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The global efforts to control COVID-19 are threatened by the rapid emergence of novel

SARS-CoV-2 variants that may display undesirable characteristics such as immune

escape, increased transmissibility or pathogenicity. Early prediction for emergence of

new strains with these features is critical for pandemic preparedness. We present

Strainflow, a supervised and causally predictive model using unsupervised latent space

features of SARS-CoV-2 genome sequences. Strainflow was trained and validated on 0.9

million sequences for the period December, 2019 to June, 2021 and the frozen model was

prospectively validated from July, 2021 to December, 2021. Strainflow captured the rise in

cases 2 months ahead of the Delta and Omicron surges in most countries including the

prediction of a surge in India as early as beginning of November, 2021. Entropy analysis of

Strainflow unsupervised embeddings clearly reveals the explore-exploit cycles in genomic

feature-space, thus adding interpretability to the deep learning based model. We also

conducted codon-level analysis of our model for interpretability and biological validity of our

unsupervised features. Strainflow application is openly available as an interactive web-

application for prospective genomic surveillance of COVID-19 across the globe.
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INTRODUCTION

New variants of SARS-CoV-2 continue to rage across the globe causing devastating waves of the
pandemic. Such waves may continue to occur and many lives can be saved through early
preparedness. COVID-19 is reported to have claimed 5.45 million lives as of 10 January 2022
(WHOCoronavirus 2021 (COVID-19) Dashboard). A large number of these deaths are attributed to

unexpected surges in infections caused by new strains with higher pathogenicity such as the Delta
variant of SARS-CoV-2, prompting international health organizations such as the CDC andWHO to
declare these as variants of concern (CDC, 2022). The most recent surge of Omicron across the globe
with its potential for escaping immunity has seriously undermined the efficacy of global vaccination
programs. Most studies around the globe have focussed on forecasting case time series using
traditionally reported administrative data. Standard epidemiological approaches such as
compartmental and agent-based modeling have been used extensively for forecasting COVID-19
caseloads (Arora et al., 2020). Additionally, numerous studies have used time series analysis, social
media mining and multimodal approaches have been utilized for case predictions (Kapoor et al.,
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2020; Melin et al., 2020; Qin et al., 2020; Reiner et al., 2020;
Rodríguez et al., 2020; Wu et al., 2020; Ayan et al., 2021). Earlier,
initiatives such as Nextstrain (Hadfield et al., 2018) have focused
on providing high-quality tracking information for the strains
and lineages as these emerge without forecasting or predictions.

Hence early prediction of caseloads and emerging variants
through genomic signals remains an open challenge for
COVID-19.

Unsupervised embeddings have been shown to capture highly
nonlinear and contextual relationships (Mikolov et al., 2013).
Biological sequences contain a plethora of information that can
be exploited for genomic surveillance. However, there is a paucity
of studies that explore the use of unsupervised embeddings for
machine learning based prediction of surges in infections. In

these models, codons (tri-nucleotides, 3-mers) translations
represent a natural basis for word representations and have
been utilized in the past for learning embedding models for
modelling various outcomes such as mutation susceptibility
and gene sequence correlations (Yilmaz, 2020) (Wu et al.,

2021). Recently, Hie et al. used machine learning along with
word embedding techniques to model the semantics and
grammar of amino acids corresponding to antigenic change to
predict the mutations which might lead to viral escape (Hie et al.,
2021). Similarly, Maher et al. predicted emerging mutations of
SARS-CoV-2 variants and evaluated biological and neural
network based predictors of emerging mutations (Maher et al.,
2021). Here, we propose Strainflow (Figure 1), a prospectively
validated pipeline with prediction and prospective validation of

FIGURE 1 | Architecture of the Strainflow pipeline.
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FIGURE 2 | Latent space of spike genes derived using Strainflow preserves spatiotemporal information of SARS-CoV-2 spread. (A) The implementation framework

of Strainflow (details described in the method section) (B) tSNE plot showing distinct spatio-temporal relationship based on the latent space learned from the spike gene

of 0.308 million SARS-CoV-2 genomes collected till 31 March 2021 (world), India, United Kingdom, United States, and Brazil. (C) Embeddings estimated or predicted

from the Strainflow model for 0.45 million SARS-CoV-2 spike genes from the month of April, 2021 to June, 2021. (D) Embeddings estimated or predicted from the

Strainflow model for 1.79 million SARS-CoV-2 spike genes from the month of July, 2021 to January, 2022. (E) Heatmap showing the scaled entropy for 18 countries

from March, 2020 to January, 2022 (showing data for a. training: March, 2020 to March, 2021, b. prediction: April, 2021 to June, 2021, and c. validation: July, 2021 to

January, 2022). The entropies for each country were scaled to the same range to visualize the temporal trends within the country.
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surges 2 months ahead of time. Our empirical experiments
demonstrate interpretable features based on Entropy of the
latent space of SARS-CoV-2 spike region, thus aiding an early
warning system for emergence of new variants of concern and

case surges.

