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In the study of farsighted coalitional behavior, a central role is played by the

von Neumann–Morgenstern (1944) stable set and its modification that incorpo-

rates farsightedness. Such a modification was first proposed by Harsanyi (1974)

and was recently reformulated by Ray and Vohra (2015). The farsighted stable set

is based on a notion of indirect dominance in which an outcome can be domi-

nated by a chain of coalitional “moves” in which each coalition that is involved

in the sequence eventually stands to gain. However, it does not require that each

coalition make a maximal move, i.e., one that is not Pareto dominated (for the

members of the coalition in question) by another. Consequently, when there are

multiple continuation paths, the farsighted stable set can yield unreasonable pre-

dictions. We restrict coalitions to hold common, history independent expecta-

tions that incorporate maximality regarding the continuation path. This leads to

two related solution concepts: the rational expectations farsighted stable set and

the strong rational expectations farsighted stable set. We apply these concepts

to simple games and to pillage games to illustrate the consequences of imposing

rational expectations for farsighted stability.

K. Stable sets, farsightedness, consistency, maximality, rational expec-

tations, simple games, pillage games.

JEL . C71, D72, D74.

1. I

Theories of coalitional stability are based on the notion of domination or objections by

coalitions. A coalition is said to have an objection to the status quo if it can change

the outcome to one in which all its members gain. Perhaps the most widely used so-

lution concept in this literature is the core: the set of outcomes to which there is no

objection. The original formulation of the theory by von Neumann and Morgenstern

(1944), however, was concerned with a somewhat more sophisticated equilibrium con-

cept, which they referred to simply as the “solution,” but that has since become known
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as the von Neumann–Morgenstern (vNM) stable set. A vNM stable set consists of out-

comes that satisfy two properties: (i) internal stability in the sense that no stable out-

come dominates any other stable outcome; (ii) external stability in the sense that every

outcome not in the stable set is dominated by some stable outcome. There is a large

literature on the stable set even though it has been notoriously difficult to work with.1

Both the core and the stable set are based on myopic, or one-shot, deviations by

coalitions. If a change made by a coalition can be followed by other coalitional moves,

then clearly we should require coalitions to be farsighted in their behavior. Each coali-

tion should ask itself, “if we take action a, how will other coalitions react?” This is a direc-

tion of research that has attracted renewed interest; see, for example, Harsanyi (1974),

Aumann and Myerson (1988), Chwe (1994), Bloch (1996), Ray and Vohra (1997, 1999),

Xue (1998), Diamantoudi and Xue (2003), Konishi and Ray (2003), Mauleon and Van-

netelbosch (2004), Herings et al. (2004, 2009), Ray (2007), Mauleon et al. (2011), Ray and

Vohra (2014, 2015), Chander (2015), and Kimya (2015). It is by no means obvious how the

classical theory should be modified to account for farsightedness, which partly explains

the diversity of approaches taken in this literature. Ray and Vohra (2014) distinguish be-

tween two principal approaches: (a) the blocking approach, which follows traditional

cooperative game theory in abstracting away from the details of the negotiation process

and relying on a coalitional game to specify what each coalition is able to accomplish on

its own, and (b) the bargaining approach, which is based on noncooperative coalition

bargaining and relies on specifying details such as a protocol that describes the order of

moves.

This paper studies farsightedness in the tradition of the blocking approach, with the

underlying model described through a coalitional (or characteristic function) game. In

particular, there is no prespecified set of “terminal” states, or a protocol specifying the

order in which players or coalitions are allowed to move. Consequently, we cannot cap-

ture farsightedness through subgame perfection or some other solution concept based

on backward induction. We nevertheless want to capture the idea that coalitional deci-

sion making is based not on the immediate effect of an initial “move,” but on the “final

outcome.”2 This immediately raises the question of how to determine what the final

outcome is in a sequence of coalitional moves (in a model without the formal apparatus

of an extensive form game). Suppose coalition S1 replaces x with y, and then S2 replaces

y with z. If z is the final outcome and payoffs are realized only once, farsightedness

would require S1 to compare the utility of z to that of x and ignore its payoff at y. But

this argument only works if z is known to be the final outcome. What is considered to be

a final outcome must, of course, also be stable. Thus, testing the stability of a particular

outcome against a sequence of moves requires us to know which of the other outcomes

are stable. This is precisely the kind of circularity that the stable set is very adept at han-

dling, making it a fruitful vehicle for incorporating farsightedness within the blocking

approach.

