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Snapshots of colloidal particles moving on disordered two-dimensional substrates
can be used to extract equal-time many-body correlations in their positions. To
understand the systematics of these correlations, we perform Monte Carlo simula-
tions of a two-dimensional model fluid placed in a quenched disordered background.
We use configurations generated from these simulations to compute translational
and orientational two-point correlations at equal time, concentrating on correla-
tions in local orientational order as a function of density and disorder strength. We
calculate both the disorder averaged version of conventional two-point correlation
functions for orientational order, as well as the disorder averaged version of a novel
correlation function of time-averaged disorder-induced inhomogeneities in local ori-
entation analogous to the Edwards-Anderson correlation function in spin systems.
We demonstrate that these correlations can exhibit interesting non-monotonic be-
haviour in proximity to the underlying fluid-solid transition and suggest that this
prediction should be experimentally accessible.
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I. INTRODUCTION

Translational invariance is broken1 in systems with quenched disorder that is distributed
inhomogeneously in space2–4. Novel equal-time correlations5, otherwise trivial in the pure
system, emerge as a result6. These are experimentally measurable, provided one has access
to snapshots of particle configurations in real space7. Such correlations can exhibit inter-
esting behavior even in fully fluid phases8 of interacting particle systems, where issues of
history dependence and the lack of equilibration can be ignored, in contrast to the glassy
states in which they have traditionally been invoked and studied6.

Experiments on colloidal systems9–12 are capable of probing correlations of this form, since
current imaging experiments allow us to access the instantaneous positions of colloidal par-
ticles over a large field. Using colloids as model atomic systems has been particularly useful
in furthering our understanding of non-equilibrium and equilibrium phases of matter13, in-
cluding the structural glass problem14,15. Recent experiments on colloidal systems allow us
to test ideas from theory16 and computer simulations17–19. The response of colloids to spa-
tially inhomogeneous external laser fields20 was first studied in the context of the freezing
of colloidal liquid into a modulated crystal. Such freezing has been studied in experiments
on a two-dimensional (2D) system of strongly interacting colloidal particles subjected to
a one-dimensional periodic modulating potential21–23. Monte Carlo studies have obtained
both laser-induced freezing as well as described the novel re-entrant melting transition of a
colloidal crystal to a modulated liquid24. This prediction has been experimentally verified25.
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Experiments aimed at studying order disorder phenomena through direct visualization are
possible in many other systems. These include colloids driven by magnetic ratchets26, mag-
netic bubble arrays27,28 as well as a host of physical-chemical systems exhibiting domain
patterns as a consequence of competing interactions29.
Given a large number of snapshots of the positions of colloidal particles moving on a

substrate, one can construct arbitrary n-point correlations from them. Usually, the correla-
tions of interest are one-body and two-body correlation functions. In pure fluid phases, the
one-body densities are uniform1,5, since translation invariance privileges no specific position
over another. In addition, two-point correlations are functions only of the distance between
the particles. In systems where the particles feel an underlying, typically quenched disor-
dered, potential, translational invariance is broken and even one-body distributions become
spatially inhomogeneous. Translational invariance is restored by the expedient of averaging
over disorder realizations or simply by considering sufficiently large systems, assuming that
self-averaging holds8.

Some years ago, some of us showed that Monte Carlo simulations and liquid state theory
approaches could be used to calculate two distinct types of translational correlation func-
tions in model two-dimensional colloidal systems in a quenched disordered background6,8.
The diagonal correlation function is simply the disorder-averaged version of the standard
pair correlation function in the pure system. The off-diagonal correlation function, on
the other hand, represents the equal-time correlation of disorder-induced density inhomo-
geneities. It is the analog of the Edwards-Anderson order parameter (EA-OP)30. Recent
experiments on colloids in the presence of quenched disorder, realised by generating ran-
dom potential energy landscapes using laser speckles, measured these correlation functions7,
finding very good agreement with the predictions of liquid-state theory6 and simulations8.
However, the question of how similarly defined correlation functions for orientational order
might behave was not explored in our earlier work, although they can now be accessed using
similar measurements.

