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ABSTRACT 19 

Genetic approaches in Drosophila have successfully identified many genes involved in regulation 20 

of growth control as well as genetic interactions relevant to the initiation and progression of cancer 21 

in vivo. Here, we report on large-scale RNAi-based screens to identify potential tumor suppressor 22 

genes that interact with known cancer-drivers: the Epidermal Growth Factor Receptor and the 23 

Hippo pathway transcriptional cofactor Yorkie. These screens were designed to identify genes 24 

whose depletion drove tissue expressing EGFR or Yki from a state of benign overgrowth into 25 

neoplastic transformation in vivo. We also report on an independent screen aimed to identify genes 26 

whose depletion suppressed formation of neoplastic tumors in an existing EGFR-dependent 27 

neoplasia model. Many of the positives identified here are known to be functional in growth control 28 

pathways. We also find a number of novel connections to Yki and EGFR driven tissue growth, 29 

mostly unique to one of the two. Thus, resources provided here would be useful to all researchers 30 

who study negative regulators of growth during development and cancer in the context of activated 31 

EGFR and/or Yki and positive regulators of growth in the context of activated EGFR. Resources 32 

reported here are available freely for anyone to use.   33 
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INTRODUCTION 34 

Studies in genetic models of tissue growth have identified networks of signaling pathways that 35 

cooperate to control growth during animal development (reviewed in (Harvey et al. 2013; 36 

Richardson and Portela 2017). Normal tissue growth involves controlling the rates of cell 37 

proliferation and cell death, as well as cell size, cell shape, etc. Signaling pathways mediate 38 

hormonal and neuroendocrine regulation of growth, which depend on nutritional status. Cell 39 

interactions also contribute to coordinating growth of cells within a tissue.  40 

Growth regulatory pathways include both positive and negative elements to allow for 41 

feedback regulation. These feedback systems confer robustness to deal with intrinsic biological 42 

noise, and with a fluctuating external environment (Herranz and Cohen 2010). They also provide 43 

the means for different regulatory pathways to interact (Ren et al. 2010; Herranz et al. 2012a; 44 

Reddy and Irvine 2013). In the context of tumor formation, this robustness is reflected in the 45 

difficulty in generating significant misregulation of growth - a two-fold change in expression of 46 

many growth regulators seldom has a substantial effect on tissue size in Drosophila genetic 47 

models. More striking is the difficulty in transitioning from benign overgrowth to neoplasia:  48 

hyperplasia does not normally lead to neoplasia without additional genetic alterations (eg. (Huang 49 

et al. 2005; Herranz et al. 2012b, 2014).  50 

Cancers typically show mis-regulation of multiple growth regulatory pathways. Mutational 51 

changes and changes in gene expression status contribute to driving cell proliferation, overcoming 52 

cell death and cellular senescence, as well as to allowing cells to evade the checkpoints that 53 

normally serve to eliminate aberrant cells. These changes alter the normal balance of cellular 54 

regulatory mechanisms, from initial cellular transformation through disease progression (Stratton 55 
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2011; Alexandrov et al. 2013). For many tumor types, specific mutations have been identified as 56 

potent cancer drivers, with well-defined roles in disease (Kandoth et al. 2013; Zehir et al. 2017). 57 

However, most human tumors carry hundreds of mutations, whose functional relevance is 58 

unknown. The spectrum of mutation varies from patient to patient, and also within different parts 59 

of the same tumor (McGranahan and Swanton 2017). Evidence is emerging that some of these 60 

genetic variants can cooperate with known cancer drivers during cellular transformation or disease 61 

progression. The mutational landscape of an individual tumor is likely to contain conditional 62 

oncogenes or tumor suppressors that modulate important cellular regulatory networks.  63 

Sequence-based approaches used to identify cancer genes favor those with large individual 64 

effects that stand out from the ‘background noise’ of the mutational landscape in individual cancers 65 

(Stratton 2011; Alexandrov et al. 2013). In vivo experimental approaches are needed to assign 66 

function to candidate cancer genes identified by tumor genome sequencing, and to identify 67 

functionally significant contributions of genes that have not attracted notice in genomics studies 68 

due to low mutational frequency, or due to changes in activity not associated with mutation. In 69 

vivo functional screens using transposon mutagenesis of the mouse genome have begun to identify 70 

mutations that cooperate with known cancer driver mutations, such as K-Ras, in specific tumor 71 

models (Copeland and Jenkins 2010; Pérez-Mancera et al. 2012; Takeda et al. 2015). Genetic 72 

approaches using Drosophila models of oncogene cooperation have also been used to identify 73 

genes that act together with known cancer drivers in tumor formation (Brumby and Richardson 74 

2003; Pagliarini and Xu 2003; Wu et al. 2010; Brumby et al. 2011; Herranz et al. 2012b, 2014; 75 

