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Mechanisms of hydrodynamic instability in concentration polarization
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One-dimensional steady-state passage of direct electric current from a binary electrolyte solution into a charge-

selective solid such as a metal electrode or an ion exchange membrane is hydrodynamically unstable. Instability

is preceded by concentration polarization, i.e., depletion of the electrolyte in the interface diffusion layer, and it

yields a microvortical flow in this layer. An ambiguity persists regarding the mechanism of this instability. The

buoyant mechanisms are disregarded because instability also occurs in a gravitationally stable position and in

diffusion layers too thin for buoyancy to mediate the flow. Therefore, instability is attributed to the electric forces

acting in or near the interface electric double layer. These forces cause a sliplike flow known as electro-osmosis,

which comes in two varieties. One is the classical equilibrium electro-osmosis related to the space charge of

the electric double layer. The other is the nonequilibrium electro-osmosis related to the extended space charge

that forms near the interface at high depletion. Both types of electro-osmosis may yield instability. The question

is which one is at work in each particular system. The nonequilibrium electro-osmotic instability, unlike the

equilibrium one, is of the short-wave type. This implies that its induced vortices are small compared to the

width of the diffusion layer. Therefore, this width, which has not been clearly defined in most experiments

so far, is crucial for the identification of the instability mechanism. In this paper, we report the results of our

combined experimental and theoretical study of concentration polarization in a custom-designed experimental

cell with a particular cation exchange membrane. As a part of our study, we investigate the recently predicted

thermoelectroconvective instability. This instability is of the long-wave type and its related flow involves a pair

of wide vortices spanning the diffusion layer. We experimentally retrieve this flow, which clearly marks the

width of the diffusion layer. We observe that for high voltages this thermoelectroconvection is accompanied

by electro-osmotic instability. Upon the background set by thermoelectroconvection, we are able to conclude

that the observed electro-osmotic instability is of the short-wave type and is thus due to the nonequilibrium

electro-osmosis. We suggest that a similar approach might be useful for identifying the instability mechanism in

other charge-selective systems as well.

DOI: 10.1103/PhysRevResearch.2.033365

I. INTRODUCTION

One-dimensional steady-state passage of the direct electric

current from an aqueous binary electrolyte solution into a

charge-selective (perm-selective) solid is a fundamental elec-

trochemical transport situation and a cornerstone of numerous
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technological processes. Such solids include metal electrodes,

ion exchange membranes, and micro/nanochannel junctions,

which are employed in cathodic electrodeposition of metals,

desalination of saline water by electrodialysis, and preconcen-

tration of proteins, respectively. DC current passage through

perm-selective interfaces induces variations of concentration

in the few-hundred-micron-thick interface diffusion layer, that

is, concentration polarization (CP). About two decades ago, it

was finally established that quiescent CP is hydrodynamically

unstable, which explained the longstanding riddle of over-

limiting conductance [1–10]. What remained unclear was the

mechanism driving this instability. For some time, it had been

attributed to the nonequilibrium electroconvection related to

the extended space charge that forms at the outer edge of the

electric double layer (EDL) at the limiting current [1–3,9–

16]. This attribution followed from the fact that the original

theoretical model in which the instability was predicted and
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many studies that followed thereon assumed a perfectly perm-

selective solid with infinite conductivity; for such a solid, only

the aforementioned nonequilibrium mechanism is possible.

Recently, it has been shown that for realistic perfectly

perm-selective solids with finite conductivity (commercial

ion-exchange membranes or metal electrodes) and nonper-

fectly perm-selective solids, an additional electroconvective

instability mechanism not related to the extended space charge

is possible [7,8]. In some sense, the ambiguity regarding the

instability mechanism is similar to the one that existed until

the mid-1960s around the question of what drives the flow in

convective cells in a thin oil layer in a frying pan heated from

below: the buoyancy or the temperature dependence of the

surface tension, that is, the Rayleigh-Bénard or the Marangoni

instability, a conundrum that in the end was resolved in favor

of the latter.

As for the instability under consideration, it was recog-

nized that in most practical situations for low concentration

electrolytes (below one centimolar) the buoyancy mechanisms

cannot yield instability [17–20]. The density stratification in

the diffusion layer resulting from CP is due to direct con-

centration variation and its related nonuniform Joule heating.

The temperature variations related to the latter usually do not

exceed a tenth of a degree Kelvin. As a result, the Rayleigh

number related to the thermally induced density stratification

is much smaller than that related to concentration variation.

The latter, in turn, is lower than the Rayleigh-Bénard in-

stability threshold for unstable orientation (with a depleted

interface at the bottom). For this reason, the electroconvective

mechanisms had been invoked to explain the instability, and

no systematic study of the Joule heating effects in CP had been

undertaken until recently.