1See Lucas (1992) for a survey.
2In a real-time model such as in Konishi and Ray (2003), what matters is the entire stream of (discounted)

payoffs along a sequence of moves.
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The idea of modifying the stable set by allowing for sequences of coalitional moves,

with each coalition focused on the final outcome, goes back to Harsanyi (1974). Un-

fortunately, the Harsanyi stable set, including its more recent reformulation by Ray and

Vohra (2015), does not fully capture the idea of optimal behavior embodied in backward

induction. One difficulty is that coalitions involved in a farsighted objection are not re-

quired to make the most profitable moves (in a Pareto sense) that may be available to

them. This is the issue of maximality. For example, coalition S1 might move from x to

y, anticipating that S2 will then move to z. If z is a final outcome, and all players in S1

prefer z to x and all those in S2 prefer z to y, then this would be considered a legitimate

farsighted objection to x. But what if the move by S2 to z is not maximal, in the sense

that at y it has another available move, say to z′, which is also a final outcome, that is

even better than z for all its members? It seems reasonable to require that if z and z′ are

the only moves available to S2, then both S2 and S1 should focus on z′ rather than z as

the final outcome. But the farsighted stable set does not insist on this.

Another feature of farsighted objections is that they permit coalitions to hold differ-

ent beliefs about the continuation path of coalitional moves. For instance, it is possible

that x is not in the farsighted stable set because S1 replaces it with y, anticipating a sec-

ond, and final, move to z while at the same time x′ is not stable because S2 replaces it

with y, expecting the next, and final, move to be to z′ (not z). We refer to this as the is-

sue of consistent beliefs. An alternative interpretation of this phenomenon is that rather

than being inconsistent, beliefs are history dependent. Thus, agents may commonly be-

lieve that y will transition to z or z′ depending on whether y was preceded by x or x′. In

this paper we restrict beliefs to be consistent, or history independent, in the sense that

the belief about the continuation from a given state does not depend on how the current

state was reached. This corresponds to the Markovian assumption commonly made in

dynamic models such as Konishi and Ray (2003). In Sections 2 and 3, we provide several

examples to explain these issues in more depth.

The main aim of this paper is to incorporate maximality and consistency (or history

independence) of beliefs in the notion of farsighted stability while maintaining the par-

simony of the blocking approach, i.e., without the introduction of a protocol or other

details of the negotiation process.3 To accomplish this, the only new concept that needs

to be added to the traditional framework of coalitional games is that of an expectation

function, a tool we borrow from Jordan (2006). This describes the transition from one

state to another, as well as the coalition that is supposed to effect the move. The expec-

tation function represents the commonly held beliefs of all agents about the sequence of

coalitional moves, if any, from every state. The use of a single expectation function im-

mediately incorporates consistency or history independence. Of course, the coalition

expected to move from one state to another must have the power as well as the incen-

tive to do so. As we see, the explicit specification of an expectation function makes it

possible to impose appropriate restrictions on it that serve to incorporate maximality.

We consider two versions of maximality, one being stronger than the other.

3It would also be interesting to incorporate maximality while allowing for history dependence, but that

is beyond the scope of the present paper.
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A state is said to be stationary if the expectation function prescribes no further move

once this state is reached. The set of such stationary states then has an inherent element

of stability. This leads us to define two related solution concepts: the rational expecta-

tions farsighted stable set (REFS) and the strong rational expectations farsighted stable set

(SREFS). These are the set of stationary points of an expectation function that satisfies

one or the other notion of maximality as well as farsighted versions of internal and ex-

ternal stability. A key point of the paper is to show that although there are some cases in

which a farsighted stable set, or even a vNM stable set, is a REFS or a SREFS, in general

imposing rational expectations can be consequential for farsighted stability.

