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1 Introduction

The study of CFT correlation functions in momentum space was initiated systematically

in [1, 2]. It is important for a variety of reasons. It has wide ranging applications in

cosmology [3–12] - in particular in computing cosmological correlators, and condensed

matter physics [13, 14] - especially in studying quantum phase transitions. Recent works

on aspects of momentum space CFTs include [1, 2, 15–54]. Via holography, momentum

space CFT correlators are related to flat space scattering amplitudes [55–60]. Thus CFT

correlators in momentum space, besides enabling a connection between the conformal and

S-matrix bootstrap, also reveal interesting structures such as double copy and colour-

kinematics duality relations which are hard to discern without working in momentum

space [26, 37, 51].

3d CFT correlators for conserved currents in position space are quite well explored.

A detailed position space analysis of higher spin CFT3 correlators was performed in [61].
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For the position space 3-point correlators of conserved currents of the form 〈Js1Js2Js3〉,
where si ≥ 1, it was shown that the correlators have two parity-even structures and one

parity-odd structure. When the sum of spins is even, the parity-even contributions arise

from three-point correlators in the free-boson and free-fermion theories. When the sum of

spins is odd, the parity-even contributions arise from correlators of non-abelian currents in

the free theory of multiple scalars or fermions. The parity-odd structure is not generated

by a free theory. When the spins of the conserved currents satisfy the triangle inequality,

i.e. si ≤ si+1 + si+2 for i = 1, 2, 3 (modulo 3), there exists one parity-odd structure. When

the inequality is not satisfied the odd structure is zero. A proof of this using an integral

representation of the correlators was presented in [62]. It was also noted in [61, 62] that a

correlator of the form 〈JsJsO∆〉, where O∆ is a scalar operator with scaling dimension ∆,

contains only two structures, one parity-odd and another parity-even. Also, a correlator of

the form 〈JsO∆1
O∆2

〉 is non-zero only for ∆1 = ∆2 and only has one parity-even structure.

In [61] it was shown that in position space, one can write down arbitrary CFT 3-point higher

spin correlators as multinomials of just a few simple conformal invariants.

A similar exhaustive analysis of CFT correlators in momentum space or spinor-helicity

variables has not been done yet. A helicity basis was used in [63] for studying higher spin

3d CFT correlators. Spinor-helicity variables have been used earlier in the study of CFTs,

see for example [3, 7, 12]. Our goal in this paper is to study 3-point correlators of scalar

operators and conserved spin-s currents in d = 3 CFTs in spinor-helicity variables as well

as in momentum space.

In [2], parity-even 3-point momentum space correlators involving scalar operator and

conserved currents up to spin-2 (stress tensor) were computed by solving the conformal

Ward identities (CWI). These correlators were later obtained using weight-shifting opera-

tors in [11, 12]. In [50], we explored momentum space CFT3 parity-odd 3-point correlators

such as 〈JJO∆〉 by solving CWIs directly in momentum space. We also calculated parity-

odd correlators of the form 〈TTO∆〉 and 〈JJJ〉 using weight-shifting operators, as the

direct use of CWIs became very complex and inefficient. More complex higher spin corre-

lators were not computed directly using momentum space CWIs.1

The main difficulty in calculating complicated correlators such as 〈TTT 〉 is that there

is a high degree of degeneracy in the tensor structures in 3d, both in the parity-even and the

parity-odd sector, which makes it difficult to choose an appropriate basis to write an ansatz

for the correlator. In the parity-odd sector one has to deal with the additional complication

of non-trivial Schouten identities, which makes it difficult to solve for 〈TTT 〉odd directly.

The problem becomes even more complicated if we want to calculate a correlator involving

higher spin conserved currents (Js with s > 2) both for the parity-even and parity-odd case.

In this paper, we overcome this problem by working in the spinor-helicity formalism where

the degeneracy is automatically taken care of. We solve the CWIs in these variables and

then convert the results back to momentum space. In this way we obtain the momentum

space expressions for all correlators of the form 〈Js1Js2Js3〉 with spins satisfying the triangle

inequality. We make contact with the counting of structures in [61] by showing that

1See [7] for a calculation of 〈T T T 〉odd based on dS4 tree-level Feynman diagram.
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correlators of conserved spinning operators in momentum space have 2 parity-even and 1

parity-odd structure up to contact terms.

In our analysis we split the correlation function into two pieces, homogeneous and non-

homogeneous parts. We show that for the correlation functions we consider the parity-odd

contribution to the non-homogeneous piece is always a contact term. Interestingly, spinor-

helicity variables reveal that parity-even and parity-odd contributions to homogeneous

pieces are completely identical, although they look completely different in momentum space

as well as position space. Moreover, for divergent correlation functions which require com-

pletely different regularization and renormalization for parity-even and parity-odd parts,

the relation between these parts in spinor-helicity variables holds even after renormaliza-

tion. Upon converting spinor-helicity answers to momentum space, we see that the results

for correlators involving spin-s currents can be expressed in terms of some simple confor-

mally invariant conserved structures. In certain cases (such as 〈TTO4〉), the correlators are

divergent in momentum space and require a careful application of the renormalization pro-

cedure, but in spinor-helicity variables they turn out to give directly the finite part without

any renormalization. We also verify some of the results using weight-shifting operators.

The plan of the rest of the paper is as follows. In section 2 we introduce the basic

idea of expressing conformal correlators in terms of spinor-helicity variables and discuss

the preliminary case of 2-point functions. We also discuss some general features of our

3-point function analysis. Section 3 has the results of various 3-point correlators of spin-

ning conserved currents and scalar operators in spinor-helicity variables. In section 4 we

translate these results to momentum space after carefully taking the degeneracies into ac-

count and section 5 has a discussion of the renormalisation of some of these correlators

which have divergences. In section 6 some of these momentum space results are re-derived

using weight-shifting operators acting on seed correlators. Section 7 contains a discussion

of momentum space higher-spin conserved current correlators expressed in terms of 3-point

momentum space invariants. In section 8 we make some important observations, including

the connection between the parity-even and parity-odd parts of a correlator. We conclude

in section 9 with a brief summary and a discussion on future directions of study. At the

end we have a number of appendices supplementing the main text and providing various

technical details. Appendix A outlines our spinor-helicity notation. In appendix B we

describe in detail our terminology of homogeneous and non-homogeneous contributions to

a correlator and discuss how they differ from the usual splitting of a correlation function

into transverse and longitudinal pieces. Appendix C has the technical details of solutions of

various conformal Ward identities quoted in section 3. Appendix D contains useful triple-

K integral identities and appendix E lists the momentum space form of various 3-point

correlators of conserved currents. Finally appendix F contains the required details of some

weight-shifting operators which are used in section 6.

2 Conformal correlators in spinor-helicity variables

Momentum space expressions for parity preserving two and three-point conformal corre-

lators of spinning operators were obtained in [1, 2, 19–22] by solving momentum space

– 3 –
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conformal Ward identities. Recently in [50] we derived momentum space expressions for

parity-odd correlators using two different techniques. The first one, following [2], involved

solving conformal Ward identities directly in momentum space. The second one, follow-

ing [11], involved using the technique of spin-raising and weight-shifting operators in mo-

mentum space. In [42, 43] following the position space analysis in [62, 64] it was shown that

one could make use of momentum space higher-spin equations arising from Ward identi-

ties associated to (weakly broken) higher spin symmetry to compute spinning correlators

including the parity-odd ones.

The analysis of parity-odd correlators was restricted to correlators such as 〈JJO〉,
〈TTO〉 and 〈JJJ〉 due to various technical difficulties. One of the main obstacles was

to identify the correct basis of tensor structures to work with, due to various non-trivial

Schouten identities and other degeneracies in three-dimensions.

In this section, we compute 3-point CFT correlators in spinor-helicity variables. It

turns out that solving for CFT correlators in spinor-helicity variables is a lot simpler than

doing so in momentum space. The reader may wish to refer appendix A at this point to

get familiar with our notation and convention regarding spinor-helicity variables.

We start with an ansatz for the correlator in spinor-helicity variables. To do so, we

use the fact that a Lorentz transformation of the momentum ~k corresponds to a scale

transformation of the spinors. Therefore, a Lorentz-covariant structure in spinor-helicity

variables is a structure that has the correct scaling based on the helicities of the operators.

An operator O with helicity h transforms in the following way under a scale transformation

of spinors:

Oh(tλ, t−1λ̄) = t−2hO(λ, λ̄) . (2.1)

Therefore, the ansatz for a general correlator is given by

〈Oh1(k1)Oh2(k2)Oh3(k3)〉 = (c1 F1(k1, k2, k3) + i c2 F2(k1, k2, k3))

× 〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 (2.2)

where F1(k1, k2, k3) and F2(k1, k2, k3) are form-factors that we will determine by impos-

ing dilatation and special conformal invariance. For parity-even correlators c2 = 0 and

for parity-odd correlators c1 = 0, and for the latter the ‘i’ ensures that the correlator

changes sign under conjugation, since conjugation corresponds to a parity transformation

for spinors.

2.1 Conformal generators

The conformal Ward identities are differential equations determined by the action of the

special conformal generator on a conformal correlator. The special conformal generator in

spinor-helicity variables takes the form [65]:

K̃κ = 2
n∑

i=1

(σκ) β
α

∂2

∂λiα∂λ̄
β
i

. (2.3)
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The action of K̃ on a scalar with ∆ = 2 is given by [12]:

K̃κO2 = −KκO2 (2.4)

where

Kκ = −2∂kκ
− 2kα∂kα∂kκ

+ kκ∂kα∂kα
. (2.5)

The action of K̃ on a scalar with ∆ 6= 2 is given by [12]:

K̃κ

(
O∆

k∆−2

)
= − 1

k∆−2
KκO∆ +

O∆

k∆
kκ(∆ − 1)(∆ − 2) . (2.6)

Similarly, the action of K̃ on spin-one and spin-two conserved currents is as follows [12]:

K̃κJ± =

(
−zα

±K
κ + 2zκ

±

kα

k2

)
Jα

K̃κ

(
T±

k

)
=

(
− 1

k
z

(α
± z

β)
± K

κ + 12zκ
±

z
(α
± kβ)

k3

)
Tαβ

(2.7)

where J+ = z+
µ J

µ and T+ = z+
µ z

+
ν T

µν . In (2.5) and (2.7), Kκ corresponds to the special

conformal generator in momentum space with ∆ = 2. Its action on a conformally invariant

correlator is zero. Therefore, the action of K̃κ on a correlator in which all the operators

have ∆ = 2 will just have a part proportional to the R.H.S. of the Ward-Takahashi identity

of the correlator. When the correlator has operators with scaling dimensions other than 2,

it is convenient to divide them by appropriate powers of k so that the insertion has ∆ = 2.

For a derivation, see [3].

2.2 Two-point functions

In this section we present the expressions for a few two-point correlators in spinor-helicity

variables. These will later turn out to be useful when dealing with transverse Ward identi-

ties associated to spinning three-point correlators. For conserved currents of generic integer

spin s we have the following two-point functions:

〈Js−(k1)Js−(k2)〉 =
(
cJs + i c′

Js

) 〈12〉2s

2sk2
,

〈Js+(k1)Js+(k2)〉 =
(
cJs − i c′

Js

) 〈1̄2̄〉2s

2sk2
,

〈Js+(k1)Js−(k2)〉 =
(
cJs + i c′

Js

) 〈1̄2〉2s

2sk2

〈Js−(k1)Js+(k2)〉 =
(
cJs − i c′

Js

) 〈12̄〉2s

2sk2

(2.8)

where cJs and c′
Js

are the two-point function coefficients of the spin-s current for the even

and odd cases respectively.

2.3 Three-point functions: general discussion

We will now consider three-point functions with spinning operator insertions. The parity

odd sector of a few correlators such as 〈JJO〉, 〈JJJ〉, and 〈TTO〉 have been studied in

momentum space by solving conformal Ward identities, using spin-raising and weight-

shifting operators and using higher spin equations [42, 43, 50]. In extending our analysis

– 5 –
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to more complicated three-point correlators we faced some difficulties as described in the

beginning of this section. However, working in spinor-helicity variables, we are able to

circumvent this problem and get expressions for more complicated 3-point correlators as

described in detail below. We will first introduce the terminology of homogeneous and

non-homogeneous solutions to conformal Ward identities which we will use throughout

this paper.

2.3.1 Homogeneous and non-homogeneous solutions

The action of the special conformal generator in spinor-helicity variables on a generic 3-

point correlator takes the following form:

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉
= transverse Ward identity terms (2.9)

where the R.H.S. contains contact-term contributions and is expressible in terms of 2-point

functions. The explicit form of the generator K̃κ is given in section 2.1.

Being a linear differential equation, the general solution of the above is expressible as

the sum of homogeneous and non-homogeneous solutions:

〈Js1Js2Js3〉 = 〈Js1Js2Js3〉h + 〈Js1Js2Js3〉nh (2.10)

where 〈Js1Js2Js3〉h solves:

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉

h

= 0 (2.11)

and 〈Js1Js2Js3〉nh is a solution of:

K̃κ

〈
Js1

ks1−1
1

Js2

ks2−1
2

Js3

ks3−1
3

〉

nh

= transverse Ward identity terms . (2.12)

This distinction will be important to keep in mind since the homogeneous and non-

homogeneous parts have different structures and properties. One way to distinguish be-

tween the two kinds of solutions in the final answer will be that the non-homogeneous

solution depends on the coefficient of the two-point function. Another way is to make use

of the transverse Ward identities:

〈k1 · Js1(k1)Js2(k2)Js3(k3)〉h = 0

〈k1 · Js1(k1)Js2(k2)Js3(k3)〉nh = WT identity terms. (2.13)

In other words, while the homogeneous solution is completely transverse, the non-

homogeneous solution gets contribution from both transverse as well as local (or longi-

tudinal) terms.

Since the 3-point correlators can be parity-violating, it will be useful to break up

the homogeneous and non-homogeneous parts further into parity-even and parity-odd

contributions:

〈Js1Js2Js3〉 = 〈Js1Js2Js3〉h + 〈Js1Js2Js3〉nh

〈Js1Js2Js3〉h = 〈Js1Js2Js3〉h,even + 〈Js1Js2Js3〉h,odd

〈Js1Js2Js3〉nh = 〈Js1Js2Js3〉nh,even + 〈Js1Js2Js3〉nh,odd . (2.14)

– 6 –
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For a detailed discussion on the homogeneous and non-homogeneous contributions to three-

point correlators and their distinction from transverse and longitudinal contributions see

appendix B.

2.3.2 Degeneracy structure

In three dimensions, there exist degeneracies in tensor structures which complicate the

analysis of correlators. The existence of degeneracy is tied to the simple fact that not more

than three vectors can be linearly independent in three dimensions.

The basic problem is that the different tensor structures in the ansatz for a correlator

become linearly dependent due to degeneracies. This affects the analysis of both parity-

even and parity-odd correlators. For the parity-odd correlator, Schouten identities, which

relate various tensor structures involving Levi-Civita tensors, are an additional source of

complication. The main problem is that while solving the conformal Ward identity, one

needs to identify the correct independent set of tensor structures to be able to write down

differential equations for the form-factors. However, this process becomes very complicated

for correlators involving spin-2 or higher spin operators.

An example of such an identity in three dimensions is:

ǫz1z2k1(k1 · k2) + ǫz1k1k2k1 · z2 − ǫz1z2k2k2
1 − ǫz2k1k2k1 · z1 = 0, (2.15)

where we have used the notation2 ǫz2k1k2 = ǫµνρz
µ
2 k

ν
1k

ρ
2 . The structures that appear in the

above equation arise in the ansatz for various parity-odd correlators such as 〈JJO〉odd.

The above equation then implies that a term with ǫz1k1k2 in the ansatz can be eliminated

in favour of other structures.3 This, while essential to be taken into account, makes cum-

bersome the correct ansatz with a minimal basis of independent structures.

Other than Schouten identities, there are identities such as [2]:

δµν =
4

J2

(
k2

i k
µ
j k

ν
j + k2

jk
µ
i k

ν
i − ~ki.~kj(kµ

i k
ν
j + k

µ
j k

ν
i ) + nµnν

)
(2.16)

where nµ = ǫµνρkνkρ and i 6= j = 1, 2, 3. We also have [2]:

Πµν
αβ (kj)nαnβ = −k2

j Πµν
αβ (kj) kα

(j+1) mod 3k
β
(j+1) mod 3 j = 1, 2, 3 . (2.17)

Another example of a degeneracy is [20]:

Πα1
µ1ν1β1

(k1)Πα2
µ2ν2β2

(k2)4!δβ1

[α1
δβ2

α2
k1α2k2α4]k

α3
1 kα4

2

= Πµ1ν1α1β1(k1)Πµ2ν2α2β2(k2)

[
kα1

2 k
β1
2 kα2

3 k
β2
3

− (k2
1 + k2

2 − k2
3)δβ1β2kα1

2 kα2
3 − J2

4
δα1α2δβ1β2

]
= 0 . (2.18)

These also allow certain basis structures to be expressed in terms of others. Both

parity-even and parity-odd degeneracies complicate the analysis when computing corre-

lation functions.
2We will often use this notation in this paper.
3See [50] for details of the complete momentum space analysis of 〈JJO〉

odd
.
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One of the advantages of working with spinor-helicity variables is that the degen-

eracies become trivial in these variables. For example, the left hand side of both (2.15)

and (2.18) become identically zero in spinor-helicity variables. One can check that all

the Schouten identities and other identities relating various tensor structures also become

trivial in spinor-helicity variables.

3 Three-point functions: explicit solutions in spinor-helicity variables

In this section we focus on determining CFT3 3-point correlators in spinor-helicity vari-

ables. In particular, we compute correlators of the form 〈JsO∆O∆〉, 〈JsJsO∆〉, 〈JsJsJs〉
and 〈Js1JsJs〉 where Js is a symmetric, traceless, spin-s conserved current with scaling

dimension ∆ = s+ 1, and O∆ is a scalar operator with scaling dimension ∆. In three di-

mensions, 3-point correlators involving only spinning operators are always finite, whereas

those involving a scalar operator require renormalization for large enough values of ∆.