This shortcoming was remedied in the recent theoretical

studies by Demekhin et al. [21]. They discovered a very

interesting possibility of a Joule-heating-related thermoelec-

troconvective instability expected to occur for an overall stable

density stratification with a depleted interface on the top. In

this paper, we report the results of our combined experimental

and theoretical study of the aforementioned instabilities and

their contribution to overlimiting conductance in CP for a

custom-designed experimental cell and a particular cation

exchange membrane. For the beginning, let us qualitatively

elucidate the physical mechanisms behind these instabilities

by tracing the system’s response to an accidental test vortex

[3]; see Fig. 1. In the case of instability, the vortex size is

identified as the critical wavelength scale of the perturbation.

Vortex acceleration is identified as a positive feedback and a

potential source of instability, whereas deceleration is viewed

as evidence of negative feedback and stability. Generally, two

characteristic times are at play. The first is the vortex lifetime

defined by the vortex size divided by its typical velocity. This

velocity is estimated from the buoyant and viscous force bal-

ance for gravitational mechanisms and from the slip velocity

for electro-osmotic ones. The second characteristic time is that

of diffusional relaxation of the temperature or concentration

perturbation induced by the flow. When the relaxation time is

equal to or longer than the vortex lifetime and the feedback is

positive, instability is possible. In what follows, we discuss the

particular instabilities that are the novel thermoelectroconvec-

tive instability, the classical Rayleigh-Bénard instability, and

FIG. 1. Schematic representation of the thermoelectroconvective

instability mechanism. Darker color corresponds to higher conduc-

tivity; blue line, streamline of the test vortex.

the two electro-osmotic instabilities, i.e., the equilibrium and

the nonequilibrium one.

For the thermoelectroconvective instability, the test vortex

is superimposed upon a diffusion layer operated at constant

voltage with conductivity stratified by CP. A concentrated

high conductivity solution is on the bottom (anode) and de-

pleted low concentration is on the top (cathode). The concen-

tration perturbation by the part of this vortex ascending toward

the depleted interface produces a low-resistance fluid column,

whereas the descending part produces a high-resistance one.

The Joule heating, proportional to the voltage squared divided

by resistance is thus increased in the ascending column,

yielding thermal expansion, and reduced in the descending

column, resulting in thermal compression. This yields a posi-

tive feedback without diffusion relaxation, since Joule heating

operates permanently, and the vortex-induced heat production

in each fluid column persists with the vortex itself; thus the

temperature perturbation is not dissolved by the heat diffusion

in the vortex plane but only mitigated by it. The increase of

the vortex size reduces the stabilizing effect of heat diffusion,

which alludes to the possibility of long-wave instability. This

stands in contrast with the Rayleigh-Bénard instability where

the initial temperature perturbation induced by the test vortex

is dissolved by heat diffusion in the vortex plane. As a result,

the diffusion layer thickness is singled out as the length scale

for the critical wavelength of the Rayleigh-Bénard instability.

This scaling is also valid for the equilibrium electro-osmotic

instability unlike the nonequilibrium one. For the nonequilib-

rium electro-osmosis, the slip velocity is proportional to the

tangential variation of the logarithm of the normal derivative

of the concentration, [1]. This is in fact diffusio-osmosis,

with slip velocity proportional to the tangential derivative of

the concentration logarithm, asymptotically adjusted for the

singular limit of the vanishing interface concentration. In this

limit, keeping the leading-order term in the power expansion

of the interface electrolyte concentration and replacing the

tangential variation of the concentration logarithm by that

of its normal derivative, one arrives at the expression for

the nonequilibrium electro-osmosis slip velocity. We apply

this expression to estimate the test vortex lifetime and find

that it is proportional to the third power of the perturbation

wavelength, that is, the vortex size. This vortex lifetime is

to be compared with the characteristic time for the diffusion
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FIG. 2. Schematic side cross section of the measurement cell. The scale separation of two compartments is chosen in such a way that, for

an applied potential difference, the entire CP occurs between the anode and the membrane, and it is schematically represented by a gradient in

blue, with dark blue indicating higher concentration of the electrolyte; note that due to the small width (∼100 μm) of the cathodic compartment,

there is practically no CP between the membrane and the cathode. The mass-density stratification due to the CP is gravitationally stable in

(a) and unstable in (b).

relaxation, which is of the order of wavelength squared. Since

for the short wavelength the quadratic dependence dominates

over the cubic one, we conclude that small vortices sur-

vive diffusion relaxation. This is the essence of the short-

wavelength character of the nonequilibrium electro-osmotic

instability and its main signature. The small vortices induced

by the instability fuse and grow in size, which determines the

subcriticality of this instability and its related hysteresis in the

steady state [1,4,7]. As we show in this paper, an efficient

gravitational stabilization in a thick diffusion layer precludes

this vortex evolution and preserves the shortwave character

of the overlimiting conductance as a major signature of the

nonequilibrium mechanism. Since our purpose is to clarify

the mechanism of instability, we focus on the vicinity of the

transition. In this, we differ from the studies by de Valença

et al. [19,20], which investigate the current range far above

the transition.