In this paper, we present results on disorder-averaged two-point translational and orien-
tational correlations obtained via Monte Carlo simulations of a model fluid in a quenched
disorder background6,8. We aim to provide a model description of correlation functions that
can be explored in experiments, in particular those that describe two-point correlations in
local orientation. We find that the correlations of time-averaged local orientational corre-
lations, has an intermediate distance limit that increases with disorder in the liquid regime
while it decreases with increasing disorder strength deep into the solid regime. In this in-
termediate separation regime, the behavior of this correlation function shows re-entrance
close to the putative liquid-solid phase boundary. The first peak height of the structure
factor with disorder is roughly constant in the liquid regime, is observed to decrease in
the solid regime, while remaining flat initially and then decreasing as the phase boundary
is approached from the liquid side. We provide qualitative, physical arguments for this
behavior.

The rest of the paper is organized as follows. In the next section (Section II) we summarize
the correlation functions studied in this work, describing in detail the model system used for
this study. Section III presents our results. Last, in Section IV we outline the conclusions
of this study and suggest future directions for related research.

II. MODEL AND METHOD

Our model Hamiltonian8 (apart from the trivial and irrelevant contribution from mo-
menta) is given by,

Hint = ǫ
∑

i<j

(

σ0
rij

)12

+
∑

i

Vd(ri). (1)

We set ǫ = 1, defining our energy scale. We set our unit of length by taking σ0 = 1.
The one-body random potential Vd(r) is constructed using a method initially devised by
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Chudnovsky and Dickman31. This method generates a potential energy landscape that has
zero mean and exponentially decaying short-range correlations. These take the form

CV (r) =
[

〈V (x)V (y)〉|x−y|=r

]

/σ2 = exp(−r/ξ). (2)

The variance of the Gaussian distribution σ2 defines the strength of the disorder. The scale
set by disorder correlations is chosen to be small: ξ = 0.12.

We use periodic boundary conditions across a rectangular box, defined by dimensions
Lx, Ly along the x and y directions. The number of particles N is chosen so that it that
accommodates a perfect triangular lattice. Our particle densities are thus ρ0 = Np/(Lx ×
Ly).
We compute the disorder-averaged direct pair correlation function,

g(1)r (r) =
1

ρ20
[〈ρ(r)ρ(0)〉]−

δ(r)

ρ0
. (3)

The density correlation function, g(2)(r), (the EA-OP analog), and is defined as

g(2)r (r) =
1

ρ20
[〈ρ(r)〉〈ρ(0)〉] . (4)

The disorder-averaged orientational correlation functions are defined using the local hexatic
order parameter,

ψj
6 =

1

nj

nj
∑

k=1

exp(i6θjk), (5)

where nj are the number of nearest neighbours of particle j and θjk is the angle between
the vector from particle j to it’s nearest neighbour k and reference x-axis. We obtain the
direct pair orientational correlations,

g
(1)
θ (r) = [〈ψ6(~r)ψ

∗
6(0)〉] , (6)

where ψ6(~r) =
∑N

i=1 δ(~r − ~ri)ψ
j
6. The orientational correlation in the Edwards-Anderson

sense is defined via

g
(2)
θ (r) = [〈ψ6(~r)〉〈ψ

∗
6(0)〉] . (7)

For simplicity we will refer to correlations that are simply the disorder-averaged correlations
functions in the pure system as “diagonal” correlation functions, whereas the Edwards-
Anderson correlation functions, non-trivial in the disordered fluid system, will be referred to
as “off-diagonal” correlation functions. These reflect the way these correlations are defined
within a replica formulation of the statistical mechanics of disordered systems. Thus, we
focus on two sets of diagonal and off-diagonal correlations, one for translational ordering
and the other for orientational ordering.