We will observe that splitting the correlator into homogeneous and non-homogeneous

parts in the sense explained in section 2.3.1 is useful. As we demonstrate, whenever there

exists a homogeneous parity-even solution to the conformal Ward identity in spinor-helicity

variables, there also exists a homogeneous parity-odd solution and the two are identical

up-to some signs. Interestingly, in the case of divergent correlators, the parity-odd and the

parity-even correlators continue to match even after renormalization, although the renor-

malization procedure for the two differs. Further, it turns out that the non-homogeneous

part is always parity-even. Any parity-odd contribution to the non-homogeneous part is

always a contact term. After the first example in which we present all the details, in each

case we will give the correlator ansatz and then write down the form-factors as solution of

the CWI’s, relegating the details to appendix C.

Notation. A spin s current has various helicity components such as

J−···−
s , J−···+−

s , · · · , J+···+
s . Due to tracelessness, mixed helicity components vanish.

Hence the only nontrivial helicity components are J−···−
s and J+···+

s which we denote by

J−
s and J+

s , respectively.

3.1 〈JsO∆O∆〉

In this section, we calculate correlators of the form 〈JsO∆O∆〉. The Ward-Takahashi

(WT) identity when the spinning operator is either a spin-one conserved current or the

stress-tensor (i.e. when s = 1 or s = 2) is given by the following [2, 12]:

k1µ〈JµO∆O∆〉 = 〈O∆(k3)O∆(−k3)〉 − 〈O∆(k2)O∆(−k2)〉

k1µz1ν〈TµνO∆O∆〉 = (k2 · z1) (〈O∆(k3)O∆(−k3)〉 − 〈O∆(k2)O∆(−k2)〉) (3.1)

where in the second equation we have contracted both sides of the WT identity with null

transverse polarization vectors. It is straightforward to generalise the WT identity to

arbitrary spin-s conserved currents by matching the spin and scaling dimensions on both
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sides of the identity. This gives the following:

z1µ2 · · · z1µsk1µ1〈Jµ1···µsO∆O∆〉 = (k2 · z1)s−1(〈O∆(k3)O∆(−k3)〉 − 〈O∆(k2)O∆(−k2)〉) .
(3.2)

We will see that the homogeneous part of the correlator is zero. The non-homogeneous

part has the scalar two-point function on the right hand side.4 Consequently, the odd part

of the correlator goes to zero as there is no parity-odd scalar two-point function. Thus this

correlator has only a parity-even non-homogeneous part.

As noted in section 2.1, when the correlator involves operators with scaling dimensions

other than 2, it is convenient to divide the insertions by appropriate powers of the corre-

sponding momenta k such that they have ∆ = 2. The correlator itself is obtained at the

end by restoring the powers of k. Keeping this in mind, we start with the following ansatz

for the correlator:

〈
J−

s

ks−1
1

O∆

k∆−2
2

O∆

k∆−2
3

〉
= F (k1, k2, k3)〈12〉s〈2̄1〉s . (3.3)

The action of the generator of special conformal transformations K̃ is then given by (see

section 2.1):

K̃κ

〈
J−

s

ks−1
1

O∆

k∆−2
2

O∆

k∆−2
3

〉
=

2z−κ
1 cO

k2s−1
1 k∆−2

2 k∆−2
3

(k2∆−3
3 − k2∆−3

2 )

+ (∆ − 1)(∆ − 2)

〈
J−

s

O∆

k∆−2
2

O∆

k∆−2
3

〉(
kκ

2

k2
2

− kκ
3

k2
3

)
. (3.4)

Contracting (3.4) with bκ = (σκ) α
β λ1αλ

β
1 , bκ = (σκ) α

β (λ1αλ
β
2 + λ2αλ

β
1 ) and bκ =

(σκ) α
β λ2αλ

β
2 gives the following:

∂2F

∂k2
2

− ∂2F

∂k2
3

= − F

k2
2k

2
3

(∆ − 1)(∆ − 2)(k2
2 − k2

3) (3.5)

k1

2

(
∂2F

∂k2
3

− ∂2F

∂k2
1

)
+
k2

2

(
∂2F

∂k2
2

− ∂2F

∂k2
3

)
− s

∂F

∂k1

=
2(∆ − 1)(∆ − 2)F

k2
2k

2
3

k2(k2
2 + k2

3 − k1k2) (3.6)

1

4
(k1 − k2 + k3)(−k1 + k2 + k3)

(
∂2F

∂k2
1

− ∂2F

∂k2
3

)
+ s2F + sk2

(
∂F

∂k1
+
∂F

∂k2

)
(3.7)

= cO
k2∆−3

3 − k2∆−3
2

k3
1

+
F

k2
3

(∆ − 1)(∆ − 2)(k1 − k2 + k3)(−k1 + k2 + k3) .

4A correlator comprising one conserved current and two scalar operators with different scaling dimensions

also vanishes, i.e.

〈JsO∆1
O∆2

〉 = 0 for ∆1 6= ∆2 .
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Finally, the dilatation Ward identity is given by:

(
3∑

i=1

ki
∂F

∂ki

)
+ 2sF = 0 . (3.8)

The above differential equations (3.5), (3.6), (3.7) and (3.8) can be solved to get:

F = cOk
−∆+2
2 k−∆+2

3 I 1
2

+s{ 1
2

−s,∆− 3
2

,∆− 3
2

} . (3.9)

where the triple-K integral [2] which occurs in the r.h.s. of this equation is defined in (5.1).

After taking the momentum factors in the denominator of the l.h.s. of (3.3) to the r.h.s.

and using the above result for the form factor we obtain the correlator:

〈J−
s O∆O∆〉 = cOk

s−1
1 I 1

2
+s{ 1

2
−s,∆− 3

2
,∆− 3

2
}〈12〉s〈2̄1〉s . (3.10)

When cO = 0, there is no non-trivial solution to the differential equations and one has:

〈JsO∆O∆〉h = 0. (3.11)

3.2 〈JsJsO∆〉

In this section, we compute correlators of the form 〈JsJsO∆〉 for general spin s. As

discussed in section 2.3.1, we separate out the correlator into homogeneous and non-

homogeneous parts:

〈JsJsO∆〉 = 〈JsJsO∆〉h + 〈JsJsO∆〉nh . (3.12)

The correlator 〈JsJsO∆〉 is completely transverse:

〈k1 · Js(k1)Js(k2)O∆(k3)〉 = 〈Js(k1)k2 · Js(k2)O∆(k3)〉 = 0 (3.13)

where k · Js(k) = kµ1J
µ1µ2....µs(k). This implies that the non-homogeneous part of the

correlator is zero:

〈JsJsO∆〉nh = 0. (3.14)

We will now compute the explicit form of the correlators for arbitrary ∆. We find that

for ∆ ≥ 4, there is a divergence and we need to regularize and renormalize to obtain finite

correlators.

We consider the following ansatz for the correlator (2.2):

〈
Js−(k1)

ks−1
1

Js−(k2)

ks−1
2

O∆(k3)

k∆−2
3

〉
= (c1 F1(k1, k2, k3) + i c2 F2(k1, k2, k3)) 〈12〉2s

〈
Js+(k1)

ks−1
1

Js+(k2)

ks−1
2

O∆(k3)

k∆−2
3

〉
= (c1 F1(k1, k2, k3) − i c2 F2(k1, k2, k3)) 〈1̄2̄〉2s

〈
Js−(k1)

ks−1
1

Js+(k2)

ks−1
2

O∆(k3)

k∆−2
3

〉
= (d1G1(k1, k2, k3) + i d2G2(k1, k2, k3)) 〈12̄〉2s . (3.15)

It is interesting to note that the conformal Ward identity gives identical equations for the

parity-odd and the parity-even parts. The details of these equations and their solution are

– 10 –
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provided in appendix C.2 where we also discuss examples for special values of ∆ and s.

Here we give the final form of the solution:

F1(k1, k2, k3) = F2(k1, k2, k3) = k2−∆
3 I( 1

2
+2s){ 1

2
, 1

2
,∆− 3

2
}

G1(k1, k2, k3) = G2(k1, k2, k3) = 0. (3.16)

Substituting the form-factor in the ansatz (3.15) we obtain

〈J−
s J

−
s O∆〉 = 〈J−

s J
−
s O∆〉even + 〈J−

s J
−
s O∆〉odd

= (c1 + ic2) (k1k2)s−1 I( 1
2

+2s){ 1
2

, 1
2

,∆− 3
2

}〈12〉2s

〈J+
s J

+
s O∆〉 = 〈J+

s J
+
s O∆〉even + 〈J+

s J
+
s O∆〉odd

= (c1 − ic2) (k1k2)s−1 I( 1
2

+2s){ 1
2

, 1
2

,∆− 3
2

}〈1̄2̄〉2s

〈J−
s J

+
s O∆〉 = 0 .

(3.17)

For ∆ ≥ 4, the above triple-K integrals and thereby the correlators are divergent. A

detailed study of the renormalization of these correlators will be carried out in section 5.

We will see that the relationship between the parity-even and the parity-odd parts of a

correlator in spinor-helicity variables continues to hold even after renormalization.

3.3 〈JsJsJs〉

In this subsection we concentrate on the three point function of a general spin s conserved

current Js.5 Since the correlator 〈JsJsJs〉 satisfies a nontrivial transverse WT identity it

has both the homogeneous as well as the non-homogeneous contributions.

Let us split the correlator into the odd and even contributions:

〈JsJsJs〉 = 〈JsJsJs〉even + 〈JsJsJs〉odd.

It will turn out that 〈JsJsJs〉even has both the homogeneous and the non-homogeneous

contributions whereas 〈JsJsJs〉odd has a non-trivial homogeneous part but the non-

homogeneous part is always a contact term.

3.3.1 〈JJJ〉

Let us start our analysis with the 3-point function of the spin-1 current Jµ. As noted

earlier, for this correlator to be non-zero, the currents have to be non-abelian. The WT

identity is given by [2, 12, 20]:

k1µ〈Jµa(k1)Jνb(k2)Jρc(k2)〉 =
(
fadc〈Jρd(k2)Jνb(−k2)〉 − fabd〈Jνd(k3)Jρc(−k3)〉

)

+

[(
kν

2

k2
2

fabdk2α〈Jαd(k3)Jρc(−k3)〉
)

+ ((k2, ν) ↔ (k3, ρ))

]
.

(3.18)

5If s is odd then we need to consider a non-abelian current to have a non-trivial correlator.
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Let us consider the following ansatz for the two helicity components of the correlator:6

〈J−(k1)J−(k2)J−(k3)〉 = (F1(k1, k2, k3) + iF2(k1, k2, k3)) 〈12〉〈23〉〈31〉 (3.19)

〈J−(k1)J−(k2)J+(k3)〉 = (G1(k1, k2, k3) + iG2(k1, k2, k3)) 〈12〉〈23̄〉〈3̄1〉 . (3.20)

The solutions of the conformal Ward identity are given by (see appendix C.3)

F1(k1, k2, k3) =
c1

E3
+

cJ

k1k2k3
(3.21)

G1(k1, k2, k3) =
c2

(k1 + k2 − k3)3
+ cJ

E − 2k3

E(k1k2k3)
(3.22)

F2(k1, k2, k3) =
c′

1

E3
+

c′
J

k1k2k3
(3.23)

G2(k1, k2, k3) =
c′

2

(k1 + k2 − k3)3
+

c′
J

k1k2k3
(3.24)

where cJ and c′
J are the parity-even and parity-odd coefficients of the two-point function

of conserved currents (see (2.8)). The terms proportional to c1, c
′
1 and c2, c

′
2 are the ho-

mogeneous solutions to the differential equations and those proportional to cJ , c
′
J are the

non-homogeneous solutions. Since G(k1, k2, k3) and G̃(k1, k2, k3) both have an un-physical

pole when k1 + k2 = k3, we set the coefficients of these terms to zero, i.e. c2 = c′
2 = 0.

Summary of the solution. Taking into account both the parity-even and the parity-odd

contributions, we obtain:

〈J−(k1)J−(k2)J−(k3)〉 =

(
c1 + ic′

1

E3
+
cJ + ic′

J

k1k2k3

)
〈12〉〈23〉〈31〉 (3.25)

〈J−(k1)J−(k2)J+(k3)〉 =
1

k1k2k3

(
(cJ + ic′

J) − cJ
2k3

E

)
〈12〉〈23̄〉〈3̄1〉 . (3.26)

In the next section, we will convert these expressions into the momentum space and see

that the non-homogeneous contribution to the parity-odd correlator (term proportional to

c′
J) becomes a contact term.

3.3.2 〈T T T 〉

Let us now consider the correlator with three insertions of the stress-tensor operator. The

transverse Ward identity satisfied by the correlator is given by [2, 12, 20]:

z1µk1ν〈Tµν(k1)T (k2)T (k3)〉

= − (z1 · k2)〈T (k1 + k2)T (k3)〉 + 2(z1 · z2)k2µzν〈Tµν(k1 + k2)T (k3)〉

− (z1 · k3)〈T (k1 + k3)T (k2)〉 + 2(z1 · z3)k3µz3ν〈Tµν(k1 + k3)T (k2)〉

+ (k1 · z2)z1µz2ν〈Tµν(k1 + k2)T (k3)〉 + (z1 · z2)k1µz2ν〈Tµν(k1 + k2)T (k3)〉

+ (k1 · z3)z1µz3ν〈Tµν(k1 + k3)T (k2)〉 + (z1 · z3)k1µz3ν〈Tµν(k1 + k3)T (k2)〉

(3.27)

6We will suppress the color indices which amounts to suppressing an overall factor of fabc.
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where T (k) ≡ zµzνT
µν(k). Thus the correlator can have both homogeneous and non-

homogeneous solutions for the parity-even and parity-odd correlation functions. The

parity-even solution was already discussed in [2]. The parity-odd homogeneous contribu-

tion was computed in [7] using Feynman diagram computations in dS4. Here we reproduce

the same result by solving the conformal Ward identities. We also get a nontrivial non-

homogeneous contribution to the parity-odd correlator which in momentum space turns

out to be a contact term.

〈T T T 〉even. The parity-even contribution to the correlator 〈TTT 〉even is given by [2, 12]

〈T−T−T−〉even =

(
c1
c123

E6
+ cT

E3 − Eb123 − c123

c2
123

)
〈12〉2〈23〉2〈31〉2

〈T−T−T+〉even = cT
(E − 2k3)2(E3 − Eb123 − c123)

E2c2
123

〈12〉2〈23̄〉2〈3̄1〉2 (3.28)

where b123 = (k1k2 + k2k3 + k3k1), c123 = k1k2k3, and cT comes from the parity-even two

point function of the stress tensor (2.8). The terms proportional to c1 and cT are the

homogeneous and the non-homogeneous contributions to the correlator respectively.

〈T T T 〉odd. The parity-odd part of the correlator can be solved analogously (see ap-

pendix C.4 for details). The answer is given by

〈
T−

k1

T−

k2

T−

k3

〉

odd

= i

(
c′

1

1

E6
+ c′

T

E3 − E b123 − c123

c3
123

)
〈12〉2〈23〉2〈31〉2 (3.29)

〈
T−

k1

T−

k2

T+

k3

〉

odd

= i

(
c′

T

(E − 2k3)2−(E − 2k3)(b123 − 2k3 a12) + c123

c3
123

)
〈12〉2〈23̄〉2〈3̄1〉2

(3.30)

where a12 = k1+k2, b123 = k1k2+k2k3+k1k3 and c123 = k1 k2 k3 and c′
T arises in the parity-

odd two point function of the stress tensor (2.8). The terms proportional to c′
1 and c′

T are

the homogeneous and the non-homogeneous contributions to the correlator respectively.

Summary of the solution. Taking into account both the parity-even and the parity-odd

contributions, we obtain:

〈T−(k1)T−(k2)T−(k3)〉

=

[ (
c1 + ic′

1

) c123

E6
+
(
cT + ic′

T

) E3 − Eb123 − c123

c2
123

]
〈12〉2〈23〉2〈31〉2 (3.31)

〈T−(k1)T−(k2)T+(k3)〉

=

[
cT

(E − 2k3)2(E3 − Eb123 − c123)

E2c2
123

+ ic′
T

(E − 2k3)2 − (E − 2k3)(b123 − 2k3 a12) + c123

c3
123

]
〈12〉2〈23̄〉2〈3̄1〉2 . (3.32)
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The other helicity components of the correlator can be obtained by complex conjugating

the above results.

In the next section, we will show that the non-homogeneous contribution to the parity

odd correlator (the term proportional to c′
T in (3.31)) is a contact term. Thus the only

non-trivial contribution to the non-homogeneous piece in the correlator comes from the

parity-even part.

3.3.3 〈JsJsJs〉 for general spin: the homogeneous part

In this subsection we generalize the above discussion to the three-point function 〈JsJsJs〉
of arbitrary spin s conserved current. We first split the correlator into homogeneous and

non-homogeneous pieces, and then separate them into their parity-even and parity-odd

parts as indicated in (2.14). The non-homogeneous piece 〈JsJsJs〉nh requires us to know

the WT identity which for general spin is quite complicated. However, on general grounds

we can argue that the parity-odd part of this term, 〈JsJsJs〉nh,odd, is a contact term for

general spin s. We refer the reader to section 8.1 for details. In the rest of this subsection,

we focus on obtaining the homogeneous part of the correlator which does not require the

WT identity.