Upon this qualitative introduction, we report our experi-

mental results followed by a theoretical analysis and discus-

sion. Some experimental and theoretical details are diverted to

the Appendixes.

II. EXPERIMENTS

A schematic side-view of the experimental cell is given

in Fig. 2(a). This is an upright cell constructed from two

identical parts, with the bottom part having glass windows

for visualization from the sides. A three-dimensional draw-

ing of the cell and other details are given in Appendix A.

The electrolyte solution was prepared by dissolving copper

sulfate pentahydrate powder from Sigma-Aldrich (98% pure)

in double distilled water from Baker. A 10 mM concentration

copper sulfate electrolyte solution was used in this study, and

1 μm green fluorescent microspheres (from Fisher Scientific)

were mixed in the electrolyte solution in a very low concen-

tration (100 particles/mL) as a tracer for flow visualization. A

150-μm-thick cation-exchange membrane (Neosepta CMX,

Tokuyama Soda, Japan) was placed next to the cathode with

a 100 μm spacer between them; the membrane had been

soaked in the electrolyte solution for about 48 h before the

experiment. The experimental cell was placed in front of

a homemade horizontal microscope equipped with a long

working distance objective from Mitutoyo to visualize the

flow. The experimental cell was illuminated by a green laser

light sheet employed perpendicular to the optical path of

the microscope, and the image formed by the scattered flu-

orescent light was captured on a Raptor photonics camera

(OS4MPc-CL) attached to the microscope. The images were

processed using the IMAGEJ software. A Keithley source meter

2401, controlled through a computer by a MATLAB program,

was connected across the cell to apply the electric potential

difference.

Under the influence of a DC current, copper ions dissolve

from the anode and pass through the anodic diffusion layer,

the membrane, and the cathodic diffusion layer to be reduced

at the cathode. Because the conductivity is much higher in

the electrodes and the membrane relative to the solution, in

the absence of motion, the electric field in the anodic and

cathodic compartments is directed strictly upward, and is

independent of the lateral coordinate. Correspondingly, for

the gravitationally stable stratification, the electrolyte con-

centration varies only in the vertical direction in the bottom

‘thick’ compartment, increasing at the anode and dropping

at the membrane. As a result, a purely one-dimensional (1D)

conduction state develops in this compartment with the elec-

trolyte concentration approaching a linear distribution with
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(a)

(c) (d)

(b)

FIG. 3. (a) The current-voltage measurements for a 10 mM copper sulfate solution at different cell gaps (800 μm, 925 μm, black scale;

1900 μm, blue scale). Up to around 800 μm cell gap, the I-V curve has three distinct regimes (Ohmic, diffusion-limited plateau, and

overlimiting regimes) with a well-defined plateau width. Above this cell gap, the plateau width shrinks and turns smoothly to the overlimiting

regime. Part (b) shows how we defined thresholds for thermoelectroconvection and electroconvection. (c) The current-voltage dependence for

unstable cell orientation (anode on top); for this gravitationally unstable orientation, a Rayleigh-Bénard convection develops in cells with an

above 500 μm gap, and the limiting current saturates. (d) The linear relationship between the limiting current and the inverse of the cell gap

for the gravitationally stable (cathode on top) and unstable (anode on top) cell orientation; in the unstable configuration, the limiting current

saturates and becomes independent of the cell gap above 500 μm.

a slope proportional to the magnitude of the electric current

[Figs. 2(a) and 2(b)]. Due to the small width of the cathodic

compartment, the effect of CP is negligible in it.
A typical current-voltage curve for gravitationally stable

stratification is presented in Fig. 3(a) for three values of the
cell gap. Voltage is increased continuously at a very small
scan rate, typically 5 mV/10 s for a 0.1-cm-thick cell, up to
0.6 V. Three regions are distinguishable in this curve: (i) the
Ohmic low (underlimiting) current region, followed by
(ii) saturation of the curve at the “limiting current” caused
by the diffusion limitation of ionic transport, and (iii) an
inflection and transition to the overlimiting region. These
three regions are typical of most current-voltage curves of
ion-exchange membranes [22]. The overlimiting region in the
current-voltage curve is split into two parts for the cell gap

exceeding a certain threshold of the order of 1 mm (800 μm
for 10 mM electrolyte concentration), as shown in Fig. 3(b).
The first part with a relatively low slope manifests a transition
from the current saturation to the overlimiting conductance
and is dominated by thermoelectroconvection. Upon further
increase of the voltage, this part is followed by a higher slope
overlimiting current regime mediated by the electroconvec-
tive flow. The same current-voltage curve for gravitationally
unstable stratification is presented in Fig. 3(c) for the voltage
changing in the same range. The fine structure of this curve
is similar to that for the case of gravitationally stable strat-
ification except that the overlimiting part is solely mediated
by the convection arising due to electro-osmotic instability.
Finally, in Fig. 3(d) we present the dependence of the limit-
ing current on the cell’s gap. Whereas in the gravitationally
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FIG. 4. Time-lapse snapshots of the flow in the cell at different voltages. 1 μm fluorescent particles are uniformly dispersed in a 10 mM

copper sulfate solution to visualize the flow, and these particles are excited by a laser light sheet. The microscope is kept orthogonal to the

optical path direction so that only the emitted (and scattered) light reaches the camera. The separation between the membrane and the copper

electrode is 1900 μm. The red dotted lines indicate electrodes/membranes. (a) The I-V curve corresponding to this cell thickness. (b) Without

any potential difference (random diffusion motion). (c) Large-scale convective flow at 0.3 V and (d) small convective vortices seen near the

membrane surface (cathode) at 0.5 V.