At some intuitive level, notions of farsightedness and maximality attempt to bring

into coalitional games considerations that are similar to backward induction in nonco-

operative games. This will become clear in Section 2, where we describe the framework

and present a series of examples showing that the failure to impose maximality and con-

sistency can lead to counterintuitive predictions. Because these examples have “termi-

nal nodes,” allowing for backward induction, the connection between subgame perfec-

tion and maximality is obvious.4 The difficulty, of course, is that coalitional games do

not typically have the structure of an extensive form that allows for recursion,5 and our

main conceptual task is to formalize these ideas within the parsimony of the blocking

approach (without introducing a protocol or other details about the negotiation pro-

cess). We do so by incorporating an expectation function into the framework of coali-

tional games.

Section 3 contains formal definitions of an expectation function as well as the differ-

ent versions of maximality and our solution concepts: REFS and SREFS. We show that

one special but interesting case in which both these solution concepts coincide with the

farsighted stable set is when the latter consists of states with a single payoff. However,

this equivalence does not hold more generally. The following two sections apply these

concepts to a couple of important economic models and illustrate how the imposition

of rational expectations can result in predictions that are very different from those of

existing versions of stable sets with farsighted players.

Section 4 provides an application to simple games, which have proved to be very

useful in studying voting behavior and possess a rich literature on stable sets. We show

that in this class of games, the farsighted stable sets identified in Ray and Vohra (2015)

do not meet the consistency test or, if they do, it is only by allowing beliefs to be history

dependent. Moreover, the restriction to rational expectations, as in REFS or SREFS, leads

to sharply different predictions regarding farsighted stability. For this class of games, the

contrast between a farsighted stable set and a REFS (or a SREFS) seems not to arise from

the maximality issue; it hinges entirely on the consistency issue. We also establish the

existence of a SREFS in a large class of simple games.

4More generally, the connection comes out perhaps most clearly in Kimya’s (2015) concept of equilib-

rium coalitional behavior (ECB), which is defined for a model that has the advantage of being directly ap-

plicable to extensive form games.
5Coalition-proof Nash equilibrium in Bernheim et al. (1987) and equilibrium binding agreements in Ray

and Vohra (1997) are able to make use of recursion by restricting attention to internal blocking, where each

coalition in a sequence of objections is a subset of the previous one.
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Section 5 studies pillage games. These are models of economies where property

rights do not exist so that the more “powerful” can capture the assets or wealth of the less

powerful. Jordan (2006) and Acemoglu et al. (2008) have studied farsighted cooperative

behavior in these models.6 The application of our concepts to pillage games is comple-

mentary to the exercise in the previous section. Here it is the maximality issue, rather

than consistency, that turns out to make a crucial difference. In fact, in this model, the

distinction between our two notions of maximality is also important; there exist REFSs

that are not SREFSs. This is also the case for the Acemoglu et al. (2008) model of political

power. Moreover, the SREFS provides a new characterization of their equilibrium no-

tion, while the notions of REFSs or farsighted stable sets are not strong enough to yield

precisely their solution.

2. M  

We consider a general setting, described by an abstract game, (N�X�E�ui(·)), where N

is the set of players and X is the set of outcomes or states. Let N denote the set of all

subsets of N . The effectivity correspondence, E : X × X �→ N , specifies the coalitions

that have the ability to replace a state with another state: for x� y ∈ X , E(x� y) is the

(possibly empty) set of coalitions that can replace x with y. Finally, ui(x) is the utility of

player i at state x.