RESULTS

Genomic Sequence-Based Language
Modelling Captures Emerging Diversity in
the SARS-CoV-2 Spike Gene
Our results validate the idea that a complex combination of codon
weights may confer evolutionary advantage to the variant. The

combinations of weights were learned using state-of-the-art
unsupervised embeddings for capturing the latent space of
spike DNA sequences of SARS-CoV-2. The framework of
Strainflow is depicted in the figure below (Figure 2A). The
global tSNE plot represents dynamic emerging patterns
derived from latent space representations of spike genes of
SARS-CoV-2 (Figure 2B) from September, 2020 to March,
2021, along with specific geographic locations (country-level)
such as India, United Kingdom, United States, and Brazil.

To investigate the information content in the latent space of the
spike gene learned by our Strainflow pipeline, we performed

qualitative and quantitative analysis on 2.7 million SARS-CoV-2
spike genes collected from December, 2019 to January, 2022.
Qualitative analysis was performed by performing dimensionality
reduction with a fast tSNEmethod called Flt-SNE (Linderman et al.,
2019). We compared the 2D t-SNE plot of the world with four
countries (India, United Kingdom, United States, Brazil) from
September, 2020 to January, 2022, which clearly highlights the
dynamic changes in the spike genes across countries in different
months (Figures 2B,C,D). Additionally, quantitative analysis of the
latent space was performed by calculating the fast sample entropy of
each latent dimension (Tomčala, 2020). To compare the monthly

entropy of the latent dimensions of different geographical regions,
the mean entropy was calculated and normalized across the months
for each country. We observed the highest entropy (information
content) for India, United Kingdom, United States and Brazil in the
months of February-2021, January-2022, August-2020, and January-
2022 respectively. Interestingly, we observed high entropy for
4 months from August, 2020 to November, 2020 in the
United States (Figure 2E). This highlights that the spike protein
latent space representation learned by Strainflow could be used as a
proxy to capture the spatiotemporal entropy or diversity in the
emerging SARS-CoV-2 strains across different countries.

Preservation of Spatiotemporal Information
of SARS-CoV-2 Spread Depicted With
Phylogenetic Analysis
Sequence-level embeddings were obtained from the codon
embeddings and investigated for the presence of genomically
meaningful characteristics. The phylogenetic tree derived from
the embeddings for the United Kingdom (Figure 3A) shows two

clear temporally split clusters for 2020 and 2021 sequences, which
may be indicative of different strains in these time periods. The
temporality of the collected sequences was found to be preserved
in the two clusters, although the model was trained only on

genome sequences.
The phylogenetic tree with globally collected sequences

(Figure 3B) demonstrates that geospatial information is
also preserved in the sequence embeddings. The
dendrogram constructed using cosine distance between
embeddings revealed clear clusters of geospatially close
regions. Embeddings from geographically close locations
were clustered together (Figure 3), and countries closer
geographically had similar embedding patterns (Figure 4).
This highlights that our de novo embeddings captured these
similarities without the need for standard alignment methods

or expert knowledge of lineages. Clusters for China (purple),
Australia (green), and England (magenta) are highlighted in
Figure 3B. Strains from Italy, France, Brazil, Japan, Canada,
United States, Scotland, and India were found to be dispersed
with other countries. Overall, Strainflow captures the temporal
emergence of strains and geographic information in a country-
specific manner.

Entropy in the Latent Space Dimensions
Captures Variability in the Spike Gene
Entropy of a latent dimension has biological significance as it
intuitively captures the variation in codon level changes during
a certain time window. Each latent dimension encodes a
combination of codon weights and increase in entropy
represents frequent changes to these weights. Temporal
changes in entropy are therefore expected to uncover the
explore-exploit cycles of SARS-CoV-2 spike gene changes,
hence biologically indicative of future trends. To compare
different geographical regions, the sum of sample entropy
was computed for each latent dimension across all the
months. This revealed that certain geospatial regions such

as France and Germany (Figure 4A) and United States and
Canada (Figure 4B) have similar total entropies across the
latent dimensions, indicating that strains in these regions have
been accumulating similar genomic changes.