stable setup this dependence is linear, in the gravitationally
unstable case, with the cell’s gap exceeding a threshold, the
Rayleigh-Bénard instability initiates an electrolyte flow, and
the limiting current saturates at its minimal value independent
of the cell’s gap, implying that the effective diffusion layer
width does so also.

In gravitationally stable stratification when the cell gap ex-
ceeds 800 microns, the motion of the liquid along the walls is
observed for the voltage exceeding the first, thermoconvective
instability threshold [Figs. 4(a) and 4(c)]. Two very long vor-
tices emerge. The upper vortex is the thermoconvective vortex
proper, whereas the bottom one results from the suppression
of the former by the stable density stratification. Upon further
increase of the voltage, the transition to the electroconvection
dominance manifests itself in the appearance of small and
fast vortices in the vicinity of the cation-selective membrane.
Their formation is accompanied by a decrease of the total
resistance and a further and faster rise of the current upon
voltage increase [Figs. 4(a) and 4(d)].

For the case of the gravitationally unstable stratification,

the formation of large round Rayleigh-Bénard vortices occu-

pying the whole layer is observed for the cell gap exceeding a

threshold (∼500 μm) [Figs. 3(c) and 5]. We have not observed

electroconvective vortices for the stable stratification for high

voltages; the possible explanation for this is presented below

in the theoretical part of the paper.

III. THEORETICAL MODELING

Two different mechanisms of electroconvective instability

in strong electrolytes were reported in Refs. [1–5,7,8]. One

is attributed to nonequilibrium electro-osmosis related to the

extended space charge that develops at the limiting current in

the course of CP at a charge-selective interface, Refs. [1–5].

The other, recently reported in Refs. [7,8], is attributed to

the well-known equilibrium electro-osmosis related to the

charge of the thin EDL and is able to generate a fluid flow at

an imperfectly charge-selective solid or a perfectly selective

charge-selective one with finite conductivity. In what follows,

we will argue that the experimental observations reported

above provide direct experimental evidence that the instability

is mediated by the nonequilibrium electro-osmosis for the ion-

exchange membranes studied. For this reason, in our modeling

below we focus on this mechanism, limiting our analysis to

perfectly charge-selective solids, a membrane, and an anode.

In Appendix B we show that for a cell gap width of 100

microns or thicker in the gravitationally stable position, the

destabilizing effect of the equilibrium slip is fully suppressed

by concentration stratification. In modeling the nonequilib-

rium electro-osmosis, we follow the asymptotic approach of

[2,3]. This allows us to use the local electroneutrality approxi-

mation, avoiding the need to numerically resolve the EDL and

the extended space charge region unfeasible for our system.
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FIG. 5. (a) I-V curves (a) and (b)–(d) time-lapse snapshots of the Rayleigh-Bénard convective flow in cells with the cathode at the bottom;

in this configuration, the density gradient resulting from CP is gravitationally unstable. 1 micrometer size fluorescent particles are uniformly

dispersed in a 10 mM copper sulfate solution to visualize the flow; these particles are excited by a laser light sheet. The microscope is

kept orthogonal to the optical path direction so that only emitted (and scattered) light reaches the camera. The red dotted lines represent the

membrane (bottom) and the copper anode (top), and the separation between them is 500 μm for (b), 810 μm for (c), and 1850 μm for (d);

images are for 0.5 V.

We consider an electrolyte layer, 0 < y < 1, flanked by

a cation-selective membrane, at y = 1, and an anode, at

y = 0 (in the gravitationally unstable setup we change the

orientation of the cell by redefining the dimensionless vertical

variable as y =
h̃−ỹ

h̃
). This one-layer system is modeled by

the following dimensionless 2D boundary-value problem, 0 <

y < 1,−∞ < x < ∞:

∂c

∂t
+ Peu∇c = �c, ∇(c∇ϕ) = 0; (1)

∇P = �u + ∇ϕ�ϕ + RaT T ey − Rac(c − 1)ey, ∇ · u = 0;

(2)

Le(Tt + Peu∇T ) = �T + 2c(∇ϕ)2. (3)