The structure factor is calculated as,

S(q) = 1 + ρ0

∫

[

g(1)(r)− 1
]

ei~q.~rd~r, (8)

where g(1)(r) is the disordered radial distribution function.
To quantify the translational and orientational correlations for each density and with

each disorder, we monitor the value of EA-OP g
(2)
r (r → 0), g

(2)
θ (r → ∞), and the first peak

height of the structure factor S(q).
We perform Metropolis Monte Carlo (MC) temperature quench-and-hold simulations in

two dimensions keeping temperature T = 1. The number of particles is varied across
Np = 780, 1020,and 2016, leading to densities ranging from ρ0 = 0.7 to ρ = 1. Disorder
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strengths are varied from σ2 = 0 to σ2 = 1, in steps of 0.1. For a fixed ρ and σ2, we begin
with an initial crystalline configuration quench the initial crystal phase to T = 1 and hold
it up to thold = 11× 105 Monte Carlo sweeps (MCS). We do not record data for an initial
105 MCS in all cases to ensure equilibration. We then average over t′ = 104 configurations,
each separated by 102 MCS. Finally, we average over disorder, using 20 realizations for all
σ2. We will indicate thermal averages through the angular brackets < · > and disorder
averages by [·]

III. RESULTS AND DISCUSSION

A. The pure case

In this section we present the results for the correlation functions defined in Section II
obtained from extensive MC simulations in the canonical ensemble for our system of particles
interacting with the inverse twelfth power potential. We first consider the pure system
without disorder (Vd = 0 in Eq. 1). Our MC simulations at T = 1 obtained a freezing
density ρ0 ∼ 0.986, in good agreement with results from earlier work32.

Our first set of results, for the pure case, are shown in Fig. 1, where we present the

structure factor S(q), i.e. the Fourier transform of g
(1)
r as well as g

(2)
r , g

(1)
θ and g

(2)
θ , for

varying densities, across Fig. 1(a) - (d) . The diagonal translational and orientational
correlations behave as expected (Fig. 1(a)&(c)), with correlations building up with density.
The structure factor S(q) is smooth for ρ = 0.9, but exhibits a split second peak at ρ0 = 0.98
and 0.986. Such behavior is normally ascribed to frustration in glassy systems, but could
also signify the onset of phase coexistence or the presence of long-lived local crystallinity.

Above ρ0 = 1, S(q) exhibits the sharp peak characteristic of the lattice phase. the first

peak height of S(q) increases with density ρ0. In the solid phase g
(1)
θ does not decay,

signifying long-ranged orientational correlations.

From Fig. 1(c), we see that the orientational correlation function g
(1)
θ (r) is zero to our

numerical accuracy for ρ0 = 0.7, 0.8, 0.9, while its long-distance asymptote limr→∞ g
(1)
θ (r)

is finite for ρ0 = 0.98, 0.986, 0.99. For larger densities, at ρ0 = 0.995, 1, orientational
correlations are unambiguously long-ranged. On the fluid side, orientational correlations at
all densities are significantly longer-ranged than positional correlations. These results are
consistent with prior numerical work, including results for the location of the liquid-solid
transition32.
The off diagonal correlations on the other hand are expected to be trivial; see (Fig. 1(b)&(d)).

The EA-OP for translations is uniform at g
(2)
r = 1 for ρ0 = 0.7, 0.8, 0.9, 0.98 and 0.986, 0.99.

There are very small and negligible fluctuations for larger densities ρ0 = 0.995, 1, likely
originating from long-lived hexatic33–36 or crystal fluctuation. The EA-OP for orientations
is zero for ρ0 = 0.7, 0.8, 0.9. From Fig. 1(d), we see that closer to the transition, it decays
sharply to zero, for ρ0 = 0.98, 0.986, 0.99, with residual structure at short-scales possibly
associated with either long-lived hexatic33–36 correlations or a solid phase (see Section IV
for further details). The EA-OP decays to a finite value for larger densities ρ0 = 0.995 & 1.
These results, for the pure system, are also consistent with a transition between liquid

and crystalline phases, in the presence of a narrow coexistence regime. Our simulations
do not attempt to resolve the possibility of two-stage melting or more complex scenarios,
rather our interest is largely in disorder-induced correlations in the well-defined fluid phase.