Entropy Dimensions Are Predictive of New
COVID-19 Caseloads
We then attempted to decipher the relationship between
monthly sample entropy and monthly new COVID-19 cases
in different countries. Detrended cross-correlation coefficient

was calculated at different lag values, which revealed that
entropy dimensions have a leading relationship with new
cases (Figures 5A,B). This suggests that the genome
sequence data in a given month can be used to predict new
cases in subsequent months. A lead period of 2 months was
chosen and Boruta algorithm was employed to assign feature
importance scores to different dimensions, which revealed that
dimension 32 is the most significant predictor of new cases
(Figure 5C). Significant dimensions from Boruta analysis were
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used for further modeling. Random forest based regression
modelling on the predictive features achieved a total
R-squared of 73% on the validation set. The predicted
cases were found to be highly correlated with the actual
cases (Table 1), which suggests that our model can
indicate the directional change of cases for different
countries. Further, the predicted relative change in cases
between successive months was found to be correlated to
the actual relative changes (Supplementary Table S1), which
suggests that our model can also indicate the magnitude of
change that we expect to observe in the cases.

Our model can be therefore used to predict the COVID-19
caseloads in several countries. Both United States (Figure 6A)
and Japan (Figure 6C) show an increase in the sample entropy
across the time period April–June 2021, concurrent with the
respective spreads in these countries. Our model predicts new
caseloads with a 2-month lead time, which strongly predicts a

spike in new cases both in United States (Figure 6B) and
Japan (Figure 6D) in the months of July and August, 2021. For
India our model predicted a decline in the number of cases for
the month of July and August, 2021 (Figures 6E,F). Therefore
our model may be used as an epidemiological early warning
system to predict new caseloads.

Codons Associated With the Predictive
Features Could Be Linked to SARS-CoV-2
Variants
We further assessed the potential link of the predictive features
with SARS-COV-2 variants by extracting the top 10
contributing codons and their associated weights for each
dimension (Supplementary Table S2). The intuition behind
this idea is that the codons with high weights in a given
dimension, when mutated in the viral sequence, are likely to

FIGURE 3 | Phylogenetic trees constructed using cosine similarities between 400 randomly sampled sequence embeddings. (A) Dendrogram for strains from the

United Kingdom: Cluster 1 (blue) contains strains from the period October 2020–December 2020, while Cluster 2 (orange) contains strains collected between January

2021–March 2021. (B) Dendrogram for 16 countries across the globe: Chinese, Australian and England strains form tight clusters (marked in purple, green, and

magenta), while strains from Italy, France, Brazil, Japan, Canada, United States, Scotland, and India are dispersed with other countries.

FIGURE 4 | Sum of sample entropy for each latent dimension for different countries. Country pairs (A) - France andGermany, (B)United States and Canada show a

similar distribution of total sample entropy across dimensions, while each pair differs from the other.
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FIGURE 5 | Relationship of the entropy of latent space dimensions with COVID-19 caseloads. (A) Detrended Cross-correlation coefficient values for different lags

between Entropy dimension 32 and new cases for United States. High values are observed for a lead of 1 and 2 months. (B) Line plot for Sample Entropy dimension 32

and monthly new cases for United States, indicating that the entropy in dimension 32 has a leading relationship with the cases. (C) Detrended Cross-correlation

coefficient values for different lags between Entropy dimension 27 and new cases for India. (D) Line plot for Sample Entropy dimension 27 and monthly new cases

for India, indicating that the entropy in dimension 27 has a leading relationship with the cases. (E) Feature importance scores from the Boruta algorithm for predicting

cases in the month following the next month.
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TABLE 1 | Pearson and Spearman’s Correlation coefficients between predicted and actual cases in different countries.

