in G \ ij0� � � � � ijk−1. As
both i and jk are essential and the link ijk is efficient in G \ ij0� � � � � ijk−1, Theorem GE
implies that i and jk are perfectly matched in G \ ij0� � � � � ijk−1. Therefore, i is perfectly
matched and jk is his only efficient partner in G \ ij0� � � � � ijk−1. Claim (J4) applied to
G \ ij0� � � � � ijk−1 implies that if i requests the favor from jk after being turned down by
j1� � � � � jk−1, then jk should provide the favor to i with probability 1, a contradiction with
our initial assumption.

The proofs of claims (J6) and (J7) use similar arguments to those that establish (I6)
and (I7) in the proof of Theorem 1. Steps that rely on the detailed identification of who
partners with over-demanded players in those arguments are replaced by claims (J2),
(J3), and (J5), which show that no partnerships form when under-demanded players
need favors and that efficient partnerships form whenever essential players request fa-
vors at the beginning of a period in network G.

The existence of a subgame perfect equilibrium can be established constructively
based on the characterization of equilibrium behavior and outcomes revealed by claims
(J1)–(J7). Equilibrium uniqueness for the game with exogenous orderings follows from
a backward induction argument that proves uniqueness of optimal responses in sub-
games in which over-demanded players require favors.

P  S 6.4. We first check that under the constructed strategies, there are
no profitable one-shot deviations for players 1, 3, and 4 when player 2 asks for a favor.
After 2 has been rejected by two of his three neighbors, the last player i ∈ {1�3�4} whom
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player 2 asks for the favor has an incentive to do it. Player i anticipates that refusing to do
so leads with probability greater than 1/12 to the formation of each of the partnerships
(2�3) and (2�4), at least one of which leaves i isolated. For high δ, player i is better off
providing the requested favor and partnering with player 2. Similarly, the first player i

approached by player 2 has an incentive to provide the favor because refusing to do so
leads player 2 to request the favor with probability at least 1/2 from either player 3 or 4

next, which results in the formation of the partnership (2�3) or (2�4) and the isolation
of player i.

The second player i whom player 2 asks for the favor has an incentive to provide it
if the last player left to ask is either 3 or 4, since under the prescribed strategies the last
player would agree to do the favor and inefficiently partner with player 2, leaving player
i isolated. If player 1 is last in the order player 2 approaches neighbors for the favor, then
player 2 must have asked neighbors in either order (3�4�1) or (4�3�1). In the former case,
following player 3’s refusal to do the favor to player 2, player 4 is asked next, and if he also
refuses, then player 1 provides the favor to 2. Under the prescribed strategies, players 3

and 4 play the worst equilibrium for player 4 in the subgame ensuing after the formation
of partnership (1�2). In this continuation game, player 3 never provides the first favor
to player 4, and player 4 starts receiving favors only after entering a partnership with
player 3 via providing a favor. Then player 4 is better off agreeing to do the favor and
forming a partnership with player 2 when asked. Indeed, from the perspective of player
4, players 2 and 3 are interchangeable partners, and joining the partnership with 2 earlier
is preferred to waiting for 3 to require a favor in the subgame in which 1 partners with
2 (we have shown that early agreements are optimal for a player if the opponent never
provides the first favor). An analogous argument applies for the ordering (4�3�1).

Finally, we check incentives for subgames in which players other than 2 require a
favor in the original network. If player 1 asks player 2 for a favor, it is optimal for player
2 to decline because he is guaranteed to find a partner whenever he needs a favor (even
if the partnership (3�4) forms in the meanwhile). We next show that player 2 does not
have an incentive to provide the first favor to either 3 or 4. If asked first in the order by
either player 3 or 4, player 2 anticipates that the partnership (3�4) will form and then
play between 1 and 2 proceeds according to the best equilibrium for 2, under which
player 2 always receives favors when needed. If asked second in the order by either
player 3 or 4, it is optimal for player 2 to refuse because under the prescribed strategies,
player 2 receives favors in any circumstance he needs them in the future. Player 3 has
an incentive to provide the first favor to 4 and vice versa because refusing to do so leads
to no one providing the favor (player 2 declines regardless of his position in the order),
in which case the game proceeds to the next period and each of players 3 and 4 remains
isolated with probability greater than 1/12.
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