Eichenlaub et al. 2016; Richardson and Portela 2017; Song et al. 2017). The simplicity of the 76 

Drosophila genome, coupled with the ease of large-scale genetic screens and the high degree of 77 

conservation of major signaling pathways with humans, make Drosophila an interesting model to 78 
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identify novel cancer genes and to study the cellular and molecular mechanisms that underlie 79 

tumor formation in vivo (reviewed in (Gonzalez 2013; Herranz et al. 2016; Sonoshita and Cagan 80 

2017; Richardson and Portela 2018). 81 

In Drosophila, overexpression of the Epidermal Growth Factor Receptor, EGFR, or Yorkie 82 

(Yki, the fly ortholog of the YAP oncoprotein) cause benign tissue over-growth (Huang et al. 83 

2005; Herranz et al. 2012a, 2014). Combining these with additional genetic alterations can lead to 84 

neoplastic transformation and eventually metastasis (Herranz et al. 2012b, 2014; Eichenlaub et al. 85 

2016, 2018; Song et al. 2017).  Here, we report results of large-scale screens combining UAS-86 

RNAi transgenes with EGFR or Yki expression to identify negative regulators of these growth 87 

regulatory networks that can lead to aggressive tumor formation in vivo. We also performed an 88 

independent screen to identify factors that could suppress EGFR-driven neoplasia. These screens 89 

have identified an expanded genomic repertoire of potential tumor suppressors that cooperate with 90 

EGFR or Yki. We have also identified few positive regulators of growth in the context of activated 91 

EGFR. Interestingly, there was limited overlap among the genes that cooperated with EGFR and 92 

those that cooperated with Yki. Gene intractome analysis and analyses of cancer databases for 93 

human orthologues of positives of these screens suggest that a large number of them have strong 94 

correlations to many clinical parameters. The output of this screen would, therefore, be useful to 95 

all researchers who study negative regulators of growth during development and cancer in the 96 

context of activated EGFR and/or Yki. Resources reported here are freely available for anyone to 97 

use. 98 

  99 
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MATERIALS AND METHODS 100 

RNAi Screens 101 

The KK transgenic RNAi stock library was obtained from the Vienna Drosophila RNAi Center 102 

(www.vdrc.at; also listed in Table S1) carrying inducible UAS-RNAi constructs on Chromosome 103 

II. For each cross, 5 males from the KK transgenic RNAi stock were crossed separately to 10-15 104 

virgins from each of the following three driver stocks (see Supplemental Fig. S1A for the 105 

schematics of fly stocks): w*, ap-Gal4, UAS-GFP/CyO; UAS-Yki, tub-Gal80ts/TM6B (Yki driver; 106 

Song et al., 2017); w*; ap-Gal4, UAS-GFP/CyO; UAS-EGFR, tub-Gal80ts/TM6B (EGFR driver; 107 

Herranz et al., 2012); and w*; ap-Gal4, UAS-GFP/CyO; and w*; ap-Gal4, UAS-GFP, 108 

Socs36ERNAi/CyO; UAS-EGFR, tub-Gal80ts/TM6B (EGFR driver +SOCS36ERNAi). The 109 

combination of UAS-EGFR and UAS- SOCS36ERNAi inducing tumorous growth is reported in 110 

Herranz et al. (2012).  111 

Virgin female flies were collected over 4-5 days and stored at 18°C in temperature-112 

controlled incubators on medium supplemented with dry yeast, prior to setting up crosses. Virgin 113 

females were mated to KK stock males (day 1) and the crosses were stored at 18°C for 4 days to 114 

provide ample time for mating before starting the timed rearing protocol used for the screen. On 115 

day 5, the crosses were transferred into new, freshly yeasted vials for another 3 days at 18°C. On 116 

day 8, the adult flies were discarded, and larvae were allowed to develop until day 11, at which 117 

time the vials were moved to 29°C incubators to induce Gal4 driver activity. Crosses were aged at 118 

29°C for a further 8-9 days, after which larvae were scored for size and wing disc overgrowth 119 

phenotypes for Yki and EGFR driver screen crosses. Flies were scored for suppression of the tumor 120 

phenotype for the EGFR driver +SOCS36ERNAi crosses (see Supplemental Fig. S1B for the screen 121 

workflow). 122 

http://www.vdrc.at/
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In order to verify the integrity of the driver stocks during the course of the screen, we 123 

examined their expression patterns in conjunction with setting up screen crosses each week. For 124 

each driver, 2-3 of the bottles used for virgin collection were induced at 29°C for 24 hours and 125 

analyzed using fluorescence microscopy for apterous-Gal4 specific expression in wandering 3-126 

instar larvae (see Supplemental Fig. S2 for larval images of quality control). Any batch that showed 127 

tumorous growth on its own without a cross with KK-RNAi line (in case of SOCS stocks, if the 128 

batch didn’t show tumorous growth) were discarded and new batches were made from the original 129 

clean stock.   130 

Positive hits form the initial screen were retested by setting up 2 or more additional crosses. 131 