The set of outcomes as well as the effectivity correspondence depend on the struc-

ture of the model being studied. For instance, in a coalition (or characteristic function)

game, (N�V ), there is a set of feasible utilities, V (S), for every coalition S.7 In this case, a

state generally refers to a coalition structure and a corresponding payoff allocation that

is feasible and efficient for each of the coalitions in the coalition structure. Historically,

however, following von Neumann and Morgenstern (1944), much of the literature has

treated the set of states to be the set of imputations—the Pareto efficient utility profiles

in V (N)—and implicitly assumed that S ∈ E(x� y) if and only if yS ∈ V (S). We explain

below why this turns out to be unsatisfactory for studying farsightedness.

State y dominates x if there is S ∈ E(x� y) such that uS(y) ≫ uS(x). In this case, we

also say that (S� y) is an objection to x.

The core is the set of all states to which there is no objection.

A set K ⊆X is a vNM stable set if it satisfies the following statements:

(i) There do not exist x� y ∈K such that y dominates x: internal stability.

(ii) For every x /∈K, there exists y ∈K such that y dominates x: external stability.

For an abstract game, we define farsighted dominance as follows.

State y farsightedly dominates x (under E) if there is a sequence y0� (y1� S1)� � � � �

(ym� Sm), with y0 = x and ym = y, such that for all k= 1� � � � �m,

Sk ∈E
(

yk−1� yk
)

6Piccione and Rubinstein (2007) study the analogue of an exchange economy in the “jungle,” which is

similar to a world without property rights.
7A transferable utility (TU) coalitional game is denoted (N�v), where V (S) = {u ∈ RS |

∑

i ui ≤ v(S)} for

all S.



1196 Dutta and Vohra Theoretical Economics 12 (2017)

and

u(y)Sk ≫ u
(

yk−1
)

Sk
�

A set F ⊆X is a farsighted stable set if the following statements hold:

(i) There do not exist x� y ∈ F such that y farsightedly dominates x: farsighted inter-

nal stability.

(ii) For every x /∈ F , there exists y ∈ F such that y farsightedly dominates x: farsighted

external stability.

It is important to emphasize that the notion of effectivity is especially delicate in

the context of farsightedness. Harsanyi (1974), in defining farsighted dominance for a

characteristic function game, maintained the von Neumann–Morgenstern assumption

that S ∈ E(x� y) if and only if yS ∈ V (S).8 This way to specify effectivity gives coalition

S complete freedom in choosing y−S , the payoffs to outsiders (provided y is an imputa-

tion and yS ∈ V (S)). This obviously leads to the question of why or how coalition S can

dictate the payoffs of coalition N−S. However, this questionable assumption has not re-

ceived much attention until recently because it plays no role for myopic solutions such

as the core and the stable set. But in the case of farsighted dominance, this is not only

conceptually questionable but can significantly alter the nature of the farsighted stable

set, as shown by Ray and Vohra (2015). They demonstrate that imposing reasonable re-

strictions on the effectivity correspondence results in a farsighted stable set that is very

different from, and arguably more plausible than, that of Harsanyi (1974). We therefore

need to be attentive to this issue when we consider specific models in Sections 4 and 5.

Until then, to highlight the main concerns of this paper, we work in the generality of an

abstract game, without any explicit restrictions on the effectivity correspondence.

The farsighted stable set is based on an optimistic view of the coalitions involved in a

farsighted objection. A state is dominated if there exists some path that leads to a better

outcome. Chwe (1994) proposed a farsighted solution concept based on conservative

behavior, which is good at identifying states that cannot possibly be considered stable.

A set K ⊆ X is consistent if

K =
{

x ∈X | for all y and S with S ∈E(x� y), there exists z ∈K such that z = y or

z farsightedly dominates y and ui(z) ≤ ui(x) for some i ∈ S
}

�

Thus, any potential move from a point in a consistent set is deterred by some farsighted

objection that ends in the set. Chwe shows that there exists one such set that contains

all other consistent sets and he defines this to be the largest consistent set (LCS).