B. The disordered case

We now consider the effect of a non zero random potential (Vd 6= 0 in Eq. 1). We vary
particle densities between ρ0 = 0.7 and ρ0 = 1, and disorder strengths from σ2 = 0.00001
to σ2 = 1. Our simulations thus cover 5 orders of magnitude in disorder strength.
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FIG. 1. Pure system for various densities (ρ0): (a) The structure factor S(q) versus q and (b) the

EA-OP for translations g
(2)
r (r) versus r. The orientational correlations (c) g

(1)
θ (r) and (d) g

(2)
θ (r)

versus r. Parameters: Np = 1020, and ρ0 = 0.7, 0.8, 0.9, 0.986, 0.995, 1.

Our results are presented in Fig. 2. For ρ0 = 0.9, the structure factor and the other
correlation functions are shown in Fig. 2 (a0-3). The structure factor, essentially the Fourier

transform of g
(1)
r (r) has smooth peaks, as seen in the pure system. Its dependence on σ2

is negligible to first approximation. The EA-OP for translations decays rapidly quickly to

g
(2)
r (r) = 1, although its oscillations are amplified as σ2. The diagonal correlation function

g
(1)
θ (r) decays exponentially to zero as in the liquid phase of pure system. Its behaviour
seems to be independent of disorder strength at this relatively low density value. The off-

diagonal orientational correlations, monitored through g
(2)
θ (r), are numerically small and

fluctuate asymptotically around a small non-zero value that increases with σ2.

Fig. 2 (b0-3) shows orientational and translational correlations for ρ0 = 0.986, across a

range of disorder strengths. Again the structure factor is unaffected by disorder. The g
(2)
r (r)

decays to unity in an oscillatory manner, and the oscillations are amplified as σ2 increases.

The g
(1)
θ (r) now shows a weak dependence with σ2. The g

(2)
θ (r) remains numerically small,

decaying to a non-zero value.

Finally, for ρ0 = 1, where a crystal is expected in the pure system, we show diagonal
and off-diagonal correlations in Fig. 2 (c0-3). The structure factor S(q) has a split in the
second peak. The EA-OP for translations decays to unity at large r and the oscillations

are amplified with σ2. The g
(1)
θ (r) now exhibits ordering that persists across the size of the

simulation box. The g
(2)
θ (r) oscillates prominently while decaying to its asymptotic value.

In Figs. 3 and 4, we summarize our results for the asymptotic values of g
(2)
r (r = 0),

g
(2)
θ (r → ∞) as well as the structure factor S(q), across a range of densities and disorder
strengths. Note that in a finite size simulation box with periodic boundary conditions, the
largest distance that is possible is L/2, where L is the length of the simulation box, The
most sensitive probes of the effects of both disorder and interactions comes from considering

g
(2)
r (r = 0) and g

(2)
θ (r → ∞). In addition, as a probe of the effects of disorder on the

conventionally measured two point positional correlation functions, we also show S(q =
qmax), the magnitude of the first peak of the structure factor, for a range of densities ρ and
disorder strengths σ2.
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C. Reentrant short-ranged order in g
(2)
θ (r)

We exhibit results for varying ρ0 across three ranges of values: 0.7, 0.8 and 0.9 in Figs. 3
(a)&(d); 0.98, 0.986, 0.99 and 0.995 in FIgs. 3 (b)&(e); and 1 in Figs. 3(c)&(f). We find

that for the lowest densities g(2)(r = 0) and g
(2)
r (r → ∞) both increase with σ2. Close to

the boundary between liquid and solid but within the putative liquid phase, we examine
these correlation functions as shown in Figs. 3 (b)&(e). The value of g(2)(r = 0) increases

linearly with σ2 while the g
(2)
r (r → ∞) value appears to show a re-entrant behavior with

increase in disorder strength. We also present results for the solid regime, for completeness,
at the single density value of ρ = 1 as shown in Fig. 3 (c)&(f). The value of g(2)(r = 0)

increases with σ2 while, surprisingly, the value of g
(2)
r (r → ∞) decreases with σ2.