The hits were scored as verified if 2 out of 3 tests scored positive. Wandering third instar larvae of 132 

confirmed positives were imaged and documented using fluorescence microscopy. 133 

Genomic DNA PCR 40D landing site occupancy test 134 

Genomic DNA from a select number of Drosophila KK transgenic RNAi library stocks was 135 

isolated following a protocol available at the VDRC (www.vdrc.at). The presence or absence of 136 

the KK RNAi transgene at the 40D insertion site on the second chromosome was determined by 137 

multiplex PCR using the following primers: 138 

40D primer (C_Genomic_F):  5’-GCCCACTGTCAGCTCTCAAC-3’ 139 

pKC26_R:    5’-TGTAAAACGACGGCCAGT-3’ 140 

pKC43_R:    5’-TCGCTCGTTGCAGAATAGTCC-3’ 141 

PCR amplification was performed using GoTaq G2 Hot Start Green Master Mix kit (Promega) in 142 

a 25 µL standard reaction mix and the following program: initial denaturation at 95°C for 2 min, 143 
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followed by 33 cycles with denaturation at 95°C for 15 sec, annealing at 58°C for 15 sec and 144 

extension at 72°C for 90 sec.  One final extension reaction was carried out at 72°C for 10 min.  145 

Reactions were stored at -20°C prior to gel loading.  PCR using these primers generate an 146 

approximately 450 bp product in case of a transgene insertion or a 1050 bp product in case of no 147 

transgene insertion site at 40D.  148 

Screen Database 149 

Results from the three screening projects were added to a screen management database, 150 

http://www.iiserpune.ac.in/rnai/, including images of positive hits and background information 151 

such as RNAi line ID, corresponding gene information from the Flybase etc. The database was 152 

developed by Livetek Software Consultant Services (Pune, Maharashtra, INDIA).  153 

Pathway and gene set enrichment analysis 154 

Gene set enrichment analysis was performed using genes that upon down regulation induced tumor 155 

formation (EGFR, YKI background) or suppressed tumor formation (EGFR+SOCS background). 156 

For D. melanogaster enrichment analysis all D. melanogaster protein coding genes were used as 157 

the “gene universe” together with organism specific datasets. For human ortholog enrichment 158 

analysis all human protein coding genes were used as the “gene universe” together with organism 159 

specific datasets. The algorithm packages and databases used in analysis are listed in Supplemental 160 

Tables S2 and S3. Unless otherwise specified, pathway databases included in these packages were 161 

used. The KEGG database was downloaded directly from source on 10.10.2018. Organ system 162 

specific and disease related pathway maps were excluded from this analysis.  Minimum and 163 

maximum number of genes per pathway or gene set, significant criteria, minimum enriched gene 164 

count and annotated gene counts for each test and database are indicated in Supplemental Tables 165 

S2 and S3.  GO results were filtered for level >2, to eliminate broad high-level categories and <10 166 
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to minimize duplication among subcategories.  A representative term was selected in the cases 167 

were identical set of genes mapped to multiple terms within the same database. After filtering, the 168 

top 10 terms from each database were used for clustering analysis.  169 

Pathway and gene set enrichment analysis results were visualized as enrichment map with 170 

appropriate layout based on gene overlap ration using igraph. Gene overlap ratio was set as edge 171 

width. Edges with low overlap were deleted, filtering threshold was based on a number of “terms” 172 

in the results table – from 0 to 50 by 10; increasing filtering thresholds from 0.16 to 0.26 by 0.2. 173 

Clusters were detected using “Edge betweenness community” algorithm. Similar biological 174 

processes were color-coded. 175 

R packages 176 

clusterProfiler (3.8.1) - (Yu et al. 2012). 177 

ReactomePA (1.24.0) - (Yu and He 2016).  178 

http://pubs.rsc.org/en/Content/ArticleLanding/2015/MB/C5MB00663E. 179 

graphite (1.26.1) - Sales G, Calura E, Romualdi C (2018). graphite: GRAPH Interaction from 180 

pathway Topological Environment. R package version 1.26.1. 181 

igraph (1.2.2) - Csardi G, Nepusz T: The igraph software package for complex network research, 182 

InterJournal, Complex Systems 1695. 2006. http://igraph.org 183 

Database references 184 

KEGG – (Kanehisa et al. 2016, 2017). 185 

REACTOME – (Fabregat et al. 2018) 186 
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Panther – (Thomas et al. 2003) 187 

GO – (Ashburner et al. 2000).  188 

STRING interaction maps 189 

STRING v10 is a computational tool for protein interaction network and pathway analysis 190 