Homogeneous solution. For the homogeneous solution, the parity-even and the parity-

odd contributions are again the same in spinor-helicity variables. We start with the fol-

lowing ansatz for 〈JsJsJs〉h:

〈
J−

s

ks−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉

h

= F (k1, k2, k3)〈12〉s〈23〉s〈31〉s (3.33)

〈
J−

s

ks−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉

h

= G(k1, k2, k3)〈12〉s〈23̄〉s〈3̄1〉s. (3.34)

Since we are focusing on the homogeneous part, the action of the conformal generator is

given by:

K̃κ

〈
J−

s

ks−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉

h

= 0, K̃κ

〈
J−

s

ks−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉

h

= 0. (3.35)

The action of K̃κ on the ansatz, after dotting with bκ = (σκ) α
β (λ2αλ

β
3 + λ3αλ

β
2 ), becomes

2s

(
∂F

∂k2
− ∂F

∂k3

)
+ k3

(
∂2F

∂k2
2

− ∂2F

∂k2
3

)
− k2

(
∂2F

∂k2
1

− ∂2F

∂k2
2

)
= 0 (3.36)

2s

(
∂G

∂k2
+
∂G

∂k3

)
− k3

(
∂2G

∂k2
2

− ∂2G

∂k2
3

)
− k2

(
∂2G

∂k2
1

− ∂2G

∂k2
2

)
= 0 . (3.37)

The dilatation Ward identity is given by:

(
3∑

i=1

ki
∂F

∂ki

)
+ 3sF = 0,

(
3∑

i=1

ki
∂G

∂ki

)
+ 3sG = 0 . (3.38)
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The solutions for F and G are then given (see appendix C) by

F (k1, k2, k3) =
c1

E3s
(3.39)

G(k1, k2, k3) = 0 . (3.40)

Summary of result. Considering the parity-even and the parity-odd contributions we

obtain the homogeneous part of the correlator:

〈
J−

s J
−
s J

−
s

〉
h

= (c1 + ic2)ks−1
1 ks−1

2 ks−1
3

1

E3s
〈12〉s〈23〉s〈31〉s,

〈
J−

s J
−
s J

+
s

〉
h

= 0 . (3.41)

The other helicity components can be obtained by a simple complex conjugation.

3.4 〈Js1
JsJs〉

In this subsection we generalize the above discussion to three-point correlators of the kind

〈Js1JsJs〉 for arbitrary spins s and s1. We again find it convenient to split the correlator

into various parts as in (2.14). The WT identity for 〈Js1JsJs〉 for general spins s and s1

is quite complicated. However, as discussed in section 8.1, we can argue that the parity-

odd contribution to the non-homogeneous part, 〈JsJsJs〉nh,odd, is a contact term. In the

following we will calculate the homogeneous and the non-homogeneous contribution to the

correlator 〈TJJ〉. For general spins s and s1, we present only the homogeneous solution.

3.4.1 〈T JJ〉

Let us consider the correlator with a single insertion of the stress-tensor operator and two

insertions of the spin-one current operator. The transverse WT identity is given by [2, 20]:

k1µ〈Tµν(k1)Jρ(k2)Jσ(k3)〉 = k3µδ
νσ〈Jµ(k1 + k3)Jρ(k2)〉 + k2µδ

νρ〈Jµ(k1 + k2)Jσ(k3)〉
− k3ν〈Jσ(k1 + k3)Jρ(k2)〉 − k2ν〈Jρ(k1 + k2)Jσ(k3)〉

k2ρ〈Tµν(k1)Jρ(k2)Jσ(k3)〉 = 0. (3.42)

Since the WT identity is not trivial, the correlator can have both homogeneous and non-

homogeneous solutions for the parity-even and the parity-odd correlation functions. The

parity-even solution was already discussed in [2, 20].

〈T JJ〉even. The even part of the correlator was calculated in [2, 20] in momentum space

and it is straightforward to convert that into spinor-helicity variables:

〈T−J−J−〉 = c1
k1

E4
〈12〉2〈13〉2

〈T+J−J−〉 = 0

〈T−J−J+〉 = cJ
E + k1

k2
1E

2
〈12〉2〈13̄〉2 (3.43)

where the term proportional to c1 is the homogeneous term and the term proportional to

cJ is the non-homogeneous term.
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〈T JJ〉odd. Let us now consider the parity-odd contribution to the correlator. In the

parity-odd case the transverse WT identity (3.42) gives:

k1µ〈Tµν(k1)Jρ(k2)Jσ(k3)〉odd = c′
J

(
k2νǫ

ρσk3 + k3νǫ
σρk2 − δνρǫσk3k2 − δνσǫρk2k3

)
(3.44)

where we have used 〈Jα(k1 + k2)Jβ(k3)〉 = −c′
Jǫ

αβk3 . Interestingly it turns out that the

R.H.S. of the above equation vanishes upon using a Schouten identity. Thus, in addition to

the trivial transverse WT identities w.r.t. kρ
2 and kσ

3 , we have the following trivial transverse

WT identity:

k1µ〈Tµν(k1)Jρ(k2)Jσ(k3)〉odd = 0 . (3.45)

This immediately implies that the parity odd part of the non-homogeneous part of the

correlator is zero:

〈Tµν(k1)Jρ(k2)Jσ(k3)〉nh,odd = 0 . (3.46)

We now turn our attention to computing the homogeneous contribution. Let us start with

the following ansatz for 〈TJJ〉odd:
〈
T−

k1
J−J−

〉

odd

= i F (k1, k2, k3)〈12〉2〈13〉2,

〈
T−

k1
J−J+

〉

odd

= iG(k1, k2, k3)〈12〉2〈13̄〉2

〈
T+

k1
J−J−

〉

odd

= iH(k1, k2, k3)〈1̄2〉2〈1̄3〉2 (3.47)

The solutions to the resulting CWIs are given (see appendix C) by:

F (k1, k2, k3) =
c′

1

E4
, G(k1, k2, k3) =

c′
2

E4(k2 + k3 − k1)2
, H(k1, k2, k3) = 0 . (3.48)

Since the solution for G has an unphysical pole, we set its coefficient c′
2 = 0. Substituting

the above form-factors in the ansatz (3.47), we obtain the following:

〈T−J−J−〉odd = i c′
1

k1

E4
〈12〉2〈13〉2 (3.49)

〈T+J+J+〉odd = −i c′
1

k1

E4
〈1̄2̄〉2〈1̄3̄〉2 . (3.50)

The other helicity components of the correlator are zero.

Summary of homogeneous contribution to 〈T JJ〉. Adding up the contribution

coming from the parity-even and parity-odd parts we obtain

〈T−J−J−〉h =
(
c1 + i c′

1

) k1

E4
〈12〉2〈13〉2 (3.51)

〈T+J+J+〉h =
(
c1 − i c′

1

) k1

E4
〈1̄2̄〉2〈1̄3̄〉2 (3.52)

with all other components being zero.
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Summary of non-homogeneous contribution to 〈T JJ〉. As discussed above, the

parity-odd contribution to the non-homogeneous part of the correlator vanishes. Thus

from (3.43) we have the following for the non-homogeneous part of the correlator:

〈T−J−J+〉nh = cJ
E + k1

k2
1E

2
〈12〉2〈13̄〉2 (3.53)

with all other components zero except the one obtained from complex conjugating (3.53).

3.4.2 〈Js1
JsJs〉 for general spin: the homogeneous part

Homogeneous solution. We start with the following ansatz for 〈Js1JsJs〉:
〈

J−
s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉

h

= F (k1, k2, k3)〈12〉s1〈23〉2s−s1〈31〉s1

〈
J−

s1

ks1−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉

h

= G(k1, k2, k3)〈12〉s1〈23̄〉2s−s1〈3̄1〉s1

〈
J+

s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉

h

= H(k1, k2, k3)〈12〉s1〈23̄〉2s−s1〈3̄1〉s1 . (3.54)

In our analysis, we assume that 2s > s1. The action of the conformal generator on the

homogeneous part is given by:

K̃κ

〈
J−

s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉

h

= K̃κ

〈
J+

s1

ks1−1
1

J−
s

ks−1
2

J−
s

ks−1
3

〉

h

= K̃κ

〈
J−

s1

ks1−1
1

J−
s

ks−1
2

J+
s

ks−1
3

〉

h

= 0.

(3.55)

The solutions for F , G and H are given (see appendix C) by:

F (k1, k2, k3) =
1

E2s+s1
, G(k1, k2, k3) = 0, H(k1, k2, k3) = 0. (3.56)

We will now summarise the results for the homogeneous solution.

Summary of homogeneous contribution to 〈Js1
JsJs〉.

〈J−
s1
J−

s J
−
s 〉h =

(
c1 + ic′

1

) ks1−1
1 ks−1

2 ks−1
3

E2s+s1
〈12〉s1〈23〉2s−s1〈31〉s1 (3.57)

〈J+
s1
J−

s J
−
s 〉h = 0 (3.58)

〈J−
s1
J−

s J
+
s 〉h = 0 (3.59)

while other components can be obtained by complex conjugating the result in (3.57).

4 Conformal correlators in momentum space

In this section we present the results for higher spin CFT3 correlators in momentum space.

As explained in section 2.3.2 a direct computation of parity-odd correlators in momentum
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space becomes complicated due to the large amount of degeneracy in 3d. Rather than

solving the CWIs directly in momentum space, we convert our expressions for the cor-

relators in spinor-helicity variables obtained in the previous section to momentum space.

The simplest way to do this is to write down the ansatz for the correlator in momentum

space and convert it to spinor-helicity variables. One can then compare it to the explicit

results in spinor-helicity variables and solve for the form factors. For correlators involving

higher spins, this procedure also becomes complicated, and in such cases we make use of

transverse polarization tensors to represent the answers.

4.1 Two point function

Two-point functions of various conserved currents are as follows:

〈Jµ(k)Jν(−k)〉odd = c′
Jǫ

µνk

〈Tµν(k)T ρσ(−k)〉odd = c′
T ∆µνρσ(k)k2

〈Jµ(k)Jν(−k)〉even = cJπ
µν(k)k

〈Tµν(k)T ρσ(−k)〉even = cT Πµνρσ(k)k3
(4.1)

where

∆µνρσ(k) = ǫµρkπνσ(k) + ǫµσkπνρ(k) + ǫνσkπµρ(k) + ǫνρkπµσ(k) (4.2)

Πµνρσ(k) =
1

2
(πµρ(k)πνσ(k) + πµσ(k)πνρ(k) − πµν(k)πρσ(k)) (4.3)

πµν(k) = δµν − kµkν

k2
. (4.4)

For arbitrary spin s, we have the following expression for the two-point function after

contracting with polarization vectors:

〈Js(k)Js(−k)〉odd = c′
sǫ

z1z2k (z1 · z2)s−1k2(s−1)

〈Js(k)Js(−k)〉even = cs(z1 · z2)sk2s−1 .
(4.5)

From (4.5), it is clear the parity-odd two-point function for a spin-s current is a contact

term as it is analytic in k2.

4.2 Three point function

The parity-even sector of momentum space 3-point correlators involving spin 1 and spin

2 conserved currents and scalar operators of arbitrary scaling dimensions was obtained

by solving conformal Ward identities in [2, 19, 20, 22]. The parity odd sector of CFT3

was studied for specific correlators using momentum space Ward identities and weight-

shifting operators in [51]. In this section we convert the spinor-helicity expressions in

the previous section to momentum space expressions and obtain parity-even as well as

parity-odd three point correlators comprising generic spin s conserved currents and scalar

operators of arbitrary scaling dimensions.

4.2.1 〈JsO∆O∆〉

In this section we give the momentum space expression for correlators of the form

〈JsO∆O∆〉. As discussed earlier, the parity-odd part is zero. The parity-even part is
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straightforward to write down from the spinor-helicity expressions. For general spin-s, it

is given by:

〈JsO∆O∆〉even = c1k
2s−1
1 I 1

2
+s,{ 1

2
−s,∆− 3

2
,∆− 3

2
}(k2 · z1)s . (4.6)

Let us now consider the correlator for some specific values of s and ∆.

〈JsO2O2〉. For ∆ = 2, we have

〈JsO2O2〉even = c1k
2s−1
1 I 1

2
+s,{ 1

2
−s, 1

2
, 1

2
}(k2 · z1)s . (4.7)

For s = 1, s = 2 and s = 3, we have

〈JO2O2〉even = c1
1

(k1 + k2 + k3)
(k2 · z1)

〈TO2O2〉even = c1
2k1 + k2 + k3

(k1 + k2 + k3)2
(k2 · z1)2

〈J3O2O2〉even = c1
8k2

1 + 9k1(k2 + k3) + 3(k2 + k3)2

(k1 + k2 + k3)3
(k2 · z1)3 .

(4.8)

〈T O3O3〉. For s = 2 and ∆ = 3, we have

〈TO3O3〉even = c1
k3

1 + k3
2 + k3

3 + 2(k2
1 + k2k3)(k2 + k3) + 2k1(k2

2 + k2k3 + k2
3)

(k1 + k2 + k3)2
(k2 · z1)2 .

(4.9)

Let us now consider the three-point correlator with two insertions of the spin-s conserved

current and a scalar operator of scaling dimension ∆.

4.2.2 〈JsJsO∆〉

In this section we determine the momentum space expression for correlators of the kind

〈JsJsO∆〉. We first discuss the s = 1 and s = 2 cases in detail. We then present the final

result for the general spin case expressed in terms of a transverse polarization tensor.

〈JJO∆〉. The correlator is purely transverse and the even part of it takes the following

form in momentum space [22]:

〈Jµ(k1)Jν(k2)O∆〉even = A1(k1, k2, k3)πµ
α(k1)πν

β(k2)
[
kα

2 k
β
3 − χδαβ

]
(4.10)

where the form factor A(k1, k2, k3) is given by:

A1(k1, k2, k3) = I 5
2

,{ 1
2

, 1
2

,∆− 3
2

} (4.11)

and

χ =
1

2
(k1 + k2 + k3)(k1 + k2 − k3) . (4.12)
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As an example let us consider the case when the scaling dimension of the scalar operator

is ∆ = 2. In this case, after evaluating the integral (4.11) we obtain the form factor in the

ansatz (4.10) to take the form:

A1(k1, k2, k3) =
1

(k1 + k2 + k3)2
. (4.13)

Let us now consider the parity-odd sector. In [51] we computed 〈JJO∆〉odd by imposing

conformal invariance and obtained:

〈Jµ(k1) Jν(k2)O(k3)〉odd = πµ
α(k1)πν

β(k2)
[
A(k1, k2, k3)ǫαk1k2k

β
1 +B(k1, k2, k3)ǫβk1k2kα

2

]

(4.14)

where

A(k1, k2, k3) =
k2

2(I1k
2
1 + I2k1 · k2)

k2
1k

2
2 − (k1 · k2)2

B(k1, k2, k3) =
k2

1(I2k
2
2 + I1k1 · k2)

k2
1k

2
2 − (k1 · k2)2

(4.15)

where I1 and I2 are the following two triple-K integrals respectively:

I1 = c1 I 5
2

{− 1
2

, 1
2

,∆− 3
2

} (4.16)

I2 = −c1 I 5
2

{ 1
2

,− 1
2

,∆− 3
2

} . (4.17)

We further verified our results by computing the correlator for ∆ = 1, . . . , 5 using weight-

shifting operators and matching with the results obtained above.

Again, when ∆ = 2, after evaluating the above triple-K integrals we obtain the form

factors in (4.14) to be:

A(k1, k2, k3) = − k2

(k1 + k2 + k3)2
(
(k1 − k2)2 − k2

3

)

B(k1, k2, k3) =
k1

(k1 + k2 + k3)2
(
(k1 − k2)2 − k2

3

) . (4.18)

Note that, as expected there is a total energy singularity when E = k1 + k2 + k3 → 0.

It seems from the above expression that there is also an apparent collinear divergence

when any two momentum vectors are proportional to each other. In this case, momentum

conservation implies that all 3 momenta are along a line and it is easy to check that the

((k1 − k2)2 − k2
3) factor in the denominator above vanishes. However, in this case the

numerator of the full correlator also vanishes appropriately, leaving the correlator finite.

Hence as expected the correlator has no singularities other than the E → 0 singularity.7

7There is also an alternative form of this correlator (see eq. 5.16 of [50]) using which it is easy to see

that there are no collinear divergences.
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〈T T O∆〉. The transverse and traceless part of the correlator in three dimensions is given

by [22]:

〈Tµ1ν1Tµ2ν2O∆〉even = −2k2
1k

2
2A1Πµ1ν1αβ1(k1)Πµ2ν2αβ2(k2)(kβ1

2 k
β2
3 − χ δβ1β2) (4.19)

where

A1(k1, k2, k3) = c1 I 9
2

,{ 1
2

, 1
2

,∆− 3
2

} (4.20)

and χ is defined in (4.12). For the case when ∆ = 2 one obtains the following:

A1(k1, k2, k3) =
1

(k1 + k2 + k3)4
. (4.21)

Let us now consider the parity odd contribution to the correlator. In [50] we obtained the

momentum space expressions for 〈TTO1〉odd and 〈TTO2〉odd using spin-raising and weight-

shifting operators. We will now use the expressions we obtained in spinor-helicity variables

for 〈TTO∆〉, for a generic ∆, to obtain a momentum space expression for the same.

We start with the following ansatz in momentum space:

〈Tµ1ν1Tµ2ν2O∆〉odd = Πα1β1
µ1ν1

(k1)Πα2β2
µ2ν2

(
A1ǫ

µ1µ2k1δν1ν2 +A2ǫ
µ1µ2k2δν1ν2

)
. (4.22)

Symmetry considerations tell us that:

A2 = −A1(k1 ↔ k2) . (4.23)

Dotting with transverse, null polarization vectors, we get

〈TTO∆〉odd = A1ǫ
k1z1z2z1 · z2 −A1(k1 ↔ k2)ǫk2z1z2z1 · z2 . (4.24)

Converting into spinor-helicity variables we get:

〈T−T+O∆〉odd =
A1k1 −A1(k1 ↔ k2)k2

4k2
1k

2
2

〈12̄〉4

〈T−T−O∆〉odd =
A1k1 +A1(k1 ↔ k2)k2

4k2
1k

2
2

〈12〉4 .

(4.25)

Comparing (4.25) and (C.14), we get the following for the form factor:

A1 = 2c1k
2
1k

3
2I 9

2
{ 1

2
, 1

2
,∆− 3

2
} (4.26)

which matches the form factor (4.20) that appears in the even part of the same correlator.

Let us now come to the case where the spinning operator in the correlator is a generic spin

s conserved current.
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〈JsJsO∆〉. As mentioned in the introduction to this section, for correlators involving

higher spin operators, it is convenient to introduce transverse polarization tensors. It is

straightforward to write down the momentum space expression for these correlators from

their expression in spinor-helicity variables. This can be done upon observing that

[
k2 ǫ

k1z1z2 − k1 ǫ
k2z1z2

]
7→ i〈12〉2

[
(~z1 · ~k2)(~z2 · ~k1) +

1

2
E(E − 2k3)~z1 · ~z2

]
7→ 〈12〉2 .