Equations (1) in (1)–(3) are the electroneutral Nernst-Planck

equations for the salt concentration, c = c+ = c−, and the

electric potential ϕ. Equations (2) are the Stokes and con-

tinuity equation for the dimensionless pressure P, veloc-

ity u, and three dimensionless force terms on the right-

hand side of the Stokes equation. These are the electric

Coulombic force and two buoyancy forces: the one due to

temperature stratification and the other due to concentration

stratification. Time derivative is absent from Eq. (2) as an

approximation valid for large Schmidt numbers (kinematic

viscosity to diffusivity ratio, about 1000 for the current sys-

tem). Equation (3) is the convective heat equation for the

dimensionless temperature, T , with the Joule heating term

on the right-hand side. The following nondimensionalization

is applied (the dimensional variables are tilded, whereas the

untilded variables stand for their dimensionless counterparts):

c = c̃
c̃0

, ϕ =
ϕ̃

�̃0
, �̃0 = R̃T̃

F̃
, x = x̃

h̃
, t = t̃

t̃0
, t̃0 = h̃2

D̃
, u =

vex + wey = ũ
ṽ0

, ṽ0 = D̃

h̃
, T = T̃

T̃0
, T̃0 = F̃ D̃c̃0

ãc̃pr̃0
z2�̃, P = P̃

P̃0
,

P̃0 =
μ̃D̃

h̃2
, Le = D̃

ã
, Pe = λ̃DF̃�̃0 c̃0

μ̃D̃
, λ̃D =

√

ε̃�̃0

F̃ c̃0
, RaT =

β̃g̃r̃0T̃0 h̃3

λ̃DF̃�̃0 c̃0
, Rac =

g̃M̃Cu h̃3

λ̃DF̃�̃0
. Here, �̃0 is the thermal voltage, h̃ is

the width of the cell gap, D̃ is diffusivity (assumed equal for

ions of both signs), ã is thermal diffusivity, c̃p is the specific

heat capacity, r̃0 is the density, z is the valency (assumed to

be the same for cations and anions), μ̃ is the viscosity, Le

is the Lewis number, Pe is the material Peclet number, λ̃D is

the Debye length, ε̃ is the dielectric constant, β̃ is the thermal

expansion coefficient, RaT is the temperature Rayleigh num-

ber and Rac is the concentration Rayleigh number, and MCu

is the molecular weight of Cu. We note that for a realistic

physical situation and a cell gap of the order of 0.1 cm,

the parameter RaT = O(1) and Rac = O(104). For gravita-

tionally stable stratification RaT < 0, Rac < 0, whereas for

gravitationally unstable stratification RaT > 0, Rac > 0. In

what follows, we consider a 10 mM aqueous solution of the

copper sulfate, and thus we set z = 2 and use the following

values for the major control parameters RaT and Rac: RaT =

±0.7 × 103( h̃
cm

)
3
, Rac = ±3.7 × 107( h̃

cm
)
3
.
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FIG. 6. (a) The dependence of the dimensionless critical voltage for thermoelectroconvective instability [point (1) on the current/voltage

curve in Fig. 6(c)] on the cell gap width (instability occurs, when V > Vcr). Inset: the level lines of the thermoelectroconvective stream function;

(b) neutral stability curve for nonequilibrium electro-osmotic instability [point (2) on the current/voltage curve in (c): red line, h̃ = 0.05 cm;

blue line, h̃ = 0.1 cm]; (c) dimensionless average current density, I; dimensionless voltage, V ; dependence: red line, h̃ = 0.05 cm; blue line,

h̃ = 0.1 cm. Point (1), the onset of the thermoelectroconvective flow; point (2), the onset of the overlimiting conductance mediated by the

nonequilibrium electro-osmotic instability; N = 1000, ε = 4.2×10−7 cm

h̃
, z = 2.

The following boundary conditions at the outer edges,

y = 0, 1, of the electroneutral bulk complete the model for-

mulation:

y = 0 (anode/solution interface):

(cy − zcϕy) = 0, Ty − b(T − Ta) = 0,

ln c + zϕ = ln
N

z
, u = 0; (4)

y = 1 (membrane/solution interface):

(cy − zcϕy) = 0, Ty + b(T − Ta) = 0, c = (−εcy)
2
3 ,

v = −
3(V ∗)2

16
(ln c)x, w = 0. (5)

In the boundary conditions (4) and (5), the first equality

prescribes vanishing of the co-ion fluxes, whereas the sec-

ond relation prescribes heat exchange between the cell gap

and the environment. The third equality in (4) prescribes

the value of the counter-ion electrochemical potential at the

solution/cathode interface, whereas the fourth equality pre-

scribes nonslip at this interface. In the boundary condition

(5), V ∗ is defined as V ∗ = ln N − zV − (ln c + zϕ) and stands

for the logarithmic electrochemical potential drop across the

extended space charge. The third condition in (5) stands for

the relation between the salt concentration and the electric

current on the outer edge of the extended space charge

region in the nonequilibrium regime, Refs. [3,11–14]. The

electro-osmotic slip condition in (5) stands for nonequilib-

rium electro-osmosis, Refs. [2,3]. Finally, ε = λ̃D

h̃
is the di-

mensionless Debye length, V is the dimensionless potential

drop between the membrane and the cathode, and N is the

dimensionless fixed charge density in the membrane. For a

thick diffusion layer, |Rac| � O(102), the equilibrium electro-

osmosis, as opposed to the nonequilibrium one, contributes

little to the overall instability dynamics and overlimiting con-

ductance for both gravitationally stable and unstable concen-

tration stratifications (details in Appendix B). For this reason,

in the model problem (1)–(5) we only address the case of

the nonequilibrium slip on the membrane/solution interface

and leave the discussion of the equilibrium electro-osmosis to

Appendix B.