(Szklarczyk et al. 2017)), to identify significant functional clustering among the candidate genes.  191 

STRING builds interaction maps by combining experimental data (including protein interaction 192 

data) with information about functional associations from text mining. STRING interactome maps 193 

were used to search for statistically significant enrichment of KEGG pathways. 194 

Data Availability 195 

All stocks are available on request. Supplement Table S1 provides details of all RNAi lines used 196 

and link to the corresponding genes in the Flybase. Complete screen information along with larval 197 

images of the positives is also accessible from: http://www.iiserpune.ac.in/rnai/. 198 

RESULTS 199 

Overexpression of EGFR or Yki proteins in the Drosophila wing imaginal disc produces tissue 200 

overgrowth. Under these conditions the imaginal discs retain normal epithelial organization, but 201 

grow considerably larger than normal. However, in combination with additional genetic or 202 

environmental changes, the tissue can become neoplastic and form malignant tumors (Herranz et 203 

al. 2012b, 2014; Song et al. 2017; Eichenlaub et al. 2018). In this context, we carried out large-204 

scale screens using UAS-RNAi lines from the Vienna Drosophila RNAi KK library to identify 205 

genes which would drive hyperplastic growth to neoplastic transformation when down-regulated. 206 

To facilitate screening for tumorous growth, we expressed UAS-GFP with UAS-EGFR or UAS-207 

http://www.iiserpune.ac.in/rnai/
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Yki to allow imaginal disc size to be scored in the intact 3rd instar larva (Figure 1A; screen design, 208 

examples and quality controls are shown in Supplemental Figures S1 and S2).  209 

A large panel of independent UAS-RNAi lines were tested for their effects on tissue growth 210 

in the EGFR and Yki expression backgrounds (Figure 1B). Of ~8800 lines tested (Table S1), 74 211 

interacted with EGFR to produce tumors (~1%), whereas 904 interacted with Yki (~10%) (Table 212 

S2). There was limited overlap, with only 21 RNAi lines producing tumors in both screens (Figure 213 

1B), but we note that some loci that would be expected to score as hits in both screens, such as 214 

dlg, scrib and l(2)gl, were not targeted by RNAi lines in the KK collection, and so were not tested. 215 

In a parallel screen, we started with neoplastic tumors produced by co-expression of UAS-EGFR 216 

and UAS-SOCS36ERNAi [Herranz et al., 2012] and asked whether including expression of another 217 

RNAi transgene could suppress neoplasia (Figure 1A, right panels).  SOCS36E depletion has been 218 

reported to potentiate EGFR driven tumor formation by alleviating repression of JAK Stat activity 219 

[8]. Of ~8900 lines tested (listed in Supplemental Table S1), 32 suppressed tumor formation in 220 

this assay (Figure 1B).  Supplemental Table S2 (A) lists the genes identified in these three screens. 221 

In previous studies, massive disc overgrowth as in Figure 1(A) was often associated with loss of 222 

apically localized Actin and E-Cadherin: features indicative of Epithelial Mesenchymal Transition 223 

(EMT); and with formation of malignant transplantable tumors [Herranz et al., 2012, 2014; Song 224 

et al., 2017). Apico-basal polarity and Matrix Metalloprotease 1 (MMP1) expression were assessed 225 

for a randomly selected subset of lines from the EGFR and Yki screens to assess neoplastic 226 

transformation (Figure S3). 227 

To identify the processes and pathways responsible for the interaction with the screen 228 

drivers, we looked for over-representation of biological functions among the screen positives using 229 

gene set enrichment analysis and the KEGG, REACTOME, GO and PANTHER databases. Figure 230 
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2 presents the results of the enrichment analysis as graphical interaction maps, with similar 231 

biological processes color-coded. Edge length represents similarity between genes associated with 232 

significantly enriched terms. Thus, similar terms are closer together and form a community of 233 

biological process. The genes in each cluster are shown in Figure 2 and listed in Supplemental 234 

Table S3.  235 

  236 

Genes that potentially modulate EGFR function during growth control 237 

For discs overexpressing EGFR, we observed enrichment of RNAi lines targeting the Hippo 238 

pathway, growth signaling, and apoptosis (Figure 2A, B). Many of the genes in the Hippo pathway 239 

act as negative regulators of tissue growth, so their depletion by RNAi is expected to promote 240 

growth. The Hippo pathway is known to interact with the EGFR pathway to regulate normal 241 

developmental growth (Ren et al. 2010; Herranz et al. 2012a; Reddy and Irvine 2013). The Hippo 242 

pathway hits included core elements of the pathway, hpo, wts and mats, which serve as negative 243 

growth regulators; the upstream pathway regulators fat (an atypical cadherin) and expanded; as 244 

well as the transcriptional corepressor grunge, which is linked to Hippo pathway activity (Table 245 