The height of the first peak of the structure factor, S(q = qmax) remains roughly constant
with σ2 as shown in Fig. 4 (a). This indicates that deep into the fluid phase, conventional
disorder-averaged correlation functions are only very weakly affected by the disorder. The
Edwards-Anderson correlation function, in contrast, disperses more strongly both with dis-
order and with interactions.The height of the first peak of the structure factor S(q) is
roughly independent of disorder for smaller σ2, while it decreases linearly for larger σ2 as
shown in Fig. 4 (b). Finally the same quantity decreases with σ2 as shown in Fig. 4 (c)
showing that disorder, as expected, destroys translational order.
As we have discussed, orientation correlations, at the level of two point functions, can

be characterized in two different ways. The diagonal correlator, g
(1)
θ (r), measures equal-

time correlations of the product of densities within the same disorder background, with a
subsequent averaging over disorder realizations performed to ensure that this correlation

function regains translational invariance. In contrast, the off-diagonal correlator g
(2)
θ (r)

measures correlations between time-averaged densities, which is then averaged over real-
izations of the quenched disorder field. This is trivial in the absence of disorder, since
translational invariance implies that the local density at any point in a fluid is the same.
However in a disordered system, this quantity is more subtle. Its main contribution comes

from the pinning of two particles at separated points. While, in a fluid, orientational order
about any one single pinning site separately can vary continuously, the presence of two such
points defines an axis in the fluid that tends to “lock-in” orientational order at these points.

This is the origin of non-trivial structure in g
(2)
θ (r). As the disorder potential is increased,

so too is the tendency to such lock-in accentuated, as particles spend more time pinned to
locations that are deeper in the potential landscape. This provides an explanation for why

g
(2)
θ (r) at intermediate ranges, should increase with increasing disorder, as seen in the data
here where, for the liquid regime at densities ρ0 = 0.9, 0.8, 0.7.

Why does the g
(2)
θ (r) at intermediate ranges decrease with disorder in the solid phase? We

believe that this is most easily linked to the proposal that the low-temperature state of a dis-
ordered solid in two and three dimensions most resembles a domain arrangement3,4. Within
each domain, orientational and translational order is maintained, but de-correlates rapidly
at larger scales.The characteristic domain size decreases rapidly as disorder increases.This

suggests that g
(2)
θ (r) at intermediate ranges should be controlled by the rapid collapse of

domain sizes with increasing disorder in the solid, consistent with this picture. Close to the
boundary separating solid from liquid, the re-entrant phase behaviour can be understood
in terms of the opposing behaviour in the liquid and solid phases detailed above.

D. Finite size effects

We further examined the effects of the finite size of the simulated system. The effects of a

finite system size on g
(2)
r (r = 0), g

(2)
θ (r → ∞) are shown in Fig. 5. It is clear that g

(2)
r (r = 0)

linearly increases with σ2 and that the sensitivity to system size is relatively weak. The

value of g
(2)
θ (r → ∞) decreases with the system size Np in all three regimes, although the
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phenomenon of re-entrance is insensitive to the system size Np. This is most prominent
at densities in the vicinity of the liquid-solid transition in the pure system. Given that we
must also average over disorder for our results to be meaningful, our systems do not span
a sufficiently large range in N for a systematic finite-size scaling analysis to be possible.

Thus, we leave open the possibility that g
(2)
θ (r → ∞) vanishes in the true asymptotic limit

of N → ∞, r → ∞. (As pointed out earlier, in a finite size simulation box with periodic
boundary conditions, the largest distance that is possible is L/2, where L is the length of
the simulation box and it is this scale that we actually probe.) However, we believe that
our results for order at intermediate ranges, of about 10 - 30 inter-particle spacings should
be robust. It is these scales that can be probed most easily in experiments, given that the
field that can be imaged must contain a limited number of particles at any time.