(4.27)

We then have

〈JsJsO∆〉even = (k1k2)s−1I 1
2

+2s{ 1
2

, 1
2

,∆− 3
2

}

[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s
(4.28)

〈JsJsO∆〉odd = (k1k2)s−1I 1
2

+2s{ 1
2

, 1
2

,∆− 3
2

}

[
k2 ǫ

k1z1z2 − k1 ǫ
k2z1z2

]

×
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s−1
. (4.29)

Let us now look at this correlator for specific values of the scaling dimension of the scalar

operator.

〈JsJsO1〉. For ∆ = 1, the correlator is given by:

〈JsJsO1〉odd = (k1k2)s−1 1

k3E2s

[
k2 ǫ

k1z1z2 − k1 ǫ
k2z1z2

]

×
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s−1
. (4.30)

〈JsJsO2〉. For ∆ = 2, the correlator is given by:

〈JsJsO2〉odd = (k1k2)s−1 1

E2s

[
k2 ǫ

k1z1z2 − k1 ǫ
k2z1z2

]

×
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s−1
. (4.31)

〈JsJsO3〉. For ∆ = 3, the correlator is given by:

〈JsJsO3〉odd = (k1k2)s−1 (E + (2s− 1)k3)

E2s

[
k2 ǫ

k1z1z2 − k1 ǫ
k2z1z2

]

×
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s−1
. (4.32)

4.2.3 〈JsJsJs〉

We will now determine the correlator 〈JsJsJs〉 in momentum space. We first discuss the

s = 1 and s = 2 cases in detail. For the case of general spin, we present only the final result

expressed in terms of transverse polarization tensor. For this, we restrict our attention to

the homogeneous part. For the parity-odd part of the correlator, the non-homogeneous

contribution is always a contact term.
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〈JJJ〉. Unlike 〈JsJsO∆〉 the correlator 〈JJJ〉 is not purely transverse and it has a local

term given by [20]:

〈JµaJνbJρc〉local =

[
k

µ
1

k2
1

(
fadc〈Jρd(k2)Jνb(−k2)〉 − fabd〈Jνd(k3)Jρc(−k3)〉

)

+ ((k1, µ) ↔ (k2, ν)) + ((k1, µ) ↔ (k3, ρ))

]

+

[(
k

µ
1 k

ν
2

k2
1k

2
2

fabdk2α〈Jαd(k3)Jρc(−k3)〉
)

+ ((k1, µ) ↔ (k3, ρ)) + ((k2, ν) ↔ (k3, ρ))

]
.

(4.33)

The transverse part of the even part of the correlator denoted by 〈jµ1a1jµ2a2jµ3a3〉even was

computed in [20]:

〈jµ1a1jµ2a2jµ3a3〉even =πµ1
α1

(k1)πµ2
α2

(k2)πµ3
α3

(k3)
[
A1k

α1
2 kα2

3 kα3
1 +A2δ

α1α2kα3
1

+A2(k3, k1, k2)δα1α3kα2
3 +A2(k2, k3, k1)δα2α3kα1

2

]
(4.34)

where the form factors are given by:

A1 =
2c1

(k1 + k2 + k3)3

A2 = c1
k3

(k1 + k2 + k3)2
− 2cJ

(k1 + k2 + k3)
. (4.35)

Here and in the following we suppress the color indices for brevity. After dotting with

transverse, null polarization vectors, the correlator can be separated into homogeneous

and non-homogeneous parts as follows:

〈JJJ〉even,h =
c1

(k1 + k2 + k3)2

[
2(k2 · z1)(k3 · z2)(k1 · z3)

(k1 + k2 + k3)

+ (k3(z1 · z2)(k1 · z3) + cyclic perm.)

]

〈JJJ〉even,nh = − 2cJ

(k1 + k2 + k3)
((z1 · z2)(k1 · z3) + cyclic perm.) .

In [50] we computed the odd part of 〈JJJ〉 using the action of spin-raising and weight-

shifting operators on a scalar seed correlator. The correlator is given by the sum of its

local terms (4.33) and transverse parts. The latter is given by:

〈jµajνbjρc〉odd = πµ
α(k1)πν

β(k2)πρ
γ(k3)Xαβγ (4.36)

where

Xαβγ = A1ǫ
k1k2αk

γ
1k

β
3 +A2ǫ

k1k2αδβγ +A3ǫ
k1αβk

γ
1 +A4ǫ

k1αγk
β
3 + cyclic perm. (4.37)
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where

A1 = − 2

k1(k1 + k2 + k3)3
, A2 = − 1

(k1 + k2 + k3)2

A3 =
k1 + k2 + 2 k3

k1(k1 + k2 + k3)2
, A4 =

k1 + 2 k2 + k3

k1(k1 + k2 + k3)2
. (4.38)

After dotting with transverse polarization vectors, the correlator can be rewritten in the

following form using Schouten identities:

〈JJJ〉odd,h =
c′

1

E3

[{
(~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)
+ (~k3 · ~z2)

(
ǫk1z1z3k2 − ǫk2z1z3k1

)

− (~z2 · ~z3)ǫk1k2z1E +
k1

2
ǫz1z2z3E(E − 2k1)

}
+ cyclic perm

]

〈JJJ〉odd,nh = c′
Jǫ

z1z2z3 . (4.39)

We see that the non-homogeneous part of the parity-odd part of the correlator is a contact

term. This term can be explained from the dS4 perspective by considering the three-point

tree-level amplitude arising from the interaction term FF̃ .

In the rest of this section we obtain the momentum space expressions for the correlators

〈TJJ〉 and 〈TTT 〉. As described in section 2.3.2, a direct computation of these correlators

by solving the conformal Ward identities in momentum space is quite difficult.

Our strategy to circumventing the difficulties follows our approach in section 4.2.2

to obtain 〈TTO∆〉. We start with an ansatz for the correlator in momentum space and

then convert it into spinor-helicity variables. We then compare it with the explicit results

obtained in the previous section. This gives us algebraic equations involving the momentum

space form-factors which can then be solved.

〈T T T 〉. The momentum space expression for the even part of the correlator 〈TTT 〉
was obtained in [20] and it was shown to have two structures. We will now obtain the

momentum space expression for the odd part of the correlator.

In (3.29) we obtained the following result for the parity odd part of the correlator

〈TTT 〉 in spinor-helicity variables:

〈T−T−T−〉odd =

(
c′

1

c123

E6
+ c′

T

E3 − Eb123 − c123

c2
123

)
〈12〉2〈23〉2〈31〉2

〈T−T−T+〉odd = c′
T

(E − 2k3)3 − (E − 2k3)(b123 − 2k3a12) + c123

c2
123

〈12〉2〈23̄〉2〈3̄1〉2 .

(4.40)

Let us consider the following ansatz for the transverse part of the correlator:

〈Tµ1ν1Tµ2ν2Tµ3ν3〉odd = Πµ1ν1

α1β1
(k1)Πµ2ν2

α2β2
(k2)Πµ3ν3

α3β3
(k3)

(
A1ǫ

k1k2α1ǫk1k2α2ǫk1k2α3k
β3
1 k

β1
2 k

β2
3

+A2ǫ
k1k2α3k

β3
1 kα2

3 k
β2
3 kα1

2 k
β1
2 +A2(k2 ↔ k3)ǫk2k3α2k

β2
3 kα3

1 k
β3
1 kα1

2 k
β1
2

+A2(k1 ↔ k3)ǫk1k2α1k
β1
2 kα2

3 k
β2
3 kα3

1 k
β3
1

)
. (4.41)
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One could have started with a more general ansatz with many more tensor structures than

exhibited by (4.41). However, it turns out that there are several Schouten identities that

relate those tensor structures and upon using them one ends up with the minimal (and

complete) ansatz in (4.41).8

Contracting with null and transverse polarization vectors, we get

〈TTT 〉odd =A1ǫ
k3k1z1ǫk1k2z2ǫk2k3z3(k2 · z1)(k3 · z2)(k1 · z3)

+A2ǫ
k2k3z3(k1 · z3)(k3 · z2)2(k2 · z1)2

+A2(k2 ↔ k3)ǫk1k2z2(k1 · z3)2(k3 · z2)(k2 · z1)2

+A2(k1 ↔ k3)ǫk3k1z1(k1 · z3)2(k3 · z2)2(k2 · z1) .

(4.42)

Converting this into spinor-helicity variables, we get

〈T−T−T+〉 = 〈12〉2〈23̄〉2〈3̄1〉2J
4 (A1c123 +A2k3 −A2(k2 ↔ k3)k2 −A2(k1 ↔ k3)k1)

(E − 2k3)2c2
123

〈T−T−T−〉 = −〈12〉2〈23〉2〈31〉2J
4 (A1c123 +A2k3 +A2(k2 ↔ k3)k2 +A2(k1 ↔ k3)k1)

E2c2
123

.

(4.43)

Comparing (4.40) and (4.43) and solving for the momentum space form factors we get:

A1 = c′
1

c2
123

2J4E4
− c′

T

12(k2
1 + k2

2 + k2
3)

J4
(4.44)

A2 = −c′
1

b12c
2
123

2J4E4
+ c′

T

(
k4

3 + 7k2
3(k2

1 + k2
2) + 4(k4

1 + 4k2
1k

2
2 + k4

2)
)

J4
. (4.45)

Naively it might look like there are two contributions to the parity-odd correlation function.

However, as will be shown below the term proportional to c′
T is a contact term.

Contact term in parity-odd 〈T T T 〉. The fact that the term proportional to cT is a

contact term can be seen more explicitly by switching to a basis where the factor of J4 in

the denominator disappears. One such basis is given by:9

〈TTT 〉 =
[
B1ǫ

k1z1z2(z1 · z2)(k1 · z3)2 −B1(k1 ↔ k2)ǫk2z1z2(z1 · z2)(k1 · z3)2

+B2ǫ
k1z1z2(z1 · z3)(z2 · z3) −B2(k1 ↔ k2)ǫk2z1z2(z1 · z3)(z2 · z3)

]

+ cyclic perm.

(4.46)

8Schouten identities that turn out to be useful are given in appendix C of [50].
9This choice of basis is not unique. One can find several other bases in which un-physical poles do

not appear. To do this, we start with the most general ansatz for 〈T T T 〉 containing all possible tensor

structures. We then solve for the form-factors in this most general ansatz by relating it to the known answer

for the correlator. Not all the form-factors in the ansatz are fixed this way and those that are not fixed can

be set to zero. Which of them are set to zero is a choice made while solving and different choices lead to

different bases.
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The ansatz in (4.46) is related to (4.42) by Schouten identities. Converting (4.46) into

spinor-helicity variables and comparing with (4.43), we can solve for B1 and B2. We get

the solutions for the terms proportional to c′
T to be:

B1 = c′
T

1

24
, B2 = c′

T

1

12

(
k2

1 +
7

4
k2

2 +
7

4
k2

3

)
. (4.47)

The fact that B1 is a constant and B2 is dependent on k2 implies that if we evaluate

〈TTT 〉 in the basis (4.46) and convert it to position space, we will get delta functions

or derivatives on delta functions which are nothing but contact terms. Since the odd

non-homogeneous part is a contact term, the full 〈TTT 〉 correlator has only 3 non-trivial

contributions, 2 parity-even and 1 parity-odd conformally invariant structures. This agrees

with the analysis of [62].

From the dS4 perspective this contribution to the correlator can be understood to arise

from the WW̃ interaction. The WW̃ interaction also reproduces the parity-odd two-point

function of the stress tensor.

〈JsJsJs〉. For general spin s it is easy to write down the homogeneous part of 〈JsJsJs〉
in momentum space using the transverse polarization. The answer is given by:

〈JsJsJs〉even,h = (k1k2k3)s−1

×
[

1

E3

{
2 (~z1 · ~k2) (~z2 · ~k3) (~z3 · ~k1) + E{k3 (~z1 · ~z2) (~z3 · ~k1) + cyclic}

}]s

〈JsJsJs〉odd,h = (k1k2k3)s−1

× 1

E3

[{
(~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)
+ (~k3 · ~z2)

(
ǫk1z1z3k2 − ǫk2z1z3k1

)

−(~z2 · ~z3)ǫk1k2z1E +
k1

2
ǫz1z2z3E(E − 2k1)

}
+ cyclic perm

]

×
[

1

E3

{
2 (~z1 · ~k2) (~z2 · ~k3) (~z3 · ~k1)+E{k3 (~z1 · ~z2) (~z3 · ~k1) + cyclic}

}]s−1

.

(4.48)

The parity-odd contribution to the non-homogeneous piece is just a contact term.

4.2.4 〈J2sJsJs〉

We will now look at correlators of the form 〈J2sJsJs〉. We focus the discussion on the

〈TJJ〉 correlator and also give the results for the 〈J4TT 〉 correlator.

〈T JJ〉. We saw in (3.42) and (3.45) that the odd part of the correlator 〈TJJ〉 satisfies

trivial transverse Ward identities.10 We also note that in three-dimensions the trace Ward
10As a result the non-homogeneous part of this parity-odd correlator is zero. One can understand this

from the dS4 perspective by the following argument. The only interaction term that could possibly have

contributed to this correlator is F F̃ . However since this term is independent of the metric the contribution

from it to 〈T JJ〉 is zero. In fact there is no interaction term that one can have from the gravity side that

contributes to the non-homogeneous parity-odd part of 〈T JJ〉.

– 26 –



J
H
E
P
0
9
(
2
0
2
1
)
0
4
1

identity obeyed by this correlator is trivial. Taking these into account we write down the

following ansatz for the correlator in momentum space:

〈Tµ1ν1(k1)Jµ2(k2)Jµ3(k3)〉odd = Πµ1ν1

α1β1
(k1)πµ2

α2
(k2)πµ3

α3
(k3)

(
A1k

α1
2 kα2

3 ǫβ1α3k1

+A2k
α1
2 kα2

3 ǫβ1α3k3 +A3δ
α1α2ǫβ1α3k1 +A4δ

α1α2ǫβ1α3k3

)
.

(4.49)

Let us now contract this with polarization vectors and this gives:

〈TJJ〉odd =A1(k2 · z1)(k3 · z2)ǫk1z1z3 +A2(k2 · z1)(k3 · z2)ǫk3z1z3

+A3(z1 · z2)ǫk1z1z3 +A4(z1 · z2)ǫk3z1z3 . (4.50)

We now convert this expression into spinor-helicity variables to obtain:

〈
T−J−J−〉

odd
=

〈12〉2〈13〉2

8k2
1k2k3

(2A3k1−2A4k3+(k1−k2−k3)(k1−k2+k3)(A1k1−A2k3))

〈
T+J−J−

〉
odd

=
〈12〉2〈13〉2

8k2
1k2k3

(2A3k1+2A4k3+(k1+k2+k3)(k1+k2−k3)(A1k1+A2k3))

〈
T−J−J+

〉
odd

=
〈12〉2〈13〉2

8k2
1k2k3

(2A3k1+2A4k3+(k1−k2−k3)(k1−k2+k3)(A1k1+A2k3))

〈
T−J+J−

〉
odd

=
〈12〉2〈13〉2

8k2
1k2k3

(2A3k1−2A4k3+(k1+k2−k3)(k1+k2+k3)(A1k1−A2k3)) .

(4.51)

We obtained the following explicit results for these correlators in (3.49):

〈T−J−J−〉odd = c′
1

k1

E4
〈12〉2〈13〉2

〈T−J−J+〉odd = 0

〈T+J−J−〉odd = 0

〈T−J+J−〉odd = 0 .
(4.52)

Comparing (4.52) and (4.51), we get the following solutions for the form factors:

A1 = −c′
1

k1k3

E4

A2 = c′
1

k2
1

E4

A3 = c′
1

k1k3(k1 + k2 − k3)

2E3

A4 = −c′
1

k2
1(k1 + k2 − k3)

2E3
.

(4.53)

Plugging back the solution (4.53) in (4.50) we obtain:

〈TJJ〉odd =
k1

4E4
(−2(k3 · z2)(k2 · z1) + E(E − 2k3)(z1 · z2))

(
k1ǫ

z1z3k3 − k3ǫ
k1z1z3

)
(4.54)

which matches the result in [51] obtained by computing a tree level dS4 amplitude.

The solution (4.54) is not manifestly symmetric under a (2 ↔ 3) exchange in this basis.

However, we can use Schouten identities to convert the ansatz (4.50) to the following form
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where it is manifestly symmetric under a (2 ↔ 3) exchange:

〈TJJ〉odd =B1ǫ
k1k2z1(k1 · z1)(k1 · z3)(k3 · z2) +B2ǫ

k1k2z1(k2 · z1)2(k1 · z3)

+B3ǫ
k1k2z3(k2 · z1)2(k3 · z2) +B4ǫ

k1k2z1(k2 · z1)(z2 · z3) . (4.55)

The relation between the form-factors in the two bases (4.50) and (4.55) is given by:

B1 =
16

J4

(
4A4((k2

1 − k2
2)2 + 2(k2

1 + k2
2)k2

3 − 3k4
3) − 2(A1(k2

1 − k2
2) + (A1 − 2A2)k2

3)

× ((k2
1 − k2

2)2 − 2(k2
1 + k2

2)k2
3 + k4

3) + 4A3(−3k4
1 + (k2

2 − k2
3)2 + 2k2

1(k2
2 + k2

3)
)

B2 = −128

J4

(
k2

1(−2A4k
2
3 +A3(k2

1 + k2
3 − k2

2)
)

B3 = − 16

J4

(
− 8A3k

2
1(k2

1 + k2
2 − k2

3) + 4A4(k4
1 − 2(k2

2 − k2
3)2)

− 8(2A1k
2
1 −A2(k2

1 − k2
2 + k2

3))J2
)

B4 =
8

J2

(
− 2A3k

2
1 +A4(k2

1 − k2
2 + k2

3)
)
.

For the case s1 = 4 and s = 2, the momentum space expression that we get after

converting the answer in spinor-helicity variables given in section 3.4.2 is the following:

〈J4TT 〉odd = c′
1

k3
1k2k3

E8

[
(2(k2 · z1)(k3 · z2) − (z1 · z2) (E − 2k3)E)

(
k1ǫ

z1z3k3 − k3ǫ
z1z3k1

) ]

×
[ (

(k3 · z2)(k2 · z1) − 1

2
E(E − 2k3)(z1 · z2)

)

×
(

(k1 · z3)(k2 · z1) − 1

2
E(E − 2k2)(z1 · z3)

) ]
. (4.56)

The parity-odd contribution to the non-homogeneous part is again a contact term.