The results of the linear stability analysis and nonlin-

ear simulation for the boundary value problem (1)–(5) for

gravitationally stable orientation (membrane on the top) are

presented in Figs. 6 and 7.

As mentioned before, for realistic conditions the buoyant

effect of concentration stratification whose quantitative mea-

sure is the parameter Rac is up to four orders of magnitude

stronger than that of temperature stratification whose measure

is RaT . In the linear stability analysis, the stabilizing buoyant

effect of concentration stratification with Rac < 0, combined

with the intense heat diffusion at short scales, manifests itself

in suppressing the moderate wavelength perturbation modes

resulting in a long-wave thermoelectroconvective instability

in accord with the qualitative picture presented in the Intro-

duction. Thus, for our system at the voltage slightly above the

thermoelectroconvective instability threshold [Figs. 6(a) and

6(c)], the nonlinear unstable mode’s wave number does not

exceed 0.01. This stands in radical contrast with the nonequi-

librium electro-osmotic instability, which asymptotically, in

the vanishing Debye length limit, exhibits the short-wave sin-

gularity, whose essence is a zero-wavelength critical unstable

mode [1]. This singularity is removed by accounting for a

finite Debye length, Refs. [2,3] (the asymptotic approximation

employed herein), but still for a realistic Debye length the in-

stability remains in the short-wavelength range, kcr ≫ 1. This

feature allows the nonequilibrium electro-osmotic instability

to avoid the stabilizing effect of concentration stratification,

whose efficiency decays exponentially with the increasing

k [Fig. 6(b)]. In the nonlinear regime this manifests itself

through the relative vortex size decreasing with the increase

of the cell gap width (Fig. 7).

We note that the characteristic wavelength for the equilib-

rium instability mechanism is of the order of unity, Refs. [7,8],
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FIG. 7. The dependence of relative vortex size on the cell gap width (black line) and its approximation 0.046 cm

h̃
(blue line). The

corresponding stream lines’ map for an increasing sequence of the cell gap widths; N = 1000, ε = 4.2×10−7 cm

h̃
, z = 2.

and thus, for a sufficiently wide cell, instabilities of this type

are fully suppressed by the stabilizing effect of concentration

stratification (details are in Appendix B).

For the gravitationally unstable orientation, for the cell

gap exceeding approximately half a millimeter, the Rayleigh-

Bénard instability due to concentration stratification initiates

FIG. 8. (a) Marginal stability curves for h̃ = 0.05 cm (red line) and h̃ = 0.1 cm (blue line). Inset: the dependence of the dimensionless

critical voltage on the cell gap width (blue line) and the power law—h̃−3 approximation (red line); (b) the dependence of the dimensionless

limiting current on the cell gap width (blue line) and linear approximation (red line). Inset: dimensionless average current density, I;

dimensionless voltage, V ; dependence for h̃ = 0.05 cm (red line) and h̃ = 0.1 cm (blue line); N = 1000, ε = 4.2×10−7 cm

h̃
, z = 2.
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FIG. 9. Stream lines for the limiting (a) and overlimiting (b) currents; (c) the dimensionless average current density, I; dimensionless

voltage, V ; dependence: h̃ = 0.1 cm, N = 1000, ε = 4.2×10−7 cm

h̃
, z = 2.

a fluid flow for a current below limiting (Fig. 8). The cor-

responding critical wave number is of the order of unity,

whereas the critical voltage decreases with the increase of

the cell gap width as O(h̃−3) [Fig. 8(a)]. As a result of

the Rayleigh-Bénard convection, an effective dimensionless

O(h̃−1)-thick diffusion layer forms and so the dimensionless

limiting current increases linearly with the increase of the

cell gap width [Fig. 8(b)]. These results of the linear stability

analysis and nonlinear simulations stand in agreement with

the experimental data [Fig. 3(d)].

A further increase of voltage results in the onset of elec-

troconvective instability and transition to overlimiting con-

ductance (Fig. 9). In addition, for the gravitationally unstable

orientation, similarly to the stable one, for sufficiently wide

cells, the Rayleigh-Bénard convection suppresses the mod-

erate wavelength modes and singles out the nonequilibrium

electro-convective instability as the only possible mechanism.