S3). Several of these loci also contributed to the enrichment of terms linked to apoptosis, along 246 

with pten, a phospholipase that serves as a negative regulator of PI3K/AKT signaling, protein 247 

kinase A-C1, Src42A, the insulin-like peptide, ilp4, which are also linked to growth control (Table 248 

S3).  249 

For suppression of tumors in discs overexpressing EGFR together with SOCS36E RNAi, 250 

we observed enrichment of RNAi lines targeting signaling pathways related to growth, including 251 

elements of the AKT/PI3K pathway (Figure 2E, F, Table S3). These pathways may be required 252 
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for neoplasia in this EGFR driven tumor model. Interestingly, this pathway was also identified in 253 

a screen for synthetic lethals interacting with RasV12 (Willecke et al. 2011). As would be 254 

expected, depletion of Egfr limited tumor growth. Also enriched was a set of genes involved in 255 

protein synthesis (Table S3). This may reflect a need for active cellular growth machinery to 256 

support tumor growth. The significance of genes involved in RNA splicing merits further 257 

investigation. 258 

Genes that potentially modulate Yki function during growth control 259 

For discs overexpressing Yki, RNAi lines targeting the Hippo pathway and associated growth 260 

regulators led to tumor production (Figure 2C, D, Table S3). These include hpo, sav, wts, mats, ft 261 

and Grunge (Gug). Although wts null mutants show some loss of neuronal differentiation and 262 

impairment of polarity (Menut et al. 2007) tumor formation solely due to elevated Yki activity has 263 

not been observed previously in Drosophila. It is worth noting that overexpression of YAP has 264 

been shown to lead to neoplasia in mouse liver and intestinal epithelial models (Dong et al. 2007; 265 

Cai et al. 2010). While most cancers appear to result from activation/inactivation of multiple genes 266 

and pathways, sufficient activation of the Yki or Yap can result in neoplasia.   267 

The Hippo tumor suppressor pathway is regulated by cell polarity, cell contact, and 268 

mechanical forces (Wada et al. 2011; Halder et al. 2012; Aragona et al. 2013) as well as by other 269 

growth signaling pathways. The atypical Cadherin Fat mediates cell interactions and acts upstream 270 

of the Hippo pathway. Gug is the fly ortholog of the mammalian Atrophin/RERE proteins, and has 271 

been reported to interact physically and genetically with Fat (Fanto et al. 2003). Growth signaling 272 

pathways involving the sgg, pten, PKA-C1, TSC1 genes among others, were also identified. 273 

Additionally, a number of genes linked to membrane-cytoskeleton interaction and transmembrane 274 

transport were found to interact, including Arf and Rab family members. We also noted the 275 
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enrichment of terms related to lipid and general metabolism. Regulation of lipid metabolism might 276 

affect the properties of cellular membranes. An intriguing subgroup contain genes related to 277 

glutamatergic signaling, including the vesicular glutamate transporter VGlut and the Eaat plasma 278 

membrane glutamate transporters. This finding is of interest in light of the results of an in vivo 279 

chemical screen which showed that that scribble mutant RasV12 tumors are glutamine-dependent 280 

(Willoughby et al. 2013). These tumors upregulate Yki and require Yki for tumor growth (Doggett 281 

et al. 2011). 282 

Another major finding from this screen is the fact that many components of the machinery 283 

causing Promoter proximal pausing of RNA Polymerase II (such as components of the 7SK 284 

snRNAP and NELF complexes) are when depleted, enhanced Yki-driven growth leading to 285 

neoplastic transformation of Drosophila wing imaginal discs (Nagarkar et al., 2019). Additional 286 

work suggested that this phenomenon is dependent on CDK9 function and also specific to Yki-287 

induced growth context (Nagarkar et al., 2019).  288 

The large number of Yki interactors could reflect greater sensitivity of the screen.  289 

Alternatively, it might indicate a high false positive rate.  While this screen was in progress, Vissers 290 

et al. (Manning et al. 2016), reported that some of the RNAi lines from the Vienna Drosophila 291 

RNAi KK library have the potential to produce false positives in screens based on sensitized Hippo 292 

pathway phenotypes.  This proved to be due to the presence of a second transgene landing site at 293 

40D that was found in a subset of KK lines, in addition to the 30B landing site (Green et al. 2014; 294 

Manning et al. 2016).  We tested the 40D landing site strain (Manning et al. 2016) and found that 295 

it did not cause a tumor phenotype under the conditions used for the screen.  Nonetheless, we 296 

sampled the 40D status for a large subset of our Yki interactors (Table S2, 734/904) and found that 297 

45% of them had insertions at 40D. A small survey comparing KK lines with Trip and GD lines 298 