5 Renormalisation

In sections 3 and 4 we saw that CFT correlators in spinor-helicity variables and momentum

space are given by triple-K integrals of the kind:

Iα{β1,β2,β3}(k1, k2, k3) =

∫ ∞

0
dxxα

3∏

j=1

k
βj

j Kβj
(kj x) (5.1)

where Kν is a modified Bessel function of the second kind and α and βi are discrete

parameters that depend on the dimension of space and the conformal dimensions of the

operators. The integral is convergent except when the following equality is satisfied for any

(or many) choice of signs [2, 19, 20, 22]:

α+ 1 ± β1 ± β2 ± β3 = −2n, n ∈ Z≥0 . (5.2)

When the integral is divergent, one regulates it by shifting the dimension of the space and

the conformal dimensions [2, 19, 20, 22]:

d → d̃ = d+ 2uǫ

∆i → ∆̃i = ∆i + (u+ vi)ǫ (5.3)
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where u and vi are four real parameters. This results in a shift in the discrete parameters

of the triple-K integral indicated as follows:

Iα{β1,β2,β3} → I
α̃{β̃1,β̃2,β̃3}

= Iα+uǫ{β1+v1ǫ,β2+v2ǫ,β3+v3ǫ} . (5.4)

Here we note that when one deals with parity odd contributions to a correlator one has to

set u = 0 as the Levi-Civita tensors are defined in the original dimensions and not in the

shifted dimensions and hence one cannot use dimensional regularisation.

For cases where the divergence condition (5.2) is satisfied for the choice of signs (−−−)

or (−−+) or its permutations, one gets rid of the singularities in the regularised correlator

by adding suitable counter-terms to the CFT action. For cases where the equality (5.2)

is satisfied for the choice of signs (− + +) and its permutations or (+ + +) there are no

appropriate counter-terms that one can add to the action. These correspond to cases where

it is the triple-K representation of the correlator itself that is singular [19, 20, 22].

In the following we will show using the example of the 〈JJO∆〉 correlator that in the

spinor-helicity variables the relation between the parity-even and the parity-odd parts con-

tinues to hold even after renormalisation. To renormalise the correlators, we first convert

our answers in the spinor-helicity variables to momentum space expressions, cure the di-

vergences and obtain finite answers in momentum space. We then convert the resulting

correlators back to spinor-helicity variables.

5.1 〈JJO∆〉

The momentum space expression for the even part of the correlator was given in (4.10). It

can be checked that the discrete parameters in the triple-K integral satisfy the divergence

condition (5.2) when ∆ ≥ 4. When ∆ = 4, the divergence condition (5.2) is satisfied for the

choice of signs given by (− − −). A convenient scheme of regularisation is choosing v3 6= 0

and u = v1 = v2 = 0 [22]. The divergence terms are removed by adding the counter-term

with three sources [22]:

Sct = a(ǫ)

∫
d3xµv3ǫ FµνF

µνφ (5.5)

where µ is the renormalisation scale. After removing the divergence by choosing an appro-

priate a(ǫ) such that the singular term in the regularised correlator is canceled, we get the

following finite renormalised form factor:

Areno
1 (k1, k2, k3) = 3 c1log

(
k1 + k2 + k3

µ

)
− c1

k2
3 + 3k3(k1 + k2 + k3)

(k1 + k2 + k3)2
. (5.6)

In spinor-helicity variables, the renormalised correlator takes the following form:

〈J−J−O4〉even = Areno
1 (k1, k2, k3)〈12〉4 . (5.7)

Let us now discuss the parity odd part of 〈JJO∆〉. The momentum space expression for

the correlator takes the form in (4.14). For ∆ = 4, the two triple-K integrals are singular
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for the choice of signs (+ − −) and (− + −) respectively. To remove the singularity, we add

the following parity-odd counter-term with two sources and one operator:

Sct = a(ǫ)

∫
d3x µ−ǫ ǫµνλ Fµν Jλ φ . (5.8)

After removing the divergences, the resulting form factor is given by:

Breno
1 (k1, k2, k3) = c1

3

k1
log

(
k1 + k2 + k3

µ

)
− c1

k2
3 + 3k3(k1 + k2 + k3)

k1(k1 + k2 + k3)2
. (5.9)

Note that the form factor Breno
1 (k1, k2, k3) is related to the one in the even case

Areno
1 (k1, k2, k3) by the following simple relation:

Breno
1 (k1, k2, k3) =

1

k1
Areno

1 (k1, k2, k3) . (5.10)

In spinor-helicity variables, the correlator again takes the same form as in the parity

even case:

〈J−J−O4〉odd = i Areno
1 (k1, k2, k3)〈12〉4 (5.11)

Thus we have illustrated following the case of 〈JJO4〉 that the parity-even and the parity-

odd parts of the correlator are given by the same form factor even after renormalisation.

5.2 〈T T O∆〉

Let us now consider the 〈TTO∆〉 correlator. The transverse and traceless part of the even

part of the correlator is given by [22]:

〈Tµ1ν1(k1)Tµ2ν2(k2)O(k3)〉even (5.12)

= Πµ1ν1α1β1(k1)Πµ2ν2α2β2(k2)
[
A1 k

α1
2 k

β1
2 kα2

3 k
β2
3 +A2δ

α1α2k
β1
2 k

β2
3 +A3δ

α1α2δβ1β2

]
.

In d = 3, the solutions of the primary Ward identities were obtained to be [22]:

A1 = c1I 9
2

{ 3
2

, 3
2

,∆− 3
2

}

A2 = 4c1I 7
2

{ 3
2

, 3
2

,∆− 1
2

} + c2I 5
2

{ 3
2

, 3
2

,∆− 3
2

}

A3 = 2c1I 5
2

{ 3
2

, 3
2

,∆+ 1
2

} + c2I 3
2

{ 3
2

, 3
2

,∆− 1
2

} + c3I 1
2

{ 3
2

, 3
2

,∆− 3
2

} . (5.13)

One can easily check that for ∆ = 1, ∆ = 2, ∆ = 3 a subset of the triple-K integrals that

appear in the form-factors above are divergent. A convenient regularisation scheme to work

with is u = v1 = v2 and v3 6= u. For ∆ = 1, 2, 3 one does not have counter-terms to remove

the divergences. It turns out that the divergences that appear in these cases are exactly

cancelled by the primary constants determined by the secondary Ward identities [22].
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5.2.1 〈T T O4〉

〈TTO4〉 deserves special discussion as this is the first case where a type-A anomaly could

occur [22]. It was noticed in [22] that in the regularised correlator the pole in the regulator

ǫ multiplies a degenerate combination of form factors in the numerator and hence the

divergent form factors amount to a finite anomalous contribution to the correlator. Thus

counter-terms are not essential to remove such divergences. It was also shown in [22] that

the divergences in the regularised correlator and the anomaly can be removed using an

appropriate counter-term with suitable coefficients. The form-factors of the renormalised

correlator takes the following form (we present only the scheme independent part):

A1 =
c1

E4
E1

A2 =
c1

E3
(−E1(k1 + k2 − k3) + 2E2k1k2)

A3 =
c1(k1 + k2 − k3)

4E2
(E1(k1 + k2 − k3) − 4E2k1k2) (5.14)

where

E1 = (k1 + k2)2((k1 + k2)2 + 12k1k2) + 16(k1 + k2)((k1 + k2)2 + 3k1k2)k3

+ 6(7(k1 + k2)2 + 10k1k2)k2
3 + 32(k1 + k2)k3

3 + 5k4
3

E2 = (k1 + k2)3 + 15(k1 + k2)2k3 + 27(k1 + k2)k2
3 + 5k3

3 . (5.15)

We now convert this result in momentum space to the spinor-helicity variables and

obtain:

〈T−T−O4〉 = k1 k2
(k1 + k2)2 + 4(k1 + k2)k3 + 5k2

3

(k1 + k2 + k3)4
〈12〉4 . (5.16)

This precisely matches the result that we obtained for the correlator by directly solving

the conformal Ward identities in spinor-helicity variables (3.17). For ∆ = 4 (or more

generally ∆ ≤ 5) the triple-K integral in (3.17) is convergent and we get finite results

for the correlator without any renormalisation. For ∆ ≥ 6 the above triple-K integral is

singular and one needs to regularise and renormalise appropriately.

6 Weight-shifting operators

In this section we obtain correlators in momentum space using weight-shifting operators,

following [12] and [50]. The operators that we will primarily use are given by

H12 = 2
(
~z1 · ~K12

) (
~z2 · ~K12

)
− (~z1 · ~z2)K2

12 (6.1)

D̃12 = ǫz1z2k1W−−
12 + ǫz1k1K−

12

(
~z2 · ~K−

12

)
+ (2 − ∆1) ǫz1z2K−

12 (6.2)

and their permutations, where

K
−µ
12 = ∂k1µ

− ∂k2µ
(6.3)

W−−
12 =

1

2
~K−

12 · ~K−
12 (6.4)
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6.1 〈JJO∆〉odd

In [50] we obtained 〈JJO∆〉odd using weight-shifting operators was discussed earlier . The

seed correlator, in terms of triple-K integrals is given by:

〈O2O3O∆〉 = c1I 1
2

,{ 1
2

, 3
2

,∆− 3
2

} . (6.5)

The correlator 〈JJO∆〉odd is then obtained by the action of the parity-odd operator D̃12

which raises the spin of the operators at points 1 and 2 and lowers the weight of the

operator at point 2:

〈JJO∆〉odd = D̃12〈O2O3O∆〉

= c1I 5
2

,{ 1
2

, 3
2

,∆− 3
2

}

(
ǫk1z1z2k2 − ǫk2z1z2k1

)
(6.6)

after using appropriate Schouten identities.

It was seen that this reproduces the correct answer even for the case of ∆ = 4 and

∆ = 5 where 〈JJO∆〉odd is divergent. As is explained below, it is better to start without

renormalizing the seed correlator. The target correlator is renormalized at the end, in case

it has divergences.

6.1.1 Subtleties associated with divergences

There are some subtleties to note when the correlators are divergent as observed in [50].

When the target and seed correlators both have the same kind of divergence, one can

renormalize the seed correlator appropriately and use weight-shifting operators to get the

correct result for the target correlator. When the target correlator is not divergent but the

seed correlator is, this method does not always work. For example, it does not work when

the seed correlator has a non-local divergence while the target correlator is not divergent.

To illustrate this, consider the following sequence that also reproduces 〈JJO3〉odd:

〈JJO3〉odd = k1k2P
(1)
1 P

(1)
2 D̃12〈O1O2O3〉 . (6.7)

The seed correlator has a non-local divergence and upon appropriate renormalization it is

given by:

〈O1O2O3〉reno = c1
k1 + k2

k1
. (6.8)

If one calculates the r.h.s. of (6.7) using (6.8), it can be easily checked that the answer does

not match the known result for 〈JJO3〉odd. In fact, the final correlator obtained this away

goes to zero upon using Schouten identities. The correct way to go about it is to put in

the full, unrenormalized seed correlator into (6.7), which is given by

〈O1O2O3〉 = c1
k1 + k2

k1ǫ
+ c1

(
log(k1 + k2 + k3)(k1 + k2) − (k1 + k2 + k3)

k1

)
. (6.9)

This way, in the final answer, we can see that the divergences cancel upon using Schouten

identities and we get the correct answer for 〈JJO3〉odd.

– 32 –



J
H
E
P
0
9
(
2
0
2
1
)
0
4
1

6.2 〈T T O∆〉odd

In [50] we computed 〈TTO1〉odd and 〈TTO2〉odd using weight shifting operators. Here,

we use these operators to calculate the correlator for any scaling dimension of the scalar

operator. Also, our earlier analysis used a definition of the 3-point function that resulted in

the correlator having a non-trivial Ward-Takahashi identity. Here, following [22] we redefine

the 3-point function so that the correlator is completely transverse as this simplifies the

calculations. The following sequence of operators reproduces 〈TTO∆〉odd

〈TTO∆〉odd = (k1k2)3P
(2)
1 P

(2)
2 H12D̃12〈O1O2O∆〉 (6.10)

where the seed correlator is given by:

〈O1O2O∆〉 = c1I 1
2

{− 1
2

, 1
2

,∆− 3
2

} . (6.11)

This can be easily checked to give the correct result for the cases of ∆ = 1, 2, 3, 4 by

calculating the correlator and converting it to its form in spinor-helicity variables. For

∆ = 3 + 2n, the seed correlator has a non-local divergence and one must also be careful

about the subtlety mentioned in section 6.1.1. The explicit momentum space expression

for 〈TTO3〉odd is given by

〈TTO3〉odd = A1ǫ
k1k2z1(k2 · z1)(k3 · z2)2 +A1(k1 ↔ k2)ǫk1k2z2(k3 · z2)(k2 · z1)2 (6.12)

where we have used Schouten identities and the degeneracy in (2.16) to ensure that the

divergences cancel and to simplify the expression. The form factor is given11 by

A1 = c1
k3

1k
2
2(k1 + k2 + 4k3)

(k1 + k2 + k3)4(k2
1 + k2

2 − k2
3 − 2k1k2)2

. (6.13)

After doing a change of basis, this can be shown to match the answer obtained from

spinor-helicity variables and bulk gravity calculations.

In general, we have

〈TTO∆〉 = c1k
2
1k

2
2I 9

2
,{ 1

2
, 1

2
,∆− 3

2
}

[
ǫk1z1z2(z1 · z2)k2 − ǫk2z1z2(z1 · z2)k1

]
. (6.14)

6.3 〈T JJ〉odd

As we saw in (3.42) and (3.45), 〈TJJ〉odd is completely transverse with respect to all the

momenta. We start with 〈O1O2O2〉 as the seed correlator, which is given by

〈O1O2O2〉 =
c1

k1
log

(
k1 + k2 + k3

µ

)
(6.15)

where µ is the renormalization scale.

11Like for 〈JJO〉 in (4.18) - this form factor suggests an apparent collinear divergence. However, one can

easily check that the numerator of the correlator also vanishes in the collinear limit leaving the correlator

finite. Hence the only pole is at E → 0 as expected.
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The following sequence of operators reproduces 〈TJJ〉odd

〈T (k1)J(k2)J(k3)〉odd = k3
1(k2k3)P

(2)
1 P

(1)
2 P

(1)
3 H13D̃12〈O1(k1)O2(k2)O2(k3)〉 + (2 ↔ 3)

(6.16)

where P
(s)
i is a spin-s projector. The explicit momentum space expression for the correlator

is given in appendix F.

Although this expression looks very different from the expression obtained earlier

in (4.50), it can be shown that they are the same upon using Schouten identities. This fact

can easily be seen by converting both the momentum space expressions to spinor-helicity

variables where they exactly match.

6.4 〈T T T 〉odd

We know from section 4.2.3 that the non-homogeneous part of 〈TTT 〉odd is a contact

term and can therefore be ignored. In momentum space, this means that we only need to

calculate the transverse part of the correlator. This is given by:

〈TTT 〉odd = (k1k2k3)3P
(2)
1 P

(2)
2 P

(2)
3 H13H23D̃12〈O1O2O2〉 + cyclic perm. (6.17)

where we have added cyclic permutations to make the correlator manifestly symmetric.

The explicit answer in momentum space obtained this way has many form-factors and

is not very illuminating. However, one can use Schouten identities and the degeneracies

in (2.16) and (2.17) to reduce the answer to just four form-factors, out of which two are

independent. This matches the answer obtained using spinor-helicity variables in (3.31).

6.5 Homogeneous part of general 3-point function using weight-shifting oper-

ators

We can use weight-shifting operators Hij and D̃ij to compute the homogeneous part of

more general correlators. For example, consider 〈JsJsJs〉 where s is even. The parity-even

and parity-odd parts of the correlator are given by:

〈JsJsJs〉even = (k1k2k3)2s−1P
(s)
1 P

(s)
2 P

(s)
3 (H12H13H23)

s
2 〈O2O2O2〉

〈JsJsJs〉odd = (k1k2k3)2s−1P
(s)
1 P

(s)
2 P

(s)
3 H

s−2
2

12 (H13H23)
s
2 D̃12〈O1O2O2〉

(s = 2n) . (6.18)

The seed correlator 〈O2O2O2〉 is given by

〈O2O2O2〉 = c1log

(
k1 + k2 + k3

µ

)
(6.19)

where µ is the renormalization scale. Correlators involving scalar operator can also be

written down as

〈JsJsO∆〉even = (k1k2)2s−1P
(s)
1 P

(s)
2 Hs

12〈O2O2O∆〉 (6.20)

〈JsJsO∆〉odd = (k1k2)2s−1P
(s)
1 P

(s)
2 Hs−1

12 D̃12〈O1O2O∆〉 . (6.21)
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When s is odd in (6.18), we require additional weight-shifting operators apart from Hij

and D̃ij . This is analogous to the way we write correlators in the next section using a finite

number of conformal invariant structures.

Computation of the non-homogeneous part requires us to take linear combinations

of different sequences of weight-shifting operators such that the Ward-Takahashi identity

is saturated. See, for example, the computation of 〈TTT 〉even in [12]. Compared to the

homogeneous part, this is much harder to do for a general correlator as we do not know

the Ward-Takahashi identity for a general spin-s current.

7 CFT correlators in terms of momentum space invariants

The aim of this section is to write down CFT correlators derived in previous sections in

terms of a few conformal invariant momentum space structures. Let us define

Q12 =
1

E2

[
2
(
~z1 · ~k2

) (
~z2 · ~k1

)
+ E (E − 2k3)~z1 · ~z2

]
(7.1)

S12 =
1

E2

[
k2ǫ

k1z1z2 − k1ǫ
k2z1z2

]
(7.2)

P123 =
1

E3

[
2
(
~z1 · ~k2

) (
~z2 · ~k3

) (
~z3 · ~k1

)
+ E

(
k3 (~z1 · ~z2)

(
~z3 · ~k1

)
+ cyclic

)]
(7.3)

R123 =
1

E3

[{
(~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)
+ (~k3 · ~z2)

(
ǫk1z1z3k2 − ǫk2z1z3k1

)

−(~z2 · ~z3)ǫk1k2z1E +
k1

2
ǫz1z2z3E(E − 2k1)

}
+ cyclic perm.