Country Pearson correlation p value Spearman’s correlation p value

United States 0.97 8.41 × 10–9 0.94 0.00

India 0.91 6.13 × 10–6 0.97 0.00

Germany 0.91 6.78 × 10–6 0.87 7.57 × 10–6

France 0.86 7.35 × 10–5 0.97 0.00

England 0.82 2.89 × 10–4 0.66 1.22 × 10–2

Japan 0.71 4.38 × 10–3 0.63 1.92 × 10–2

Brazil 0.48 8.61 × 10–2 0.45 1.12 × 10–1

FIGURE 6 | Prediction of new COVID-19 cases with Sample Entropy values of the latent dimensions. (A) Line plot showing the Entropy values of the selected

features and new COVID-19 cases for the United States (B) Actual and predicted cases based on the entropy values of selected features for the United States. The

model predicts a rise in cases for July and August 2021. (C) Entropy of selected features and new cases for Japan. (D) Actual and predicted cases for Japan. A spike in

cases is predicted for July and August 2021. (E) Entropy of selected features and new cases for India. (F) Actual and predicted cases for India.
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FIGURE 7 | Potential association of codons observed in SARS-CoV-2 Delta variant (lineage B.1.617.2) with their corresponding entropy features, and the trend of

caseloads with the entropy features. (A) Absolute latent space weights of the codons associated with the entropy features linked to the Delta variant. Line plots showing

the entropy features and cases in countries, (B) England, (C) India, and (D)United States The entropies show an increasing trend in the months April–June 2021 for India

and United States, indicating a possible surge in the delta variant in these countries. (E) Predicted and Actual cases for India. The region shaded in grey represents

the months for which the case prediction model was prospectively validated. (F) Entropy and Caseloads for India. Explore-exploit patterns in the genomic feature-space

can be observed.
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cause a significant change in the entropy of the associated
dimensions. Therefore each predictive feature can be linked to
codons, which can further be mapped to Variants of concern
(VOCs) and Variants of Interest (VOIs) (Supplementary

Table S3). Despite the fact that our model cannot directly
capture the SARS-CoV-2 variants, it was observed that
dimension-32 captures the CTG, CGG codons (ranks 5 and
8 respectively), known to be involved in the mutation T19R.
Similarly, dimension 3 captures three codons (ACG, CGG,
CAC) that are associated with multiple variants such as K417T,
L452R, and D1118H, causing increased infectivity,
pathogenicity, and spread. Dimension 30 captures codons
CAT and CAC associated with Δ69 and D1118H
respectively which are linked to B.1.1.7 lineage.

Codon weights (Supplementary Table S2) of a given

predictive feature provide an opportunity to associate with
specific Variants of concern (VOCs) and Variants of Interest
(VOIs), and to predict emerging SARS-CoV-2 variants.
Distinct dimensions capture country-specific changes and
may be surveilled to monitor the spread of the pandemic.
This approach was back-validated with several real-world
examples. For instance, dimension 32 captures the codons
CGG (R) and CAC (R), which are found in B.1.429 lineage
(L425R mutation). Dimension 3 captures CGG which is seen
in L452R (associated with lineage B.1.617.1), which was first
observed in India in December 2020 and was found to have

increased infectivity and transmissibility.

Prospective Validation of the Model in the
Delta and Omicron Surges Revealed
Interpretable Predictive Features
For investigating the potential of our predictive features to
track the spread of SARS-CoV-2, we used the codon level
information of the SARS-CoV-2 delta variant for the spike
gene and extracted the weights of these codons specific to
each feature. We selected Dimensions 3, 4, 12, 13, 15, 16, 25,

28, 30, 32 with high absolute weights for the codons related
to the delta variants (Figure 7A). The entropy of these
features was contrasted with the caseloads in England
(Figure 7B), India (Figure 7C), and United States
(Figure 7D). Overall, the temporal tracking of these
features may be used as a surrogate to track the spread of
various SAR-CoV-2 variants.

Our case prediction model was frozen in June, 2021 and
prospectively predicted the caseloads from July, 2021 to
December, 2021. Our model predicted the case upsurge in
India due to the Omicron variant in November, and

December, 2021 (Figure 7E) 2 months ahead of time.
Although the model fails to predict the exact values of
cases, it is useful as a trend indicator. Further, we observe
explore-exploit cycles in the entropy-space of India prior to
the case peak due to the Delta variant in May, 2021
(Figure 7F). A similar exploration phase can be observed
for the months from September–November, 2021, which may
be indicative of an upcoming case peak driven by the Omicron
variant.