16 

 

showed that 65% of genes for which the KK line had a 40D site retested positive for interaction 299 

with Yki using an independent (non-KK) transgene (15/23). The Yki-interaction screen should 300 

therefore be viewed as a more sensitized sampling of potential interactors, compared to the EGFR-301 

interaction screen.  302 

STRING Interactome analyses 303 

To view all genes identified in the three screens as one functional unit (for the fact that they were 304 

all growth regulators in one or the other contexts), we made use of STRING v10 (Szklarczyk et 305 

al. 2017) to produce protein interaction maps. STRING v10 builds interaction maps by combining 306 

experimental data (including protein interaction data) with information about functional 307 

associations from text mining. STRING v10 also uses information of co-occurrence, co-308 

expression, gene neighborhood, gene fusion, and does sequence similarity search to predict 309 

functional interaction between proteins. An interaction pair supported by multiple lines of evidence 310 

has higher confidence score than other pairs.  311 

Figure 3A shows the STRING interaction map for the genes identified as interactors of 312 

EGFR. As noted above, Hippo pathway (red) components were prominent among the genes 313 

identified as cooperating with EGFR to drive tumor formation. Figure 3(B) shows the interaction 314 

map for the genes identified as interactors of Yki. The larger number of hits in this screen results 315 

in a more complex interaction map, with multiple interconnected clusters. The Hippo pathway 316 

(red) was again prominent in the fly screen. We also noted clusters containing elements of the 317 

ubiquitin mediated proteolysis pathway (green) and the PI3K/TOR (blue). As noted above, the 318 

higher sensitivity of this screen leads to the inclusion of weaker interactors, which may add to the 319 

complexity of these interaction maps. A focus on the stronger clusters and the interaction between 320 

them should guide future studies. Fig. 3(C) shows interaction map for the genes identified as 321 
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interactors of EGFR in the suppressor screen (in discs overexpressing EGFR together with 322 

SOCS36E RNAi). Among fly genes, as expected, we observed suppression of the tumor phenotype 323 

when components of EGFR pathway are down regulated.  324 

Human orthologs of the fly genes identified in the three screens 325 

To identify human orthologs for the candidate genes, we used the DRSC Integrative Ortholog 326 

Prediction Tool, DIOPT (Version 7.1, March 2018; www.flybase.org). DIOPT scores reflect the 327 

number of independent prediction tools that identify an ortholog for a given Drosophila gene.  328 

Orthology relationships are usually unambiguous when found by most of the 12 independent 329 

prediction tools in DIOPT. Table S2 lists the primary human orthologs (highest weighted DIOPT 330 

score), as well as the other orthologs with a weighted DIOPT score >2 for each of the hits in the 331 

fly screen. The primary human ortholog was used for subsequent analysis. In cases where multiple 332 

human orthologs had the same score, all orthologs with highest weighted DIOPT score were used. 333 

Out of 73 EGFR positive hits, 46 genes had one or more human orthologs, in total mapping to 50 334 

human genes. Out of 32 SOCS positive hits 30 genes had one or more human orthologs, in total 335 

mapping to 31 human genes. Out of 904 YAP positive hits 570 genes had one or more human 336 

orthologs, in total mapping to 611 human genes. 337 

To view the human orthologs in a functional context, we performed a gene set enrichment 338 

analysis and the KEGG, REACTOME, GO, PANTHER, NCI, MsigDB, BIOCARTA databases. 339 

Figure 4 presents the results of the enrichment analyses as graphical interaction maps, with similar 340 

biological processes color-coded. Edge length represents similarity between genes associated with 341 

significantly enriched terms. Thus, similar terms are closer together and form a community of 342 

biological processes. The genes in each cluster are shown in Figure 4 and listed in Supplemental 343 



18 

 

Table S4. Because the enrichment analysis is highly sensitive to the number of orthologs for each 344 

of the fly genes, we used the minimal set consisting of only the primary human orthologs.  345 

Hippo pathway components were enriched among the orthologs cooperating with EGFR 346 

to drive tumor formation (Fig 4A, B; Table S3). Two of these, LATS1 and STK3, also contributed 347 

to enrichment for a term linked to protein turnover. Regulation of protein turnover is an important 348 

mechanism for controlling the activity of a number of Hippo pathway components. For the screen 349 

for suppression of tumors in discs overexpressing EGFR together with SOCS36E RNAi, we 350 

observed enrichment of orthologs targeting growth signaling pathways, protein synthesis and 351 

mRNA splicing (Figure 4E, F, Table S4), similar to what was seen for the fly gene set analysis. 352 

We also observed enrichment of pathways related to protein folding and molecular chaperones, in 353 

the human gene set. For the Yki screen, the human ortholog set was enriched for terms related to 354 

general metabolism, and membrane transport, as well as growth signaling, and other signaling 355 

pathways, including genes involved in protein turnover (Fig 4C, D). 356 

METABRIC Analysis 357 

We also studied gene expression levels in cancer patients by systematically querying METABRIC 358 