The resulting electroconvective vortices are confined to a very

narrow vicinity of the membrane. Presumably, they were not

visualized in the experiments due to their small size.

IV. CONCLUSIONS

Electrically driven hydrodynamic instability in concen-

tration polarization is a relatively recently discovered phe-

nomenon that was first predicted theoretically [1] and later

observed experimentally [4,5]. Definitive determination of the

mechanism of this phenomenon is a fundamental challenge

resolved in this study. In this sense, we did not pursue any

practical implication, although the obtained results may be

of direct importance for overlimiting electrodialysis [23],

intensification of transport-limited electrode processes, and

other applications. Motivated by this goal of identifying the

mechanism of electroconvective instability, our combined

experimental and theoretical study focused on the vicinity

of transition near the limiting current. In this, our study

differs from the previous thorough experimental studies of

electroconvective instability in conjunction with buoyancy

effects and without them [19,20]. In these studies, the authors

explored the current range from three to eleven times the

limiting. In this regime, for gravitationally stable orientation

of the cell, both equilibrium and nonequilibrium vortices

scale in size with the diffusion layer width, and thus are

indistinguishable. Here, a remark is due regarding the width

of the diffusion layer. The experimental studies [4,19,20,22],

including the present study, employ the quiescent polarization

cell. This cell was designed in [24], specifically for investi-

gating overlimiting conductance. A particular feature of this

cell is that, in contrast to the common electrodialysis cell,

no desalination occurs in it, with the average solute concen-

tration kept practically constant throughout the experiment.

Moreover, the width of the diffusion layer is geometrically

defined in this cell as half the distance between the copper

anode and the membrane. However, this is true only for the

steady state. For the voltage/current ramp conditions often

used in practice, the width of the diffusion layer increases

from a very small initial value, corresponding to the first

vanishing of the interface concentration, to the final steady-

state value. This makes it impossible to determine whether the

observed growth of the emerging electroconvective vortices is

due to the nonlinear evolution typical of the nonequilibrium

mechanism, or is just an outcome of the thickening of the

diffusion layer in accordance with the equilibrium mecha-

nism. The only way to resolve this ambiguity is to wait

for about one hour below the instability threshold until the

limiting current decreases to its steady state, and only then

cross the threshold to see if the emerging vortices are small

compared to the diffusion layer thickness. In this respect,

the thermoelectroconvective instability investigated in the cur-

rent study both theoretically and experimentally provides an

excellent means for clearly visualizing the diffusion layer.

In the strongly overlimiting regime employed in [19,20],

the flow is entirely dominated by electroconvection render-

ing the thermoelectroconvective instability flow unobservable.

Our main result thus concerned electro-osmotic instability

emerging at the background of thermoelectroconvective flow

mitigated by stable density stratification. The thermoelectro-

convective instability was found to set a clear length scale

for the width of the diffusion layer at the charge-selective

interface. For a sufficiently wide cell, the stabilizing effect

of density stratification suppressed the subcriticality typical

for the nonequilibrium instability. This expressed itself in

the elimination of the nonlinear growth of the typical vortex

size preserving the short-wave character of the flow, typical
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FIG. 10. Schematic three-dimensional drawing of the experimental electrolyte cell.

for the linear stage of the instability. Through visualization

of the electroconvective and thermoelectroconvective flows,

this allowed us to confidently conclude that, at least for the

Neosepta CMX cation-exchange membrane addressed here,

the overlimiting conductance is mediated by the nonequilib-

rium electro-osmotic short-wavelength instability. The short-

wave character is the major robust signature of this instability

that crucially distinguishes it from its equilibrium counter-

part. Our experiments recover the thermoelectroconvective

instability predicted theoretically [21], but never observed

previously, and they confirm its long-wave character. At the

same time, our modeling recovers all the novel features of the

short-wave nonequilibrium electro-osmotic instability super-

imposed upon the long-wave thermoelectroconvective flow.

This includes the two observed long-wave vortices spanning

the diffusion layer, and, as a particularly remarkable feature

near the transition, the arrest by gravity stabilization of the

nonlinear growth of the short-wave nonequilibrium vortices

for sufficiently wide cell gaps.
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APPENDIX A: THE DESCRIPTION OF THE

EXPERIMENTAL CELL

A schematic three-dimensional drawing of the experimen-

tal electrolyte cell for flow visualization is shown in Fig. 10.

This cell consists of two identical electrode parts with glass

windows attached only to the bottom part (anode), as shown

in Fig. 10(A). A copper block of 15 mm × 15 mm × 50 mm

with a jacket machined in acrylic constitutes the electrode.

A membrane is mechanically fixed by an acrylic bracket to

the cathode electrode with a thin spacer (∼50–100 μm) in

between. The dimensions of the glass windows on the anode

are such that the cathode part could be just slid through,

as shown in Fig. 10(B). The cathode is attached to a travel

translation stage with a micrometer screw to adjust the gap

between the anode and the cathode accurately.