DISCUSSION

We have implemented an approach for analyzing the emerging
strains based on the latent space of spike protein coding
nucleotide sequences. We chose the nucleotide sequences
instead of proteins in order to capture and track the variations
that may not have immediate functional consequences. Our
approach has two main underlying tenets: 1) long-range
interactions are known to modulate the functional interaction
between receptor binding domain and ACE2 receptors, hence

may be captured in the NLP models that capture 3-mer changes
and context, and 2) latent dimensions may be differentially
correlated with indicators of spread, thus providing a data-
driven handle for tracking and predicting variants of concern
and variants of interest (Mugnai et al., 2020). The pipeline takes
advantage of temporal changes in the semantics of mutating
sequences. Preservation of phylogenetic structure based upon the
similarity matrix obtained using the embeddings validated that
the latent dimensions capture spatio-temporal information.
Analyzing the dynamic patterns and underlying correlations in
the 30,000 base pair long sequence of SARS-CoV-2 is important

to highlight the mechanistic understanding of mutations (Shishir
et al., 2021). SARS-CoV-2 seems to show a particularly high
frequency of recombinations arising due to the absence of a
proof-reading mechanism and sequence diversity, which calls for
urgency in studying its transmission pattern (Rouchka et al.,
2020; Mandal et al., 2021). Therefore predicting mutations in the
spike protein, which binds to ACE2 receptors can help us
estimate the spread of disease and the efficacy of therapeutic
treatments and vaccines (Li et al., 2020; Srivastava et al., 2021).

While most research studies have attempted to predict the
exact number of cases and have failed, our work is focussed on

early prediction of trends from a non-obvious source of data.
Unlike obvious data sources, the inter-relationships between
codons in genome sequences are complex and less likely to be
influenced or biased. Furthermore, sequencing data are made
routinely available via various national and global consortia for
genomic surveillance of SARS-CoV2. Our study also highlights
the potential for triangulating insights from completely unrelated
datasets, an approach that is expected to eliminate systematic
biases in reporting by independent organizations. Further studies
may triangulate insights from disparate, heterogeneous datasets
such as mobility, genome surveillance, testing and case

predictions to partially solve the problem of biases in
individual datasets.

Entropy is a measure of the disorder of a system. We
hypothesized that mutations increase the chaotic dynamics in
the latent space of spike genes. To calculate entropy, we used the
accelerated versions of the Approximate Entropy and Sample
Entropy algorithms, called Fast Approximate Entropy and Fast
Sample Entropy (Tomčala, 2020). Both algorithms aim to
quantify how often different patterns of data are found in a
time series. Fast Approximate Entropy, however, is a biased
statistic and depends on the length of the series. Since we
could have different counts of genome sequences collected

each month, we preferred Sample Entropy, which is
independent of the length of the series. Entropy values were
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calculated for each latent dimension in each month. Thereafter,
Detrended Cross-Correlation Analysis (DCCA) was performed
between the entropy dimensions and the new cases (Prass and
Pumi, 2020b). DCCA is a modification of the standard cross-

correlation analysis for finding relationships between non-
stationary time series. High cross-correlation for different lead
periods revealed that the entropy values in a given month could
be used to predict the new cases in different countries in
subsequent months. Different countries had different lead
times at which the highest cross-correlation was observed
between the entropy dimensions and the cases, ranging from 1
to 6 months. Overall, a lead time of 2 months was chosen to
model the new cases. An empirical analysis was also done with
daily values of entropy and new cases. Entropy was calculated in
rolling windows, and cross-correlation analysis was performed

between entropy and new cases at different lead periods.
Although the cross-correlation values were found to be
significant, the values were low and ranged between −0.1 to
0.1. Therefore, we decided to use the monthly entropy values
for the modelling exercise.

To predict new COVID-19 cases, a random forest regression
model was trained on the monthly entropy data. With sample
entropy, we achieved an R-squared value of 73% on the validation
set, while with approximate entropy, the value was only 10%.
Therefore the model trained on sample entropy was selected. The
predictions from the model were found to be highly correlated

with the actual cases, indicating that our model can be used for
preemptive warning signals for the rise in cases in different
countries. Further, the actual and the predicted difference in
the number of cases in consecutive months was found to be
correlated, which suggests that the relative change in the cases in
consecutive months predicted by our model is linked to the
relative change in the number of cases. Overall, we
recommend that our model be used to predict dangerous
trends and not the actual number of cases. Further, the
mapping from latent dimensions to Variants of Concern
(VOCs) and Variants of Interest (VOIs) may help us track the

country-specific spread of different variants.
The COVID-19 pandemic has been a dynamically evolving

scenario, with new strains emerging and vaccines being
developed. With the SARS-CoV-2 genome constantly
mutating, we anticipate an underlying change in the grammar
of the sequence, underpinning the need to update our language
model every few months. Further, the regression model for
caseloads needs to be periodically retrained too. An empirical
analysis led us to discover that the Random forest model used for
prospective validation from November, 2021 onwards performed
better in terms of predicting the number of cases than the model

used for prospective validation from July 2021 (Supplementary

Figure S2). However, both models indicate similar trends in cases
for most countries.