(Pereira et al. 2016) a large database on breast cancer. We chose this as breast cancer is an epithelial 359 

cancer and the distribution of treatment-naïve samples from very early to late stages are well 360 

characterized. More importantly, gene expression patterns have been well studied at genomic level 361 

for all stages of the cancer. For each of the human orthologues of the genes identified in the Yki 362 

screen, we examined how their expression levels (low levels, median levels and high levels) are 363 

correlated to clinical parameters/attributes such as months of disease-free survival, early vs old 364 

age of the patients at diagnosis, Lymph node status at diagnosis, tumor grade III or above at 365 

diagnosis, early vs late stages of cancer at diagnosis and small vs large tumors at diagnosis. Total 366 



19 

 

365 human orthologues showed significant correlation to disease-free survival. Among them 186 367 

were associated with their low levels of expression and 179 with high levels of expression (see 368 

Supplement Table S4 and Supplemental_Information_METABRIC analysis). The fact that higher 369 

levels of expression correlate to aggressive tumors suggest that they are potential growth 370 

promoters, while their fly homologues were identified as potential tumor suppressors in our screen. 371 

This discrepancy could be due to more complex nature of growth control in human, wherein a 372 

conserved pathway may have different outcomes in different contexts. Expression levels of 76 373 

genes also showed strong correlations to the three clinical parameters as listed above (see 374 

Supplement Table S4 and Supplemental_Information_METABRIC analysis) indicating their 375 

critical role in growth control and impairment in their expression causing tumorous growth. Taken 376 

together, the positive hits in these screens would be useful for studies on growth control in 377 

development model organisms and in the context of cancer in human.  378 

 379 

DISCUSSION 380 

The Hippo pathway has emerged from this study as the single most important pathway limiting 381 

tumor formation in Drosophila. Increasing Yki activity by depletion of upstream negative 382 

regulators promoted tumor formation in both the EGFR and Yki hyperplasia models. Yki controls 383 

tissue growth by promoting cell proliferation and by concurrently inhibiting cell death through 384 

targets including Diap1, cycE and bantam miRNA (Tapon et al. 2002; Huang et al. 2005; Nolo et 385 

al. 2006; Thompson and Cohen 2006; Wu et al. 2008). The central role of the Hippo pathway as 386 

an integrator of other growth-related signals may also contribute to the abundance of tumor 387 

suppressors associated with Yki-driven growth (Harvey et al. 2013; Richardson and Portela 2017, 388 
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2018).  Mis-regulation of this pathway also contributes to tumor formation in mouse models (Yu 389 

et al. 2015).  390 

The potential of Yki/YAP expression to drive cellular transformation has been highlighted 391 

by studies of primary human cells in culture, which have shown that YAP expression is both 392 

necessary and sufficient to confer a transformed phenotype involving anchorage independent 393 

growth and the ability to form tumors in xenograft models (Hong et al. 2014; Nguyen et al. 2014). 394 

We therefore consider it likely that the consequence of Yki overexpression predispose the tissue 395 

to transformation, allowing identification of a richer repertoire of cooperating factors. Indeed, YAP 396 

overexpression has been causally linked to formation of specific human tumors (Kapoor et al. 397 

2014; Shao et al. 2014). The Hippo pathway has also been implicated in tumor formation resulting 398 

from cytokinesis failure (Ganem et al. 2014) and this has recently been linked to Yki-mediated 399 

regulation of string (CDC25) expression (Gerlach et al. 2018). The sensitivity of Yki-expressing 400 

tissue to tumor formation might be explained by the finding that Yki promotes cell cycle 401 

progression at both the G1-S transition (through regulation of cycE (Huang et al. 2005) and at the 402 

G2-M transition through regulation of string. In contrast, mitogens and growth factors such as 403 

EGFR typically induce growth by promoting G1-S, and therefore remain somewhat constrained 404 

by the G2-M checkpoint.  405 

We have analyzed in more detail one group of genes, all related to regulating promoter 406 

proximal pausing of RNA Poly II, identified in this screen to validate the importance of the 407 

repertoire of genes provided here. We have observed that Yki-driven growth is limited by the 408 

pausing of RNA Pol II, release of which is controlled by potential tumor suppressor genes 409 