]
. (7.4)

These can be used as building blocks for writing down momentum space 3-point conserved

correlators since they arise naturally in the expressions for such correlators.12 There are

some interesting relations among the above defined quantities. For example

S2
ij = Q2

ij , R2
ijk = P 2

ijk, P 2
123 = Q12Q23Q31, SijSjk = QijQjk

P123R123 = S12Q23Q31 + cyclic perm. (7.5)

up-to degeneracies.

Homogeneous contribution. From the summary in E.1, we may now write the mo-

mentum space three-point functions in a compact manner using the above invariants. Let

us note that we are concerned only with correlators which satisfy triangle inequality. To

do this we divide the correlator into two different classes.

s1 + s2 + s3 = 2n (n ∈ Z). For this class of correlators we only require Qij and Sij .

Consider 〈Js1Js2Js3〉 such that s1 ≥ s2 ≥ s3, s1 ≤ s2 + s3. Then, we have

〈Js1Js2Js3〉even = ks1−1
1 ks2−1

2 ks3−1
3 Q

1
2

(s1+s2−s3)
12 Q

1
2

(s2+s3−s1)
23 Q

1
2

(s1+s3−s2)
13

〈Js1Js2Js3〉odd = ks1−1
1 ks2−1

2 ks3−1
3 S12Q

1
2

(s1+s2−s3−2)
12 Q

1
2

(s2+s3−s1)
23 Q

1
2

(s1+s3−s2)
13

+ cyclic perm. (7.6)

12That they are conformal invariants follows from (7.7)–(7.10). If we put s = 1, in each case a structure

is equal to a particular correlator which is of course, by definition, conformally invariant.
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Correlators involving scalar operators can also be written this way,

〈JsJsO2〉even,h = bs−1
12 Qs

12 (7.7)

〈JsJsO2〉odd,h = bs−1
12 S12Q

s−1
12 . (7.8)

where bij = kikj and c123 = k1k2k3. The 3-point function involving ∆ = 1 is obtained

by shadow transforming (7.7). One can also write the correlator involving a generic scalar

operator dimension δ but we do not reproduce this here.

s1 + s2 + s3 = 2n + 1 (n ∈ Z). We require P123 and R123 as well when the sum of

the spins is odd. For example, when s is odd, we have

〈JsJsJs〉even,h = cs−1
123 P

s
123 (7.9)

〈JsJsJs〉odd,h = cs−1
123 R123P

s−1
123 . (7.10)

When s is odd, these are the only structures using which 〈JsJsJs〉 can be written. One

can use (7.5) to substitute even powers of P123 in terms of Qij ’s. Other correlators with

s1 + s2 + s3 = odd can also be considered similarily.

Non-homogeneous contribution. We have discussed homogeneous contribution so far.

The story for the non-homogeneous contribution is more complicated. We do not have a

generic form of the WT identity to evaluate three point functions involving operators of

arbitrary spin. For example, if we consider the solutions for 〈JsO2O2〉 as given in (4.8),

there is no discernible underlying structure to these expressions. The numerator becomes

increasingly complicated as we consider higher values of s and one cannot write these as

the power of some simple structure. We can similarly identify some structures based on

the answers for 〈JJJ〉, 〈JJT 〉 and 〈TTT 〉 however those relations are not illuminating as

in the case of the homogeneous part, (see (7.7)) and we do not present them here.

8 Some interesting observations

In this section we collect a few interesting observations about the correlators discussed so

far. For the purposes of this discussion, it will be useful to write the correlators as in (2.14).

8.1 Contact terms

To properly understand correlators in momentum space it is very important to understand

the contact terms which arises in both parity-odd and parity-even cases. For example

〈JJJ〉 correlation function has a contact term which is parity odd and is given by (4.39).

Fourier transforming this to position space will give us a term of the form

〈Ja
µJ

b
νJ

c
ρ〉contact ∝ c′

Jf
abcǫµνρδ

3(x1 − x2)δ3(x2 − x3). (8.1)

Another example of a correlation function where both parity even and parity odd part has

contact term, let us consider 〈TTT 〉. The parity even contact term is given by [26]

〈TTT 〉even ∝ cT

(
k3

1 + k3
2 + k3

3

)
z1 · z2z2 · z3z3 · z1 (8.2)
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which when converted to position space gives contact term of the form

〈TTT 〉contact ∝ cT

(
f(x1)δ3(x2 − x3) + f(x2)δ3(x3 − x1) + f(x3)δ3(x1 − x2)

)
. (8.3)

Parity odd contact term is given13 by (4.46) which becomes

〈TTT 〉contact ∝ c′
T ǫz1z2z3δ

3(x1 − x2)δ3(x2 − x3) + · · · (8.4)

where z are polarization tensors. Once again we have not mentioned exact form of the

contact term. Interestingly, for both parity even and parity odd part the contact term

arises in the non-homogeneous contribution. One way to understand parity odd case is to

look at (2.12). The right hand side of this equation for parity odd case is always a contact

term for the correlator we have considered. For example, the transverse Ward identity for

〈JJJ〉 takes the form (3.18)

k1µ〈Jµa(k1)Jνb(k2)Jρc(k2)〉 = fadc〈Jρd(k2)Jνb(−k2)〉 − fabd〈Jνd(k3)Jρc(−k3)〉

= fabcǫνρk1

which is a contact term. One can check the same explicitly for 〈TTT 〉 as well as other corre-

lators computed in previous sections. We expect on general grounds that 〈Js1Js2Js3〉odd,nh

is a contact term. To conclude, we observe that

A. Contribution to the contact term comes from non-homogeneous part of both parity-

even and parity-odd correlator. For parity-even it was observed in 〈TTT 〉 only.

B. Parity-odd non-homogeneous piece of the CFT correlator is always a contact term.

〈Js1Js2Js3〉nh,odd = contact term. (8.5)

However parity-even non-homogeneous piece can be nontrivial as is discussed in previous

sections.

8.2 Relation between parity-even and parity-odd solutions

If we look at the correlator in momentum space, see section 4, there seem to exist no clear

relationship between parity odd and parity even part of the correlator. However, as is

seen section 2 and 3, there exist a remarkable relationship between them in spinor-helicity

variables, namely

〈Js1Js2Js3〉h,odd = 〈Js1Js2Js3〉h,even (In spinor helicity variables) (8.6)

up-to some signs and factors of i. Let us explain this in terms of some concrete equations.

To start, let us consider the anstaz

〈J−
s1
J−

s2
J−

s3
〉 = (F1(k1, k2, k3) + iF2(k1, k2, k3))〈12〉s1+s2−s3〈23〉−s1+s2+s3〈31〉s1−s2+s3

〈J−
s1
J−

s2
J+

s3
〉 = (G1(k1, k2, k3) + iG2(k1, k2, k3))〈12〉s1+s2−s3〈23〉−s1+s2+s3〈31〉s1−s2+s3

(8.7)

13Let us note that, we have neglected the precise functional dependence. We have just indicated the form

of the delta function that arises.
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where F1, G1 and F2, G2 are form-factors for the parity-even and parity-odd parts of

the correlator. Both F1 and F2 satisfy the same non-homogeneous equation, see for

example (C.28), (C.37). However, the form factors G1 and G2 satisfy a different non-

homogeneous equation, see for example (C.29), (C.38) in appendix C. This difference is

coming due to the different contribution of WT identity to parity-even and parity-odd parts

for −−+ helicity component.14 This implies non-homogeneous contribution to parity-even

and odd cases generally differ, whereas the homogeneous solution is always the same.

This relation becomes even more nontrivial in the cases where there is a divergence

in the correlator. For example, for 〈JJO4〉 the solution of the conformal Ward identity is

given by

〈J−J−O4〉even = c1(k1k2)I 5
2

,{ 1
2

, 1
2

, 5
2

} (8.8)

〈J−J−O4〉odd = i c2(k1k2)I 5
2

,{ 1
2

, 1
2

, 5
2

} . (8.9)

However, the triple-K integral is divergent and one needs to regularise and renormalise

the correlator. To do so we go to momentum space (see section 5). The renormaliza-

tion procedure for even and odd parts is also completely different and we required quite

different kinds of counter-terms. However, converting back the renormalized results in

spinor-helicity variables, we remarkably obtained the same result again. This happens

to all other correlators having divergences and it would be interesting to have a better

understanding of this observation.

8.3 Manifest locality test

In the context of the cosmological bootstrap, a manifestly local test (MLT) was derived

for wavefunctions of scalars of dimension 3 and gravitons in any manifestly local, unitary

theory [66]. MLT imposes the following condition on such wavefunctions [66]:

lim
kc→0

∂

∂kc
ψn(k1, . . . , kc, . . . , kn) = 0 . (8.10)

In the following we discuss how this analysis can be used for calculating CFT correlator

〈TO3O3〉. Based on the symmetries of the correlator we write down the following ansatz

for the correlator:

〈Tµν(k1)O3(k2)O3(k3)〉 = Πµναβ(k1)A1(k1, k2, k3) kα
2 k

β
2 (8.11)

where we take the following ansatz for the form factor:

A1(k1, k2, k3) =
1

(k1 + k2 + k3)2

[
c1k

3
1 + c2k

2
1(k2 + k3) + c3k1k2k3

+c4k1(k2 + k3)2 + c5(k2 + k3)k2k3 + c6(k2 + k3)3
]

(8.12)

where the pole in k1 + k2 + k3 = 0 can be argued on general grounds and the power of

the pole is fixed by dilatation Ward identity. We will now fix the coefficients that appear

14For − − − helicity the WT identity contributes the same for parity even and odd case.
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in the ansatz by imposing manifest locality. With respect to one of the scalar operators

we have:

lim
k2→0

∂

∂k2
〈T (k1)O3(k2)O3(k3)〉 = 0 . (8.13)

This gives the following relation between the coefficients:

c2 = 2c1, c4 =
2c1 − c3

2
, c6 = −c5, c3 = 2c5 . (8.14)

We can easily check that with these conditions, MLT with respect to the second scalar

operator is also satisfied, i.e.:

lim
k3→0

∂

∂k3
〈T (k1)O3(k2)O3(k3)〉 = 0. (8.15)

Let us now impose manifest locality with respect to the stress-tensor operator:

lim
k1→0

∂

∂k1
〈T (k1)O3(k2)O3(k3)〉 = 0 . (8.16)

This gives the following constraint c5 = −c1. We now substitute the coefficients back into

the ansatz to get:

A(k1, k2, k3) =
c1

(k1 + k2 + k3)2

×
[
k3

1 + k3
2 + k3

3 + 2(k2
1 + k2k3)(k2 + k3) + 2k1(k2

2 + k2k3 + k2
3)
]
. (8.17)

Notice that form factor in (8.17) matches explicitly with form factor presented in (4.9). We

hope to come back to this in future for a better understanding of other 3-point functions.

8.4 A comparison between position and momentum space invariants

It is interesting to compare momentum space invariants discussed in section 7 and position

space invariants introduced in [61, 67]. To illustrate this, let us consider 〈JJT 〉 even part.

This is given by

〈T (x1)J(x2)J(x3)〉even =
1

|x12||x23||x31|
(
a1P

2
1Q

2
1+a2P

2
2P

2
3 +a3Q

2
1Q2Q3+a4P1P2P3Q1

)
,

(8.18)

We refer the reader to [61] for details about the notation. We see that there are 4 structures.

Demanding conservation equation for currents, we get two relation a2 = −4a1, a3 = −5
2a1

which leaves two independent structures

〈T (x1)J(x2)J(x3)〉even =
1

|x12||x23||x31|

[
a1

(
P 2

1Q
2
1− 4P 2

2P
2
3 − 5

2
Q2

1Q2Q3

)
+a4P1P2P3Q1

]
.

(8.19)

Furthermore, using WT identity we get a relation between a4, a1 and the two-point function

coefficient cj . Eliminating a4 we obtain

〈T (x1)J(x2)J(x3)〉even =
1

|x12||x23||x31|

[
a1

(
P 2

1Q
2
1 − 4P 2

2P
2
3 − 5

2
Q2

1Q2Q3 − 2P1P2P3Q1

)

+
3

8
cjP1P2P3Q1

]
(8.20)
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where cj appears in two point function of Jµ. Let us emphasize that, (8.18) is built out of

conformal invariant structures whereas (8.20) is built out of conformally invariant conserved

structures.15 In (8.20), we can identify the term proportional to a1 as homogeneous and

the term proportional to cj as the non-homogeneous contribution. Let us note that, for a

generic correlator involving arbitrary spin-s currents, in general it is quite complicated to

arrive at the analogue of (8.20) starting from more the readily obtainable expression (8.18).

Moreover, finding the non-homogeneous term in position space is equally complicated.

However, in momentum space we naturally obtain the analogue of (8.20) directly. In other

words, in momentum space we naturally divide the answer into homogeneous and non-

homogeneous contributions and the conformal invariant conserved structure is naturally

built in.

9 Summary and future directions

To summarize, we have systematically solved for 3-point CFT correlators involving higher

spin conserved currents and scalar operators in three dimensions. Spinor-helicity formal-

ism simplifies considerably the CWI based analysis of correlators. It solves the problems

associated with degeneracy which makes direct computation in momentum space difficult.

In these variables, we found that the homogeneous part of the correlator gets an identi-

cal contribution from parity-even and parity-odd parts. We were also able to write down

momentum space correlators in terms of conserved conformally invariant structures. For

some correlators (for example 〈TTO4〉) which are divergent in momentum space, a careful

renormalization analysis is required. However, in spinor-helicity variables, we observed

that it turns out we directly get the finite part of the correlator which does not require

any renormalization. We also verified some of the results using weight-shifting operators.

Below we discuss some future directions.

In this paper we focused exclusively on 3-point correlators of scalars and conserved

currents with spin. If one considers spinning operators which are not conserved (no WT

identity) then the approach has to be adjusted accordingly. Some preliminary momentum

space results in this direction were obtained in [29]. This analysis is important as it is a

useful first step for constructing general 4-point spinning conformal blocks in momentum

space. The spinor-helicity formalism, extended as in [68] to account for scattering of

massive particles in 4d, should be useful for this purpose.

It would be interesting to utilise the spinor-helicity formalism in the analysis of 4-point

functions. The momentum space CWI approach for 4-point CFT correlators has been used

in [30, 35, 44, 53]. We have seen that the spinor-helicity expressions for 3-point correlators

are much simpler compared to the momentum space ones and it is natural to expect a

similar simplicity in the analysis of higher point correlators.

15It is quite difficult to build conformally invariant conserved structures directly without first writing

conformal invariants and then demanding conservation. Free theory generating functions defined in [61]

might be of help, however it will be difficult to separate out the homogeneous and non-homogeneous con-

tributions. However, in momentum space we directly get the conformal invariant conserved structures and

getting conformal invariant structures without the WT identity constraint would be a more challenging task.
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For correlators involving higher spin conserved currents the non-homogeneous part of

the correlator requires the knowledge of Ward identity. It would be nice to find out if

a general structure exists for the Ward identity which would then help us in getting the

non-homogeneous part of correlation functions comprising operators with arbitrary spin.

It would also be interesting to generalize our results to cases which break the triangle

inequality and to cases where the current operators are not exactly conserved [64].

We observed in this paper the equivalence of parity-even and parity-odd parts of the

3-point correlator when expressed in spinor-helicity variables, and how this continues to

hold in examples where, due to divergences, regularising and renormalising the correlator

is required. It would be interesting to understand on general grounds why this is the case

even though the counter-terms required in both cases are entirely different.

It would also be very interesting to understand the MLT condition [66] discussed in

section 8.3 starting from basic CFT principles. In section 8.3, we used MLT condition to

compute the non-homogeneous contribution to 〈TOO〉 correlator. It would be interesting

to understand how to use MLT conditions to calculate the non-homogeneous contribution

to a generic 3-point CFT correlator. It would also be interesting to understand how this

condition can be used to constrain 4-point correlators.
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A Spinor-helicity notation

In this appendix we will quickly summarise the spinor-helicity variables for 3d CFTs. For

more details see [3, 26] . We first embed the Euclidean 3-momentum ~k into a null momen-

tum vector kµ in 3+1 dimensions:

kµ = (k,~k) (A.1)

such that k = |~k|. Given the 4-momentum we express it in spinor notation as:

kαα̇ = kµσ
µ
α̇α = λαλ̃α̇ (A.2)

where α and α̇ are SL(2,C) transform under inequivalent (conjugate) representations of

SL(2,C). However, in 3 dimensions one has an identification between the dotted and

undotted indices. To see this let us consider the vector τµ = (1, 0, 0, 0). In spinor-helicity

variables:

ταα̇ = τµ(σµ)αα̇ = −Iαα̇ . (A.3)
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We can now convert dotted indices to undotted indices using the following tensor:

τ α̇
α = −ǫα̇β̇

Iβ̇α . (A.4)

We also introduce the barred spinors as follows:

λ̄α ≡ λ̃α̇τ
α̇
α . (A.5)

We then have the following relations between the 3-momentum and the spinors.

λαλ̄β = ki

(
σ̂i
)

αβ
+ kǫαβ (A.6)

ki =
1

2

(
σi
)α

β
λαλ̄

β . (A.7)

Since ǫαβ is an SL(2,C) invariant, we can use it to define dot products between spinors.

〈ij〉 = ǫαβλi
αλ

j
β

〈ij〉 = ǫαβλ̄i
αλ̄

j
β

〈ij̄〉 = ǫαβλi
αλ̄

j
β .

(A.8)

It can be also be used to raise and lower indices on the spinors for which we will use the

following convention.

λβ = ǫαβλ
α . (A.9)

The reader is referred to appendix B of [26] or appendix C in [12] which contains a set of

useful relations between spinor brackets that will be used throughout the main text. Finally,

we also define the following polarization vectors which when dotted with the momentum

space expression of a correlator, gives its expression in spinor-helicity variables.

z−
αβ =

λαλβ

2k
z+

αβ =
λ̄αλ̄β

2k
. (A.10)

B Homogeneous & non-homogeneous vs transverse & longitudinal con-

tributions

While computing momentum space correlation functions one often splits the correlator

into its transverse and longitudinal parts [2]. In this paper we find it more useful to split

correlators into their homogeneous and non-homogeneous parts as defined in section 2.3.1.