Further, models trained on genomic sequences can be used for
predicting infection severity based on Co-associations between
the SNPs of Co-morbid Diseases and COVID-19 (Wang et al.,
2020b). The machine learning models can also be trained on
genomic sequences for COVID-19 classification (Arslan, 2021).
Although the variance explained by our model is low, however,

we were able to compute the variability associated with spike
protein mutations. So our method showed a potential way to
estimate the new cases variability associated with spike protein
mutations. Our methods can be incorporated with the epidemic

projections model to better predict the epidemic trajectories. The
latent dimensions may further be employed to predict the clinical
consequences of emerging strains. The currently available
vaccines are intended for early SARS-CoV-2 strains, but with
new emerging variants, immune responses triggered by these
vaccines may be weaker and short-lived. As seen in the
devastating second wave of the pandemic in India, newer
SARS-CoV-2 variants have acquired an increased pathogenic
potential resulting in rapid clinical progression and
overwhelmed health systems. Mitigating such events in the
future will require stronger surveillance systems in place. Our

study offers a promising solution in this direction and lays the
foundation for proactive genomic surveillance of COVID-19.

Our study has the following limitations. Our approach of
codon embeddings does not indicate the position where the
codon change may have happened in the spike gene. This is
because low-dimensional embeddings do not preserve the
positional encoding of words. However, we are investigating
advanced approaches such as complex-valued word
embeddings with positional encodings and transformer models
such as BERT to overcome our current limitations (Wang et al.,
2020a; Lee et al., 2020;Wolf et al., 2020). The latter are considered

expensive and data-hungry models and it will remain to be
evaluated if the gain of positional information may be
countered by the loss of prediction accuracy for forecasting
new cases in the future. However, we believe that the
availability of sequences for a wide variety of viral pathogens
presents an exciting opportunity to train data-hungry models that
may be able to transfer insights across pathogens and yet remain
interpretable. Further, our Strainflowmodel is trained only on the
spike gene of the viral genome, which does not represent the
complete variation spectrum of the virus. To mitigate this
shortcoming, we will develop a genome-level Strainflow

pipeline for SARS-CoV-2. Furthermore, the present study does
not consider the interaction between the spike gene and other
genes in the SARS-CoV-2 genome. We have not considered the
interaction between the ACE2 receptor sequence for the human
and the spike gene sequences due to the unavailability of such
large-scale paired data. However, we believe this is a strength of
our study as we were able to extract relevant features as well as
make valid predictions using the spike region of the SARS-CoV-2
gene alone.

Our current approach does not explicitly capture specific
positional mutations. Although the ad-hoc analysis for codon

weights on significant dimensions allows us to rank the codon
level changes, the predictive feature is a complex nonlinear
combination of these changes which may eliminate strongly
associated features. The E484Q mutation was not captured as
the most important in our model. However, this may be
because other codon level changes such as L452R and their
combinations may be correlated and hence a proxy for E484Q.
Importantly, the B.1.617 variant has both L452R and E484Q
mutations and L452R change was predictive and captured in
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the top ten ranks for multiple latent dimensions (3, 4, 10, 12,
13, 15, 16).

Finally, a relatively small number of samples were used to
construct the supervised predictive model for case prediction. As

more data becomes available in subsequent months, we can
produce more confident case predictions. An empirical
validation depicted that we require a minimum of 100 samples
per month for calculating the sample entropy. This also
underscores the need for a more reliable and agile approach to
deposit country-level datasets on repositories such as GISAID.
We make an appeal to the countries to facilitate the sharing of
such data in order to be prepared for any future waves of the
current pandemic and for preventing the new emergence of
strains. We believe our study is an instance of the new
paradigm of pathogen surveillance using a novel language

modelling approach that is potentially scalable to infectious
disease surveillance and antimicrobial resistance.