(Nagarkar et al. 2019).  410 
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While our manuscript was in preparation, another group reported an RNAi screen to 411 

identify loci cooperating in tumorigenesis driven by expression in eye discs of the oncogenic 412 

activated mutant form of Ras (Zoranovic et al. 2018). We note that the activated Ras RNAi screen 413 

produced over 900 hits, compared with 74 for our EGFR screen, suggesting that the Ras screen 414 

was considerably more sensitized. We were surprised to note that there was almost no overlap 415 

between the two screens with only 3 hits in common: Elongin B, CG7966 and CG7313. This 416 

suggests that the genetic interactions required to promote tumorigenesis in the context of 417 

expression of an activated mutant form of RAS are distinct from those required to promote 418 

tumorigenesis in the context of native EGRF overexpression. And perhaps, the differences 419 

between the tissue contexts (eye discs in (Zoranovic et al. 2018) vs wing discs in our screen). It 420 

will be of interest, in future, to learn whether this distinction holds true for factors promoting tumor 421 

formation in human cancers that depend on EGFR overexpression vs those dependent on Ras 422 

mutants. 423 

To conclude, the results reported here provide an extensive assessment of the genes that 424 

can serve as negative regulators of growth that can contribute to the formation of neoplastic tumors 425 

in vivo in Drosophila. In addition to finding genes linked to known growth control pathways, a 426 

number of novel connections to Yki and EGFR driven tissue growth have been identified, which 427 

merit further investigation in the Drosophila genetic model. Exploring the potential relevance of 428 

genes identified in this manner to human cancer will involve assessing the correlation of candidate 429 

gene expression with clinical outcome across a broad range of cancers (eg (Andrejeva et al. 2018; 430 

Eichenlaub et al. 2018)), as a starting point to identify biomarkers as well as novel candidate drug 431 

targets. 432 
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Figure legends 592 

Figure 1: tumor formation/suppression visualized in intact larvae 593 

(A) Larvae co-expressed UAS-GFP with the indicated transgenes to permit visualization of the 594 

imaginal discs in the intact animal. All samples carried the ap-Gal4 driver and UAS-GFP. In 595 

addition, they carried either a second copy of UAS-GFP or one of the following: UAS-Yki, UAS-596 

EGFR or UAS-EGFR+UAS-SOCS36ERNAi.  597 

(B) Table summarizing the number of RNAi lines screened and identified in the three large-scale 598 

screens (represents those many number of interacting genes).  599 

 600 

Figure 2: Summary of pathway enrichment analysis of fly genes identify in the in vivo screens 601 

reported here.   602 

(A, C, E) The results of the pathway and gene set enrichment analysis are shown as graphical 603 

interaction maps. Each node represents a significantly enriched term or pathway from the GO, 604 

KEGG, Reactome and Panther databases (Table S3). Color-coding indicates functionally related 605 

groups of terms. Lines indicate genes shared among different terms. (B, D, F) show the individual 606 

genes associated with functionally enriched cluster. 607 

(A, B) UAS-EGFR screen  608 

(C, D) UAS-Yki screen 609 

(E, F) UAS-EGFR+UAS-SOCS36ERNAi screen 610 

 611 

Figure 3: STRING interactome analysis of potential interactors of EGFR and YKi in Drosophila. 612 

STRING analysis was performed with confidence score of 0.7 and MCL clustering value of 2. (A) 613 

STRING Interactome of 73 fly genes identified as potential negative regulators in the context of 614 
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over expression of EGFR. 17 out of those formed molecular clusters (with PPI enrichment value 615 

of 0.000482), largest being a cluster of 6 genes, all of which are constitutes of Fat/Hippo pathway 616 

(shown in red; FDR-1.39E-5). (B) STRING Interactome of 888 genes of identified as potential 617 

negative regulators in the context of over expression of Yki. 228 of those formed a single cluster 618 

with PPI enrichment value 1.4E-06. Components of Fat/Hippo pathway (red: FDR-0.00076) and 619 

Autophagy genes (blue: FDR-0.0241) are enriched in this cluster. (C) STRING Interactome of 32 620 

fly genes identified as potential oncogenes in the context of SOCS suppression. 27 out of those 621 

formed molecular clusters (with PPI enrichment value of 0.0122), largest being a cluster of 14 622 

genes. A smaller cluster comprising of EGFR and DrK were enriched in Dorso-ventral axis 623 

formation (shown in purple: FDR-0.0089).  624 

 625 

Figure 4: Summary of pathway enrichment analysis of human orthologs  626 

(A, C, E) The results of the pathway and gene set enrichment analysis are shown as enrichment 627 

maps. Each node represents a significantly enriched term or pathway from the GO, KEGG, 628 

Reactome and PANTHER, NCI, MsigDB, BIOCARTA databases (Table S3). Color-coding 629 

indicates functionally related groups of terms. Lines indicate genes shared among different terms. 630 

(B, D, F) show the individual genes associated with functionally enriched cluster. 631 

(A, B) UAS-EGFR screen  632 

(C, D) UAS-Yki screen 633 

(E, F) UAS-EGFR+UAS-SOCS36ERNAi screen 634 
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