In this appendix we emphasise and illustrate through examples that the transverse and

homogeneous parts of a correlator are not identical, and also that the longitudinal and

non-homogeneous parts are not identical. In particular, we will show that while the ho-

mogeneous part of a correlator is always transverse, the non-homogeneous part in general

contains both transverse and longitudinal contributions and is proportional to 2-point func-

tion coefficients.

– 42 –



J
H
E
P
0
9
(
2
0
2
1
)
0
4
1

As an example consider 〈TOO〉. The correlator is given by [2]

〈TOO〉 = 〈TOO〉transverse + 〈TOO〉longitudinal (B.1)

where the transverse part is given by

〈TOO〉transverse = Πµ1ν1

α1β1
(k1)A1k

α1
2 k

β1
2 . (B.2)

For example when the scalar operator O has scaling dimension ∆ = 1 the form factor is

given by [2]

A1 = cO
2k1 + k2 + k3

k2k3(k1 + k2 + k3)2
. (B.3)

The form-factor is proportional to the coefficient of the scalar two-point function cO

〈O(k)O(−k)〉∆=1 = cO
1

k
.

The longitudinal part of the correlator for ∆ = 1 is

〈TOO〉longitudinal =

[
kα

2 Iµ1ν1
α (k1) − 1

2
πµ1ν1(k1)

]
cO

1

k2
+ k2 ↔ k3 (B.4)

where

Iµν
α (k) =

1

k2

[
2p(µδν)

α − kα

2

(
δµν +

kµkν

k2

)]
. (B.5)

We see that the full correlator is proportional to the two-point function coefficient cO.

Thus in our terminology the full answer is non-homogeneous and there is no homogeneous

contribution to it. To summarize we have

〈TOO〉 = 〈TOO〉transverse + 〈TOO〉longitudinal

= 〈TOO〉nh . (B.6)

Let us now consider the case of 〈TTT 〉. The full answer in the terminology of [2] is

given by

〈TTT 〉 = 〈TTT 〉transverse + 〈TTT 〉longitudinal (B.7)

which can as well be split into homogeneous and non-homogeneous pieces as follows

〈TTT 〉 = 〈TTT 〉transverse + 〈TTT 〉longitudinal

= 〈TTT 〉transverse,h + 〈TTT 〉transverse,nh + 〈TTT 〉longitudinal

= 〈TTT 〉h + 〈TTT 〉nh (B.8)

where we made the following identification

〈TTT 〉h = 〈TTT 〉transverse,h

〈TTT 〉nh = 〈TTT 〉transverse,nh + 〈TTT 〉longitudinal . (B.9)

– 43 –



J
H
E
P
0
9
(
2
0
2
1
)
0
4
1

We now give explicit identification of the homogeneous and non-homogeneous contribution.

To simplify the discussion, we make use of transverse, null polarization vectors that are

contracted with the free indices of the correlator. The longitudinal term drops out and

what remains are the transverse pieces. For convenience we reproduce it here [26, 51]

〈TTT 〉even =
C1c123

E6
MW 3 + 2CT T

(
c123

E2
+
b123

E
− E

)
MEG (B.10)

where CT T is defined by the two-point function

〈T (k)T (−k)〉 = CT T (z1 · z2)2k3 (B.11)

In the transverse correlator (B.10), the term proportional to CT T is non-homogeneous

and the rest of it (the term proportional to C1) is homogeneous. To summarize, the

term that is dependent on the two-point function coefficient (fixed by secondary conformal

Ward identity in the language of [2]) is the non-homogeneous contribution. From the

dS4 perspective the interpretation is that the term getting contribution from W 3 (term

proportional to C1) is homogeneous and the term getting contribution from Einstein-gravity√
gR (term proportional to CT T ) is non-homogeneous.

To conclude, the non-homogeneous part of the correlator can contain both transverse as

well as longitudinal parts. From the dS4 perspective as well, the origins of the homogeneous

and non-homogeneous contributions are distinct.

C Details of solutions of CWIs for various correlators

In this appendix we provide details of the calculations related to solving conformal Ward

identities (CWIs) in spinor-helicity variables.

C.1 〈JsO∆O∆〉

The details of the conformal Ward identities for this case were already given in section 3.1.

Here we consider a few examples. The s = 1 and the s = 2 cases have already been

computed in [2].

Example — Spin one current: 〈JµO∆O∆〉. Setting s = 1 in (3.10) we obtain:

〈J−O∆O∆〉 = cOI 3
2

{− 1
2

,∆− 3
2

,∆− 3
2

}〈12〉〈2̄1〉

= cOI 3
2

{− 1
2

,∆− 3
2

,∆− 3
2

}

〈12〉〈13〉
〈23〉 (k2 + k3 − k1) .

(C.1)

We see that the correlator gets a minus sign under a (2 ↔ 3) exchange. Therefore, this

correlator is non-zero only when all the three operators have non-abelian indices. The

non-abelian indices add an extra factor of fabc to the correlator which results in a plus sign

under a (2 ↔ 3) exchange. This result holds for any 〈JsO∆O∆〉 whenever s is odd. For

the specific case of ∆ = 2, the correlator is given by

〈J−O2O2〉 = cO
1

k1E
〈12〉〈2̄1〉 . (C.2)

The correlator is divergent for ∆ ≥ 3 and needs to be renormalized for higher scaling

dimensions.
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Example — Spin two current: 〈TµνO∆O∆〉. Setting s = 2 and ∆ = 2 in (3.10) we

obtain:

〈T−O2O2〉 = cO
E + k1

k2
1E

2
〈12〉2〈2̄1〉2 . (C.3)

Setting s = 2 and ∆ = 3 in (3.10) we obtain:

〈T−O3O3〉 = cO
k2

1(E + k2 + k3) + (E + k1)(k2
2 + k2k3 + k2

3)

k2
1E

2
〈12〉2〈2̄1〉2 . (C.4)

For ∆ > 3, the correlator is divergent and needs to renormalized.

C.2 〈JsJsO∆〉

From the action of the special conformal generator on the scalar operator and conserved

spin-s currents (2.6) and (2.7), we get the following:

K̃κ

〈
Js−

ks−1
1

Js−

ks−1
2

O∆

k∆−2
3

〉
= 2

[
z−κ

1

ks+1
1 ks−1

2 k∆−2
3

〈k1 · Js(k1)J−
s (k2)O(k3)〉

+
z−κ

2

ks−1
1 ks+1

2 k∆−2
3

〈J−
s (k1)k2 · Js(k2)O(k3)〉

+
kκ

3 (∆ − 2)(∆ − 1)

ks−1
1 ks−1

2 k∆
3

〈J−
s J

−
s O∆〉

]
. (C.5)

Making use of the trivial transverse Ward identity (3.13), the first and the second terms

on the r.h.s. of the above equation drop out and we obtain:

K̃κ

〈
Js−

ks−1
1

Js−

ks−1
2

O∆

k∆−2
3

〉
=

kκ
3

ks−1
1 ks−1

2 k∆
3

(∆ − 2)(∆ − 1)〈J−
s J

−
s O∆〉 . (C.6)

Contracting (C.6) with k1z
−κ
1 and with k2z

−κ
2 we get the following equations for the parity

even part of the correlator (3.15):16

(
∂2F1

∂k2
2

− ∂2F1

∂k2
3

)
= −F1

k2
3

(∆ − 1)(∆ − 2)

(
∂2F1

∂k2
3

− ∂2F1

∂k2
1

)
= −F1

k2
3

(∆ − 1)(∆ − 2) (C.7)

(k2 + k3 − k1)

4

(
∂2G1

∂k2
2

− ∂2G1

∂k2
3

)
+ s

∂G1

∂k2
= −G1

k2
3

(∆ − 1)(∆ − 2)(k2 + k3 − k1)

(k1 + k3 − k2)

4

(
∂2G1

∂k2
3

− ∂2G1

∂k2
1

)
− s

∂G1

∂k1
= −G1

k2
3

(∆ − 1)(∆ − 2)(k1 + k3 − k2) . (C.8)

From the form of the ansatz for the correlator in (3.15) and since the conformal Ward

identity takes the form in (C.6), the equations satisfied by the odd parts F2 and G2 of the

correlator (3.15) are identical to those for the even parts F1 and G1 respectively.

16z−κ
1 =

(σκ)αβλ1αλ1β

2k1
.
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We note that the equation for F1 (and F2) is independent of the spin s. The dependence

on the spin comes through the dilation Ward identity and is given by:

(
3∑

i=1

ki
∂F1

∂ki

)
− (∆ − 2(s+ 1))F1 = 0 . (C.9)

The same equation is satisfied by F2 as well. The equations (C.8) for G1 (and G2) do not

have a non-trivial solution. Solving (C.7) and (C.9) we obtain the result in (3.16).

Examples. In the following we consider a few examples of the correlator 〈JsJsO∆〉 for

specific values of s and ∆.

Spin one current: 〈JµJνO∆〉. Setting s = 1 in the expression for the generic correla-

tor (3.17) we obtain:

〈J−J+O∆〉 = 0

〈J−J−O∆〉 = 〈J−J−O∆〉even + 〈J−J−O∆〉odd = (c1 + ic2) I 5
2

{ 1
2

, 1
2

,∆− 3
2

}〈12〉2

〈J+J+O∆〉 = 〈J+J+O∆〉even + 〈J+J+O∆〉odd = (c1 − ic2) I 5
2

{ 1
2

, 1
2

,∆− 3
2

}〈1̄2̄〉2 .

(C.10)

Example: ∆ = 1. When ∆ = 1 we have:

〈J−J−O1〉even = c1
1

k3(k1 + k2 + k3)2
〈12〉2

〈J−J−O1〉odd = ic′
1

1

k3(k1 + k2 + k3)2
〈12〉2

〈J−J+O1〉even = 0

〈J−J+O1〉odd = 0 .

(C.11)

Example: ∆ = 2. When ∆ = 2 we have:

〈J−J−O2〉even = c1
1

(k1 + k2 + k3)2
〈12〉2

〈J−J−O2〉odd = ic′
1

1

(k1 + k2 + k3)2
〈12〉2

〈J−J+O2〉even = 0

〈J−J+O2〉odd = 0 .

(C.12)

Example: ∆ = 3. When ∆ = 3 we have:

〈J−J−O3〉even = c1
k1 + k2 + 2k3

(k1 + k2 + k3)2
〈12〉2

〈J−J−O3〉odd = ic′
1

k1 + k2 + 2k3

(k1 + k2 + k3)2
〈12〉2

〈J−J+O3〉even = 0

〈J−J+O3〉odd = 0 .

(C.13)

We see that the solution for ∆ = 1 is just the shadow transform of the ∆ = 2 solution. In

section 4 we convert this answer to momentum space and check that it matches the known

answer previously computed in [50].
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Spin two current: 〈T T O∆〉. Setting s = 2 in the expression for the generic correla-

tor (3.17) we obtain:

〈T−T+O∆〉 = 0

〈T−T−O∆〉 = 〈T−T−O∆〉even + 〈T−T−O∆〉odd = (c1 + ic2) k1k2I 9
2

{ 1
2

, 1
2

,∆− 3
2

}〈12〉4

〈T+T+O∆〉 = 〈T+T+O∆〉even + 〈T+T+O∆〉odd = (c1 − ic2) k1k2I 9
2

{ 1
2

, 1
2

,∆− 3
2

}〈1̄2̄〉4 .

(C.14)

Example: ∆ = 1. When ∆ = 1 we have:

〈T−T−O1〉even = c1k1k2
1

k3(k1 + k2 + k3)4
〈12〉4

〈T−T−O1〉odd = ic′
1k1k2

1

k3(k1 + k2 + k3)4
〈12〉4

〈T−T+O1〉even = 0

〈T−T+O1〉odd = 0 .

(C.15)

Example: ∆ = 2. When ∆ = 2 we have:

〈T−T−O2〉even = c1k1k2
1

(k1 + k2 + k3)4
〈12〉4

〈T−T−O2〉odd = ic′
1k1k2

1

(k1 + k2 + k3)4
〈12〉4

〈T−T+O2〉even = 0

〈T−T+O2〉odd = 0 .

(C.16)

Example: ∆ = 3. When ∆ = 3 we have:

〈T−T−O3〉even = c1k1k2
k1 + k2 + 4k3

(k1 + k2 + k3)4
〈12〉4

〈T−T−O3〉odd = ic′
1k1k2

k1 + k2 + 4k3

(k1 + k2 + k3)4
〈12〉4

〈T−T+O3〉even = 0

〈T−T+O3〉odd = 0 .

(C.17)

Again, we see that the ∆ = 1 solution and the ∆ = 2 solution are just shadow transforms

of each other. For ∆ ≥ 6, the triple-K integrals show a divergence and the correlators need

to be renormalized.

Higher spin example. Let us now discuss a few correlators involving higher spin con-

served currents. When the scalar operator O∆ has scaling dimension ∆ = 3 and the

conserved current operator Js has spin s = 3, we have from (3.17):

〈J3−J3−O3〉 = (c1 + i c2)(k1k2)2I 13
2

{ 1
2

, 1
2

, 3
2

}

= (c1 + i c2)(k1k2)2E + 5k3

E6
〈12〉6 . (C.18)

When the scalar operator O∆ has scaling dimension ∆ = 3 and the conserved current

operator Js has spin s = 4, we have from (3.17):

〈J4−J4−O3〉 = (c1 + i c2)(k1k2)4I 17
2

{ 1
2

, 1
2

, 3
2

}〈12〉8

= (c1 + i c2)(k1k2)4E + 7k3

E8
〈12〉8 . (C.19)
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We can also get the parity even part of the above two results using weight-shifting and

spin-raising operators in momentum space [11, 50] and then converting the answer into

spinor-helicity variables:

〈J3J3O3〉 = (k1k2)2P
(3)
1 P

(3)
2 H3

12〈O2O2O3〉 (C.20)

〈J4J4O3〉 = (k1k2)3P
(4)
1 P

(4)
2 H4

12〈O2O2O3〉 (C.21)

where P
(s)
i are spin-s projectors transverse to ki and H12 is a bilocal operator that raises

the spin of the operators at insertions 1 and 2. It can be verified that the answers obtained

this way match the answers in (C.18) and (C.19).

C.3 〈JJJ〉

The ansatz for the correlator is given in (3.19). We will analyze the parity-odd and the

parity-even parts separately here as they have different WT identities.

〈JJJ〉even.

〈J−(k1)J−(k2)J−(k3)〉even = F1(k1, k2, k3)〈12〉〈23〉〈31〉 (C.22)

〈J−(k1)J−(k2)J+(k3)〉even = G1(k1, k2, k3)〈12〉〈23̄〉〈3̄1〉 . (C.23)

The action of the conformal generator is given by:

K̃κ〈J−J−J−〉 = 2

(
z−κ

1

k1µ

k2
1

〈JµJ−J−〉 + z−κ
2

k2µ

k2
2

〈J−JµJ−〉 + z−κ
3

k3µ

k2
3

〈J−J−Jµ〉
)

K̃κ〈J−J−J+〉 = 2

(
z−κ

1

k1µ

k2
1

〈JµJ−J+〉 + z−κ
2

k2µ

k2
2

〈J−JµJ+〉 + z+κ
3

k3µ

k2
3

〈J−J−Jµ〉
)
.

(C.24)

The transverse Ward identities of 〈JJJ〉 [20] are non-trivial:

k1µ

k2
1

〈JµJ−J−〉even = cJ
1

k2
1k2k3

〈23〉2(k3 − k2)

k1µ

k2
1

〈JµJ−J+〉even = cJ
1

k2
1k2k3

〈23̄〉2(k3 − k2) . (C.25)

Using (C.25) in the R.H.S. of (C.24) we obtain:

K̃κ〈J−J−J−〉even = z−κ
1 cJ

〈23〉2

k2
1k2k3

(k2 − k3) + cyclic perm. (C.26)

K̃κ〈J−J−J+〉even = z−κ
1 cJ

〈23̄〉2

k2
1k2k3

(k2 − k3) + cyclic perm. (C.27)

Expanding out the left hand side and dotting with (σκ)β
α(λα

2λ3β + λ2βλ
α
3 ) gives us the

following equations for the form factors:

2

(
∂F1

∂k2
− ∂F1

∂k3

)
+ k2

(
∂2F1

∂k2
2

− ∂2F1

∂k2
1

)
+ k3

(
∂2F1

∂k2
1

− ∂2F1

∂k2
3

)
= 2cJ

(k3 − k2)

k3
1k2k3

(C.28)

2

(
∂G1

∂k2
+
∂G1

∂k3

)
+ k2

(
∂2G1

∂k2
2

− ∂2G1

∂k2
1

)
− k3

(
∂2G1

∂k2
1

− ∂2G1

∂k2
3

)
= 2cJ

(k3 − k2)

k3
1k2k3

. (C.29)

– 48 –



J
H
E
P
0
9
(
2
0
2
1
)
0
4
1

Similarly, dotting with (σκ)β
α(λα

1λ3β + λ1βλ
α
3 ) gives:

2

(
∂F1

∂k1
− ∂F1

∂k3

)
− k1

(
∂2F1

∂k2
2

− ∂2F1

∂k2
1

)
+ k3

(
∂2F1

∂k2
2

− ∂2F1

∂k2
3

)
= 2cJ

(k3 − k1)

k1k
3
2k3

(C.30)

2

(
∂G1

∂k1
+
∂G1

∂k3

)
− k1

(
∂2G1

∂k2
2

− ∂2G1

∂k2
1

)
− k3

(
∂2G1

∂k2
2

− ∂2G1

∂k2
3

)
= 2cJ

(k3 − k1)

k1k
3
2k3

. (C.31)

The dilatation Ward identity is given by
(

3∑

i=1

ki
∂F1

∂ki

)
+ 3F1 = 0,

(
3∑

i=1

ki
∂G1

∂ki

)
+ 3G1 = 0 . (C.32)

Solving these equations we obtain F1(k1, k2, k3) and G1(k1, k2, k3) in (3.24).