METHODS

Datasets
Training dataset: The dataset was downloaded from GISAID
EpiCoV (April 8, 2021 release) (Shu and McCauley, 2017). 0.36
million genome sequences (December, 2019–June, 2021) with
high nucleotide completeness, coverage, complete temporal

information, and presence of less than 5% non-identified
nucleotide bases (N) were downloaded. The sequences
included 63 countries, including India, United Kingdom,
United States, Australia, New Zealand, Germany, Russia, Italy,
France, Mexico, Canada, China, Japan, Pakistan, Bangladesh,
Iran, Iraq, the continent of South America, and Africa.
Duplicate samples were removed, and whole genome
sequences were parsed using CoV-Seq to extract nucleotide
sequences corresponding to each of the 12 Coding DNA
Sequences (Liu et al., 2020). Accession IDs that did not cover
12 coding regions were discarded, yielding 0.31 million high-

quality SARS-CoV-2 genome sequences for language modelling.
The spike gene region of each sequence was filtered and used for
all subsequent analysis.We downloaded country-wise COVID-19
data for new cases from a publicly available repository maintained
by Johns Hopkins University Center for Systems Science and
Engineering (JHU CSSE).

Evaluation dataset: We downloaded around 0.6 million
genome sequences submitted to GISAID from April 2021 to
June 2021. We used our trained model to predict the latent
representations for these sequences.

Word Embeddings in Strainflow Pipeline
In our Strainflow pipeline, we have adopted a word2vec model
(Mikolov et al., 2013). Low dimensional representations for the
genome sequences were learned using the word2vec model. Non-
overlapping sequences of 3-mers (codons) were considered as
words for training the model, which was implemented in Gensim
(Řehůřek and Sojka, 2010). The skip-gram algorithm was used,
with a fixed window size of twenty and vector size of thirty-six.
For generating a consensus embedding for a particular strain,

genomic sequences were represented by taking the mean of each
codon occurring in the sequence dimension-wise. The mean was
calculated by summing across all the k-mers over each dimension
and then dividing it by the total number of codons present in the

sequence. For selecting the dimension size for our word
embeddings, we calculated the PIP (Pairwise Inner Product)
loss (Yin and Shen, 2018). PIP loss is a metric used for
calculating the dissimilarity between two word embedding
matrices. For the embedding matrix of strains (E), the PIP
matrix is defined as the dot product of the embedding matrix
with its transpose (E.E T). The PIP loss between two embedding
matrices is defined as the norm of the difference between their
PIP matrices.

||PIP(E1) − PIP(E2)|| �
∣∣∣∣∣∣∣∣E1E

T
1 − E2E

T
2

∣∣∣∣∣∣∣∣
�

�������������������������∑
i,j

((v (1)
i , v (1)

j ) − (v (2)
i , v (2)

j ))2√

Various word2vec models were trained on the dataset with

different vector sizes varying in multiples of three. Based on the
PIP loss calculations, we found out that word embeddings with 36
dimensions showed a differential dent in the curve (change in
straight line), due to which we selected this to be the dimension of
the word embeddings (Supplementary Figure S1).

Phylogenetic Analysis Using the Latent
Dimensions of the Spike Genes
To evaluate the phylogenetic properties based on the latent
dimensions of the spike gene, we computed the cosine
distances among spike genes of SARS-CoV-2 with the 36

latent dimensions. The pairwise distance was further used for
hierarchical clustering using the ‘hclust’ function in R statistical
programming language. This analysis was performed using 400
random sequences of spike genes from 16 countries. The
visualization of the phylogenetic tree derived based on the
latent dimensions was done using “iTOL” software (Figure 2)
(Letunic and Bork, 2021).

Entropy of the Latent Dimensions
To quantify the properties of latent dimensions, we have used a
well-known information theory based algorithm suitable for time
series datasets, called “Fast Sample Entropy” (Pan et al., 2011). To

compute Fast Sample Entropy, we have used the “FastSampEn”
function in the “TSEntropies” package in R (Tomcala, 2018). Fast
Sample Entropy can be computed as follows.

FastSampEn(x,m, r) � log⎛⎝∑Nm

i�1

∣∣∣∣si,m∣∣∣∣丨 ∑Nm+1

i�1

∣∣∣∣si,m+1

∣∣∣∣⎞⎠,

where,

si,m � {ξ | ( ‖ yi − yξ ‖ ≤ r, ξ ≠ i) ∧ (ξ ∉ sj,m, j< i)}, yi

� [xi, xi+1, ..., xi+m−1]

si,m is a set of sub-sequences of length m belonging to the i-th
neighbourhood, and
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Nm is the number of these neighbourhoods.
In our case, “x” is the latent dimension of the spike genes of

the SARS-CoV-2 strains per month for a given country with
default values of “m” and “r.” Entropy was computed for each

latent dimension on a monthly basis for each country. To
compare geographies across months, we used average entropy
derived from 36 latent dimensions, followed by normalization
using all the monthly entropies for a given country
(Figure 1D). To compare the entropy of the latent
dimensions among countries, we used the total entropy of
the country for each dimension and visualized it with line
graphs (Figure 3).