In our system, g
(1)
θ (r) always vanishes in a liquid at large r while in a solid, it attains a

constant value indicating simply that the solid phase is both positionally and orientationally
ordered. An intermediate hexatic phase has never been observed during melting of the
inverse twelfth power crystal32. We find, in this paper, that off-diagonal orientational
correlations increase with the strength of quenched disorder in the range of densities where

the pure system is a liquid. For higher densities, g
(2)
θ (r) for large r, decreases with disorder.

These two results, taken together, suggests that quenched disorder, enhances orientational
correlations in a liquid but destroys orientational order in a crystal. Surprisingly, in an

intermediate density range, there is a re-entrant behavior, where g
(2)
θ (r) at large r first

increases and then decreases as disorder is increased. These results are quite unusual because

g
(2)
θ (r) is defined (see Eq. 7 in Section II) such that it should vanish if the orientational
order parameter [〈ψ6(~r)〉] itself vanishes. Better statistics by simulation over larger times
and larger system sizes do not affect our qualitative results significantly. We attribute this
to a “lock-in” mechanism aligning local orientational correlations long the axes joining well-
pinned particles, as explained above, possibly also aided by the presence of a metastable or
even stable hexatic phase.

IV. SUMMARY AND CONCLUSIONS

In this paper, we presented calculations of disorder-averaged orientational and transla-
tional correlations, varying densities and disorder strengths, in a relatively simple model
system. We considered a collection of particles in two dimensions interacting with the in-
verse twelfth power potential32, and under the influence of a spatially varying, quenched,
random field with short-ranged correlations6–8. We introduced a new orientational correla-
tion function, with non-trivial values only in systems of interacting particles with quenched
disorder. The corresponding quantity involving positional correlations has been studied
in the past using liquid state theory6, simulations8 and experiments7. These correlation
functions, both positional and orientational, may be computed in a straightforward fashion
for configurations of particles obtained either in simulations or experiments.
Our interest in computing these was connected to the possibility of measuring them

directly in the fluid phase of a colloidal system, where disorder can be introduced using
spatially random, static light fields7,20. Such experiments can be used to generate a large
number of snapshots of particles, from which any equal-time correlation can be computed,
including the ones we describe here. The disorder averaging can be done either by consid-
ering a sufficiently large system, assuming self-averaging, or by equilibrating configurations
in a variety of underlying disorder configurations with the same statistical properties.

The quantity g
(1)
θ (r) in a pure system, where the requirement of a separate averaging

over disorder realizations is absent, has been studied before in the context of the problem of
dislocation mediated two dimensional melting1,33–36 of a disorder free solid. It has been used
to detect the possible presence of a hexatic phase. In a hexatic, while positional correlations

decay exponentially with distance, g
(1)
θ (r) decays very slowly, as a power law34. This has

to be contrasted with a liquid, where both positional and orientational correlations both
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decay exponentially.
The current understanding of the phase diagram of two-dimensional melting can be sum-

marized as follows. While it appears that two-stage melting, as proposed in the Berezinskii,
Kosterlitz, Thouless, Halperin, Nelson, Young (BKTHNY) theory34–36 is the norm in suf-
ficiently long, well-equilibrated simulations, the two separate transitions (between crystal
and hexatic and then between hexatic and liquid) need not both be continuous, as the the-
ory originally suggested. The BKTHNY theory is a renormalization group approach1 that
assumes a high defect core energy a priori to construct a perturbation expansion. How-
ever, defect core energies are properties of the underlying interaction potential as well as
the density, and one could anticipate the possibility of both continuous and discontinuous
transitions in general, as well as the possibility that both transitions might be coincident.
Bernard and Krauth37–39 have suggested that the transition from crystal to hexatic is
generically continuous one, whereas the transition from hexatic to isotropic liquid is first-
order. Alternate scenarios involving a first-order crystal to liquid melting has also been
discussed40,41.
A series of papers by Ryzhov and collaborators 42–47 use core-energy-based calculations to