APPENDIX B: EQUILIBRIUM ELECTRO-OSMOSIS IN CP

IN A THICK DIFFUSION LAYER AT A PERFECTLY

CHARGE-SELECTIVE INTERFACE

In this Appendix, we show that for a thick diffusion layer,

|Rac| � O(103), equilibrium electro-osmosis, as opposed to

the nonequilibrium one, contributes little to the overall in-

stability dynamics and overlimiting conductance for both

gravitationally stable and unstable concentration stratification.

We assume that the width of the cathodic compartment is

negligible compared to that of the anodic one and focus on the

effect of concentration stratification on the recently reported

equilibrium electro-osmotic instability and its related vortical

flow [8,9], neglecting the effect of thermoelectroconvection,

RaT = 0. We also note that the equilibrium electro-osmotic

slip occurs for moderate voltage and moderate depletion

whenever the dimensionless interface concentration satisfies

the inequality, c ≫ O(ε
2
3 ), and the extended space charge is

absent. For a higher voltage and interface concentration of
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FIG. 11. (a) The dependence of the critical potential drop across the anodic compartment, V 1
cr , on the compartment width (blue line), and

its exponential approximation e0.43h, h = h̃

cm
(red line), for gravitationally stable stratification, RaT = 0, Rac = −3.7 × 107( h̃

cm
)
3

(the same

dependence for RaT = 0, Rac = 0 is plotted by the dashed blue line). The black dashed line marks the boundary between the region of

nonequilibrium EDL with the extended space charge present (I) and the region (II) of equilibrium EDL and the respective transition from

the equilibrium electro-osmosis to the nonequilibrium one. Inset: the dependence of the interface concentration, c0(1) on the compartment

width. (b) The dimensionless average current density, I; dimensionless voltage, V ; dependence for the gravitationally unstable stratification,

RaT = 0, Rac = −3.7 × 107( h̃

cm
)
3
, h̃ = 0.1 cm. N = 1000, σ = 0.3, z = 2.

the order of O(ε
2
3 ), the extended space charge appears, and

dominates the electro-osmotic slip thereon, Eq. (5). In what

follows, we address the equilibrium electro-osmosis valid for

moderate voltage and the EDL preserving its equilibrium

structure.

We consider the following two-layer model problem for

a perfectly perm-selective cation-exchange membrane (of di-

mensionless thickness � and with fixed charge density N)

and its adjacent anodic compartment (of dimensionless unity

width):

Equations. For 0 < y < 1,−∞ < x < ∞, Eqs. (1)–(3)

hold. For 1 < y < 1 + �, −∞ < x < ∞, the electric poten-

tial in the electroneutral bulk of the membrane, �, satisfies

Ohm’s equation,

σ�� = 0, (B1)

where σ is the dimensionless membrane conductivity. The

following boundary conditions complete the formulation:

Anode/solution interface, y = 0, conditions (4).

Membrane/solution interface, y = 1:

cy − zcϕy = 0, Ty − b(T − Ta) = 0, cy + zcϕy = σ�y,

(B2)

where the last equality asserts continuity of the cationic flux

(current density),

v = (−V − ϕ)(ln c + zϕ)x

+
(

4 ln 2 − 4 ln
[

e
−V −ϕ

2 + 1
])

(ln c)x, (B3)

w = 0.

The electro-osmotic slip condition in (B3) stands for equilib-

rium electro-osmosis, Refs. [1,8,25].

Membrane/cathodic compartment interface, y = 1 + �:

� = −V. (B4)

The results of the linear stability analysis of the 1D

steady-state solution to the problem (1)–(4) and (B1)–(B3),

c0(y), ϕ0(y), �0(y), for the gravitationally stable stratifica-

tion, Rac < 0, are presented in Fig. 11(a). We observe a sharp

exponential growth of the critical electrical potential drop

across the anode compartment, V 1
cr = ϕ0(1) − ϕ0(0), with the

increase of the compartment width. We also note that for the

anodic compartment width exceeding 350 μm, the extended

space charge appears, that is, the expression (B3) for the

electro-osmotic slip velocity fails and should be replaced

by the one for the nonequilibrium electro-osmotic slip, v =

−
3(V ∗ )2

16
(ln c)x. In Fig. 11(b) we present the current/voltage

dependence for the gravitationally unstable cell orientation,

Rac > 0, obtained via a numerical solution of the full nonlin-

ear problem (1)–(4) and (B1)–(B3). We observe that for the

thick diffusion layer under consideration, accounting for the

equilibrium electro-osmotic slip alone while disregarding

the extended space charge eliminates the overlimiting conduc-

tance.

We conclude that in accord with the statement in the main

text, the critical wave number for the equilibrium electro-

convective instability is of the order of unity (1 < k < 3),

Refs. [8,9]; that is, for a sufficiently thick diffusion layer (with

the width of the cell gap exceeding 400 μm, Rac > 3000) it

lies in the range dominated by the stabilizing or destabilizing

effect of concentration stratification.
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