Detrended Cross Correlations Analysis
To investigate the information content (entropy) of the latent

dimensions with the new cases observed for COVID-19, we used
the Detrended Cross Correlation Analysis (Prass and Pumi,
2020b) Here, DCCA captures the long-range cross correlation
between time series (entropy of the months and caseloads for a
given country). We tested both time series for stationarity using
Augmented Dickey-Fuller (ADF) test (Mushtaq, 2011). The ADF
test was implemented using the function “adf.test” available in the
“tseries” package in R (Trapletti et al., 2020). Due to the non-
stationary distribution of the estimated entropies and the
caseloads for a given country, we used the “DCCA” R package
(Prass and Pumi, 2020a). Cross-correlation was calculated

between the entropy dimensions at time t + h and new cases
at time t, where h = 0, ±1, ±2, ±3 . . . ±10.

Machine Learning Based Identification of
Significant Predictive Features
Country-wise monthly total new cases data was taken at the end
of each month. Total new cases data for each month was merged
to monthly entropy dimensions data from March, 2020 to June,
2021. We used a regression based machine learning approach
called “Boruta,” a wrapper algorithm around a random forest

algorithm to select the most relevant entropy dimensions for the
prediction of subsequent 2 months’ new cases(Kursa et al., 2010;
Kursa and Rudnicki, 2020). We used the default parameters with
the modification of the maximum runs as 1,000. We selected the
confirmed entropy dimensions as the most relevant predictive
features for the prediction of new-cases.

Model Development and Evaluation for
Prediction of New Cases in Subsequent
Months
To predict the new cases in the next to next months, we used a
regression based random forest model using the most relevant
predictive features using the “Boruta” R package (Kursa and
Rudnicki, 2020). The model training was performed using
entropy data from March, 2020 to February, 2021; and the
fitted model was validated on entropy data from March, 2021
to April, 2021. The regression modelling was performed using
1,000 decision trees using the “randomForest” package in R (Liaw
and Wiener, 2002).

Top Codons Associated With Predictive
Features
To find the top codons associated with the latent dimensions,

we extracted the absolute weights of each codon for a given
dimension. The top 10 codons having the highest absolute
weights (contribution) were identified corresponding to each
dimension to link these to SARS-CoV-2 variants. We collected
the SARS-CoV-2 variants and their associated genetic
variations at the codon level linked to the spike gene, and a
list of codons associated with VOIs and VOCs was curated
(Supplementary Table S4); (Lopez-Rincon et al., 2021; Naveca
et al., 2021; Peacock et al., 2021; Srivastava et al., 2021; CDC,
2022). The curated list is based on the CDC guidelines, and we
are consistent with their definition of lineage and variant

(CDC, 2022).

Strainflow Algorithm
The algorithm for the Strainflow pipeline has been described
below:

1. We have collected the SARS-CoV-2 sequences from the
GISAID EpiCoV database. High quality sequences with
complete temporal information were filtered.

2. We extracted the spike gene region of these sequences from
FASTA files using the CoV-Seq tool. A CSV containing
these sequences and other metadata such as country names
and dates was created.

3. The sequences were splitted into chunks of three characters
(codons). A splitted sequence represents a document with
three-letter words.

4. We trained a word2Vec model on the spike gene sequences for
learning 36-dimensional word embeddings. The average of all
word embeddings in a given sequence was treated as the

embedding of the sequence.
5. We calculated the sample entropies of each dimension of our

embeddings for each month and country.
6. New COVID-19 cases for each country in each month were

calculated using data from the JHU CSSE repository.
7. A feature selection algorithm (Boruta) was used for selecting

the entropy dimensions predictive of caseloads 2 months in
advance.

8. Random Forest regression algorithm was used for predicting
new cases 2 months ahead of time. The inputs to the model are
the country names and important features extracted from the

Boruta algorithm. The predictor variable is the caseload
2 months ahead of time for each country.
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