〈JJJ〉odd. We now turn our attention to the odd part of the correlator. The ansatz is

given by

〈J−(k1)J−(k2)J−(k3)〉odd = iF2(k1, k2, k3)〈12〉〈23〉〈31〉 (C.33)

〈J−(k1)J−(k2)J+(k3)〉odd = iG2(k1, k2, k3)〈12〉〈23̄〉〈3̄1〉 . (C.34)

The transverse WT identity in this case is given by:

k1µ

k2
1

〈JµJ−J−〉odd = c′
J

1

k2
1k2k3

〈23〉2(k3 − k2)

k1µ

k2
1

〈JµJ−J+〉odd = c′
J

1

k2
1k2k3

〈23̄〉2(k3 + k2) . (C.35)

Substituting (C.35) into the right hand side of the conformal identity (C.24), we get:

K̃κ〈J−J−J−〉odd = z−κ
1 i c′

J

〈23〉2

k2
1k2k3

(k2 − k3) + cyclic perm.

K̃κ〈J−J−J+〉odd = z−κ
1 i c′

J

〈23̄〉2

k2
1k2k3

(k2 + k3) + cyclic perm.

(C.36)

Following the same procedure as in the parity-even case, we get:

2

(
∂F2

∂k2
− ∂F2

∂k3

)
+ k2

(
∂2F2

∂k2
2

− ∂2F2

∂k2
1

)
+ k3

(
∂2F2

∂k2
1

− ∂2F2

∂k2
3

)
= 2c′

J

(k3 − k2)

k3
1k2k3

(C.37)

2

(
∂G2

∂k2
+
∂G2

∂k3

)
+ k2

(
∂2G2

∂k2
2

− ∂2G2

∂k2
1

)
− k3

(
∂2G2

∂k2
1

− ∂2G2

∂k2
3

)
= 2c′

J

(k3 + k2)

k3
1k2k3

. (C.38)

and

2

(
∂F2

∂k1
− ∂F2

∂k3

)
− k1

(
∂2F2

∂k2
2

− ∂2F2

∂k2
1

)
+ k3

(
∂2F2

∂k2
2

− ∂2F2

∂k2
3

)
= 2c′

J

(k3 − k1)

k1k
3
2k3

(C.39)

2

(
∂G2

∂k1
+
∂G2

∂k3

)
− k1

(
∂2G2

∂k2
2

− ∂2G2

∂k2
1

)
− k3

(
∂2G2

∂k2
2

− ∂2G2

∂k2
3

)
= 2c′

J

(k3 + k1)

k1k
3
2k3

. (C.40)

Let us note that (C.37), (C.39) are exactly identical to (C.28), (C.30), whereas compar-

ing (C.38), (C.40) with (C.29), (C.31), we see that the r.h.s. of the equations are different.

Solving these equations we obtain F2(k1, k2, k3) and G2(k1, k2, k3) in (3.24).
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C.4 〈T T T 〉

The even part of this correlator was obtained earlier in [2, 12]. We focus on obtaining the

odd part.

〈T T T 〉odd. We start with the following ansatz for 〈TTT 〉odd:

〈
T−

k1

T−

k2

T−

k3

〉

odd

= i F (k1, k2, k3)〈12〉2〈23〉2〈31〉2 (C.41)

〈
T−

k1

T−

k2

T+

k3

〉

odd

= iG(k1, k2, k3)〈12〉2〈23̄〉2〈3̄1〉2 . (C.42)

The action of the conformal generator is given by:

K̃κ

〈
T−

k1

T−

k2

T−

k3

〉
= 12z−

1κ

k(1µz
−
1ν)

k3
1

〈
Tµν T

−

k2

T−

k3

〉
+ 12z−

2κ

k(2µz
−
2ν)

k3
2

〈
T−

k1
Tµν T

−

k3

〉

+ 12z−
3κ

k(3µz
−
3ν)

k3
3

〈
T−

k1

T−

k2
Tµν

〉

K̃κ

〈
T−

k1

T−

k2

T+

k3

〉
= 12z−

1κ

k(1µz
−
1ν)

k3
1

〈
Tµν T

−

k2

T+

k3

〉
+ 12z−

2κ

k(2µz
−
2ν)

k3
2

〈
T−

k1
Tµν T

+

k3

〉

+ 12z+
3κ

k(3µz
+
3ν)

k3
3

〈
T−

k1

T−

k2
Tµν

〉
. (C.43)

Using (3.27) we find for parity odd contribution

k(1µz
−
1ν)

k3
1

〈
Tµν T

−

k2

T−

k3

〉
= E

〈12〉〈23〉3〈31〉
k4

1k
3
2k

3
3

(k3
3 − k3

2)

k(1µz
−
1ν)

k3
1

〈
Tµν T

−

k2

T+

k3

〉
= (E − 2k3)

〈12〉〈23̄〉3〈3̄1〉
k4

1k
3
2k

3
3

(k3
3 + k3

2) . (C.44)

The action of K̃κ on the ansatz, after dotting with bκ = (σκ)β
α(λα

2λ3β + λ2βλ
α
3 ), becomes

4

(
∂F

∂k2
− ∂F

∂k3

)
+ k3

(
∂2F

∂k2
1

− ∂2F

∂k2
3

)
− k2

(
∂2F

∂k2
1

− ∂2F

∂k2
2

)
= c′

T

E(k3
2 − k3

3)

k2
1(k1k2k3)3

(C.45)

4

(
∂G

∂k2
+
∂G

∂k3

)
− k3

(
∂2G

∂k2
1

− ∂2G

∂k2
3

)
− k2

(
∂2G

∂k2
1

− ∂2G

∂k2
2

)
= c′

T

(E − 2k3)(k3
2 + k3

3)

k2
1(k1k2k3)3

.

(C.46)

The dilatation Ward identity is given by

(
3∑

i=1

ki
∂F

∂ki

)
+ 6F = 0,

(
3∑

i=1

ki
∂G

∂ki

)
+ 6G = 0 . (C.47)
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The solutions for F and G are then given by:

F (k1, k2, k3) =
c′

1

E6
+ c′

T

E3 − E b123 − c123

c3
123

(C.48)

G(k1, k2, k3) = c′
T

(E − 2k3)3 − (E − 2k3)(b123 − 2k3 a12) + c123

c3
123

. (C.49)

where a12 = k1 + k2, b123 = k1k2 + k2k3 + k1k3 and c123 = k1 k2 k3.

C.5 〈T JJ〉

We once again focus on only the odd part of the correlator. Since we have shown that

the transverse WT identities are trivial in (3.42)and (3.45), the action of K̃κ on the

ansatz (3.47) becomes:

K̃κ

〈
T−

k1
J−J−

〉

odd

= 0 K̃κ

〈
T−

k1
J−J+

〉

odd

= 0 . (C.50)

Expanding out the l.h.s. and dotting with an appropriate bκ = (σκ)β
α(λα

2λ3β + λ2βλ
α
3 ),

we get

k3

(
∂2F

∂k2
1

− ∂2F

∂k2
3

)
− k2

(
∂2F

∂k2
1

− ∂2F

∂k2
2

)
+ 2

(
∂F

∂k2
− ∂F

∂k3

)
= 0 (C.51)

k3

(
∂2G

∂k2
1

− ∂2G

∂k2
3

)
− k2

(
∂2G

∂k2
1

− ∂2G

∂k2
2

)
+ 2

(
∂G

∂k2
+
∂G

∂k3
− 2

∂G

∂k1

)
= 0 . (C.52)

The solutions to these are given by (3.48).

C.6 〈Js1
JsJs〉

Dotting (3.55) with bκ = (σκ)λ1αλ
β

1 , we get:

(−k1 + k2 + k3)

(
∂2F

∂k2
2

− ∂2F

∂k2
3

)
+ 2(2s− s1)

(
∂F

∂k2
− ∂F

∂k3

)
= 0

(−k1 + k2 − k3)

(
∂2H

∂k2
2

− ∂2H

∂k2
3

)
+ 2(2s− s1)

(
∂H

∂k2
+
∂H

∂k3

)
= 0 . (C.53)

Similarly, dotting (3.55) with bκ = (σκ)λ2αλ
β

2 , we get:

(k1 − k2 + k3)

(
∂2F

∂k2
3

− ∂2F

∂k2
1

)
+ 2s1

(
∂F

∂k3
− ∂F

∂k1

)
= 0

(k3 − k2 − k1)

(
∂2G

∂k2
3

− ∂2G

∂k2
1

)
+ 2s1

(
∂G

∂k3
+
∂G

∂k1

)
= 0 . (C.54)
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The dilatation Ward identity is given by
(

3∑

i=1

ki
∂F

∂ki

)
+ (2s+ s1)F = 0

(
3∑

i=1

ki
∂G

∂ki

)
+ (2s+ s1)G = 0

(
3∑

i=1

ki
∂H

∂ki

)
+ (2s+ s1)H = 0 . (C.55)

We have considered only one equation for G and H as these by themselves imply that there

is no homogeneous solution for the two form factors. The solutions for F , G and H are

then given by (3.57).

D Identities involving Triple-K integrals

In this section we obtain non-trivial identities involving triple-K integrals by matching our

results obtained for the correlator in spinor-helicity variables to the results obtained for

the same in momentum space after converting to spinor-helicity variables.

Let us first consider the correlator 〈JJO∆〉. We will work in a convenient regularisation

scheme in which we set u = v1 = v2 = 0 and v3 6= 0. The momentum space expression for

the correlator after converting to spinor-helicity variables takes the following form:

〈J−J−O〉 = −2A2 +A1
[
(k1 − k2)2 − k2

3

]

4k1k2
〈12〉2 (D.1)

where [22]:

A1 = c1I 5
2

,{ 1
2

, 1
2

,∆− 3
2

+v3ǫ}

A2 = c1I 3
2

,{ 1
2

, 1
2

,∆− 1
2

+v3ǫ} + c1
∆

2
(1 − ∆) I 1

2
,{ 1

2
, 1

2
,∆− 3

2
+v3ǫ} . (D.2)

Comparing with our results for the same correlator obtained by solving the conformal Ward

identities directly in spinor-helicity variables (C.10) we get the following identity involving

triple−K integrals which we have verified to O(1) in the regulator the following relation:

−2A2 +A1
[
(k1 − k2)2 − k2

3

]

4k1k2
= c1I 5

2
,{ 1

2
, 1

2
,∆− 3

2
+v3ǫ} . (D.3)

Let us now consider the correlator 〈TTO∆〉. The momentum space expression for the

correlator after converting to spinor-helicity variables takes the following form:

〈T−T−O〉 =
4A3 +

[
(k1 − k2)2 − k2

3

] [
2A2 +A1((k1 − k2)2 − k2

3)
]

16k2
1k

2
2

〈12〉4 . (D.4)

We will continue to work in the scheme where u = v1 = v2 = 0 and only v3 is non-zero and

in this scheme the form factors are given by [22]:

A1 = c1 I 9
2

,{ 3
2

, 3
2

,∆− 3
2

+v3ǫ}

A2 = 4c1 I 7
2

,{ 3
2

, 3
2

,∆− 1
2

+v3ǫ} + c2 I 5
2

,{ 3
2

, 3
2

,∆− 3
2

+v3ǫ}

A3 = 2c1 I 5
2

,{ 3
2

, 3
2

,∆+ 1
2

+v3ǫ} + c2 I 3
2

,{ 3
2

, 3
2

,∆− 1
2

+v3ǫ} + c3 I 1
2

,{ 3
2

, 3
2

,∆− 3
2

+v3ǫ} (D.5)

– 52 –



J
H
E
P
0
9
(
2
0
2
1
)
0
4
1

where

c2 = c1(1 − ∆ − v3ǫ)(∆ + 2 + v3ǫ)

c3 =
c1

4
(∆ − 3 + v3ǫ)(∆ − 1 + v3ǫ)(∆ + v3ǫ)(∆ + 2 + v3ǫ) . (D.6)

Matching with our answers obtained by solving conformal Ward identities in spinor-helicity

variables (C.14) we obtain the following identity for triple-K integrals we have verified to

O(1) in the regulator:

4A3 +
[
(k1 − k2)2 − k2

3

] [
2A2 +A1((k1 − k2)2 − k2

3)
]

= 16c1k
3
1 k

3
2 I 9

2
,{ 1

2
, 1

2
,∆− 3

2
+v3ǫ} . (D.7)

E Higher-spin momentum space correlators

In this section we summarise the momentum space expression for the parity-even and

parity-odd homogeneous parts of higher spin correlators using the results of section 4, see

also appendix D of [51].

For 〈JsJsO2〉 we have

〈JsJsO2〉even,h = (k1k2)s−1
[

1

E2

{
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

}]s

〈JsJsO2〉odd,h = (k1k2)s−1 1

E2s

[
k2 ǫ

k1z1z2 − k1 ǫ
k2z1z2

]

×
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s−1
(E.1)

while for 〈JsJsO3〉 we get

〈JsJsO3〉even,h = (k1k2)s−1(E + (2s− 1)k3)

×
[

1

E2

{
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

}]s

〈JsJsO3〉odd,h = (k1k2)s−1 (E + (2s− 1)k3)

E2s

[
k2 ǫ

k1z1z2 − k1 ǫ
k2z1z2

]

×
[
2(~z1 · ~k2)(~z2 · ~k1) + E(E − 2k3)~z1 · ~z2

]s−1
. (E.2)

The homogeneous part of the Js 3-point correlator is

〈JsJsJs〉even,h = (k1k2k3)s−1

×
[

1

E3

{
2 (~z1 · ~k2) (~z2 · ~k3) (~z3 · ~k1) + E{k3 (~z1 · ~z2) (~z3 · ~k1) + cyclic}

}]s

〈JsJsJs〉odd,h = (k1k2k3)s−1 1

E3

[{
(~k1 · ~z3)

(
ǫk3z1z2k1 − ǫk1z1z2k3

)

+ (~k3 · ~z2)
(
ǫk1z1z3k2 − ǫk2z1z3k1

)
− (~z2 · ~z3)ǫk1k2z1E

+
k1

2
ǫz1z2z3E(E − 2k1)

}
+ cyclic perm

]

×
[

1

E3

{
2 (~z1 · ~k2) (~z2 · ~k3) (~z3 · ~k1)+E{k3 (~z1 · ~z2) (~z3 · ~k1) + cyclic}

}]s−1

(E.3)
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whereas for 〈J2sJsJs〉 we have

〈J2sJsJs〉odd,h =
k2s−1

1 (k2k3)s−1

E4s

×
[(

(k3 · z2)(k2 · z1) − 1

2
E(E − 2k3)(z1 · z2)

)(
k1ǫ

z1z3k3 − k3ǫ
z1z3k1

) ]

×
[(

(k3 · z2)(k2 · z1) − 1

2
E(E − 2k3)(z1 · z2)

)

×
(

(k1 · z3)(k2 · z1) − 1

2
E(E − 2k2)(z1 · z3)

)]s−1

〈J2sJsJs〉even,h =
k2s−1

1 (k2k3)s−1

E4s

[(
(k3 · z2)(k2 · z1) − 1

2
E(E − 2k3)(z1 · z2)

)

×
(

(k1 · z3)(k2 · z1) − 1

2
E(E − 2k2)(z1 · z3)

)]s

. (E.4)

F Weight-shifting operators

We need the following spin and dimension raising operators [11, 12, 50],

H12 = 2
(
z1 ·K12z2 ·K12 − 2z1 · z2W

−−
12

)
,

D̃12 = − 1

2

[
ǫ(z1z2K

−
12)

(
∆1 − d− k1 · ∂

∂k1

)
+
K−

12K
+
12

2
ǫ(k1z1z2)

+ ǫ(k1K
−
12z1)

(
z2 · ∂

∂k2

)
+ ǫ(k1z2K

−
12)

(
z1 · ∂

∂k1

)]
(F.1)

where expressions for K12,W
−−
12 can be found in the above mentioned references. The

following sequence of operators reproduces 〈TJJ〉odd

〈T (k1)J(k2)J(k3)〉odd = P
(2)
1 P

(1)
2 P

(1)
3 H13D̃12〈O1(k1)O2(k2)O2(k3)〉 + (2 ↔ 3) (F.2)

where P
(s)
i is a spin−s projector. The explicit momentum space expression for the corre-

lator is given by

〈TJJ〉odd =
[
A1ǫ

k1k2z1(k2 · z1)(k3 · z2)(k1 · z3) +A2ǫ
k1k2z1(z2 · z3)(k2 · z1)

+A3ǫ
k1z1z2(k2 · z1)(k1 · z3) +A4ǫ

k2z1z2(k2 · z1)(k1 · z3)

+A5ǫ
k1z1z2(z1 · z3) +A6ǫ

k2z1z2(z1 · z3)

+A7ǫ
k1k2z1(z1 · z2)(k1 · z3) +A8ǫ

z1z2z3(k2 · z1)
]

+ (2 ↔ 3)

(F.3)

where the form factors are given by

A1 = 12
5k2

1 + 4k1(k2 + k3) + (k2 + k3)2

k2
1(k1 + k2 + k3)4

A2 = 4
k1 + k2 + 3k3

(k1 + k2 + k3)3
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A3 =
15k3

1 + 13k2
1(k2 + k3) + 9k1(k2 + k3)2 + 3(k2 + k3)3

k2
1(k1 + k2 + k3)3

A4 =
k1 + k2 + 3k3

(k1 + k2 + k3)3

A5 =
−3k4

1 + 2k3
1(5k2 − 3k3) + 4k2

1k2(2k2 − k3) + 6k1(k2 − k3)2(k2 + k3) + 3(k2
2 − k2

3)2

2k2
1(k1 + k2 + k3)2

A6 = 4
k2(k1 + k2 + 2k3

(k1 + k2 + k3)2

A7 =
−3k3

1 − 3(k2 − 3k3)(k2 + k3)2 + k2
1(−9k2 + 23k3) − 9k1(k2

2 − 2k2k3 − 3k2
3))

k2
1(k1 + k2 + k3)3

A8 = −2
3k2

1 + 2k1(k2 + k3) + (k2 + k3)2

(k1 + k2 + k3)2
. (F.4)

Although this expression looks very different from the expression obtained earlier in (4.50),

they are actually the same up to some Schouten identities. This can easily be seen by

converting both of them to spinor-helicity variables where they match exactly.
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