show that accounting for the core energies of dislocations and disclinations can yield different
scenarios for two-stage melting, including both first-order and continuous transitions. In
particular it has been suggested that for repulsive potentials 1/rn with n > 6, the Bernard-
Krauth scenario holds whereas for n < 6, the older scenario of two continuous transitions is
standard. In all cases, the intervening hexatic regime is very narrow48,49. An equilibrium
hexatic has been detected for many soft colloids50 such as hard discs51, super-paramagnetic
colloidal systems52,53 and Gaussian core models54. Whenever such a phase occurs, it is
observed to lie very close to the liquid-solid boundary and is, in principle, difficult to
distinguish from the usual liquid-crystal two phase coexistence55.

Finally, quenched disorder is known to enhance the stability of the hexatic phase56. In

amorphous or model glassy solids, local analysis of g
(1)
θ (r) often detects so called “medium

range crystalline order”, which may not be distinct from a hexatic induced by (annealed)
disorder in the interactions57,58.
The central result of this paper is that quenched disorder enhances medium-range orienta-

tional correlations in a liquid but destroys it in a crystal. In a range of densities intermediate

between that of the solid and of the liquid, we see a re-entrant behavior, where g
(2)
θ (r) at

large r first increases and then decreases as disorder is increased. Our results, unfortu-
nately cannot distinguish between whether a true hexatic is stabilized by quenched disorder
through pinning or pinning increases the proportion of the ordered solid phase in a thin,
liquid-solid coexistence region. Distinguishing between these scenarios will require much
more analytic as well as computational efforts beyond the scope of this paper. We point out
that experiments on two-dimensional colloidal fluids in random potentials can be performed
and that studies of the fluid phase are far less susceptible to issues of metastability than
the disordered solid.
Probing correlations and response in the disordered liquid may shed light on the reentrant

behaviour we describe here. They should also provide benchmarks for the unusual Edwards-
Anderson correlation function whose properties are defined and studied in this paper.
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FIG. 2. The structure factor, translational, orientational correlations with disorder: The structure
factor S(q) vs q (a0,b0,c0), the EA-OP for translations g(2)(r) vs r (a1,b1,c1), the orientational

correlations g
(1)
θ (r) vs r (a2,b2,c2), and g

(2)
θ (r) vs r (a3,b3,c3) for densities ρ = 0.9, 0.986, 1 respec-

tively. Simulation parameters: Np = 1020, and σ2 = 0.00001, 0.2, 0.6, 1.
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FIG. 3. The EA-OP correlations in translation and orientation with disorder for different densities:

The EA-OP correlations in short-distance translations (g
(2)
r (r = 0) − 1) versus disorder (σ2) and

long-distance orientations (g
(2)
θ (r → ∞)) versus disorder (σ2) for densities ρ0 = 0.7, 0.8, 0.9 (a,d),

ρ0 = 0.98, 0.986, 0.99, 0.995 (b,e), and ρ0 = 1 (c,f).

FIG. 4. The structure factor with disorder: The first peak height of the structure factor
S(q)1stpeakheight vs disorder σ2 for densities ρ0 = 0.7, 0.8, 0.9 (a), ρ0 = 0.98, 0.986, 0.99, 0.995
(b), and ρ0 = 1 (c) respectively.
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FIG. 5. The finite size effect of EA-OP correlations in translation and orientation with disorder
for different densities: For system sizes Np = 1020, 2016, the EA-OP correlations in short-distance

translations (g
(2)
r (r = 0) − 1) versus disorder (σ2) and long-distance orientations (g

(2)
θ (r → ∞))

versus disorder (σ2) for densities ρ0 = 0.9 (a,d), ρ0 = 0.995 (b,e), and ρ0 = 1 (c,f) respectively.


	Orientational correlations in fluids with quenched disorder
	Abstract
	I Introduction
	II Model and Method
	III Results and Discussion
	A The pure case
	B The disordered case
	C Reentrant short-ranged order in g(2)(r)
	D Finite size effects

	IV Summary and Conclusions
	 Acknowledgments