In general, both of these solution concepts are unsatisfactory because optimistic or

pessimistic expectations are both ad hoc.9. Ideally, a solution concept should be based

8In fact, Harsanyi was following the standard practice of making this part of the dominance condition

rather than presenting it through an effectivity correspondence. So it would be more precise to say that this

is implicitly what Harsanyi assumed.
9For a comprehensive study of stable sets based on optimistic or pessimistic behavior see Greenberg

(1990)
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F 1. The maximality problem for a farsighted stable set.

F 2. The maximality problem for a LCS.

on optimal behavior (which may of course turn out to be optimistic or pessimistic in

particular examples). The following examples, based on similar ones in Xue (1998),

Herings et al. (2004), and Ray and Vohra (2014), illustrate this problem vividly.

E 1. The game is depicted in Figure 1. Player 1 is effective in moving from state

a to b, while player 2 can replace state b with either c or d, which are both “terminal”

states. The numbers below each state denote the utilities to the players.

Both c and d belong to the farsighted stable set since they are terminal states. Since

there is a farsighted objection from a to c, the former is not in the farsighted stable set.

However, this is based on the expectation that player 2 will choose to replace b with c

rather than d even though he/she prefers d to c. If player 2 is expected to move, ra-

tionally, to d, then a should be judged to be stable, contrary to the prediction of the

farsighted stable set. Note that a belongs to the LCS because of the possibility that the

final outcome is d. So in this example the LCS makes a more reasonable prediction than

the farsighted stable set. ♦

E 2. This is a modification of Example 1 as shown in Figure 2.

Now the optimal move for player 2 is to choose c rather than d. The LCS and far-

sighted stable set remain unchanged. But now it is the LCS that provides the wrong

answer because player 1 should not fear that player 2 will (irrationally) choose d instead

of c. In this example, the farsighted stable set makes a more reasonable prediction. ♦



1198 Dutta and Vohra Theoretical Economics 12 (2017)

F 3. History dependence or inconsistency.

As the previous two examples show, both the LCS and the farsighted stable set suf-

fer from the problem that they do not require coalitions (in these examples, player 2)

to make moves that are maximal among all profitable moves. (A formal definition of

maximality in our framework appears in the next section.)

Another problem that afflicts both the LCS and the farsighted stable set is that they

may be based on expectations that are inconsistent in the sense that coalitions move

based on different expectations about the continuation to follow. For the LCS this was

pointed out by Konishi and Ray (2003). Our next example illustrates this problem for

both the farsighted stable set and the LCS.

E 3. This is a three-player game with five states as shown in Figure 3.

In this example, the farsighted stable set is {d�e} while the LCS is {a�b�d� e}. State

a is not in the farsighted stable set because of a farsighted objection to e, and b is not

in it because of a farsighted objection to d. However, from c player 3 can only move to

either d or e. Thus, the exclusion of both a and b from the farsighted stable set is based

on inconsistent expectations of the move from c. Alternatively, the inclusion of both a

and b in the LCS is also based on inconsistent expectations. The “right” answer in this

example should be that {a�d�e} and {b�d�e} are two “stable sets”: the former if the ex-

pectation is that player 3 will move from c to d and the latter if the expectation is that 3

will move from c to e. Another interpretation of this phenomenon is that expectations

under the farsighted stable set or the LCS allow for history dependence: the continua-

tion from c depends on the history. In this sense, what we are asking for can be seen as

the joint requirement of consistency and history independence. Formally, in a dynamic

model this corresponds to the Markovian assumption, which is commonly made in the

literature, as in Konishi and Ray (2003). ♦

To define optimal behavior, one needs to rely on players having (rational) expec-

tations about the continuation path following any coalition move. In a dynamic set-

ting, such as in Konishi and Ray (2003) or Ray and Vohra (2014), these expectations are
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specified by a dynamic process of coalitional moves. An equilibrium process of coali-

tion formation (EPCF) is a Markovian process in which coalitions take actions that are

maximally profitable in terms of a value function.10 One difference in these models is

that Ray and Vohra (2014), unlike Konishi and Ray (2003), specify a protocol to explicitly

determine the order in which coalitions are called upon to move at each stage. In spirit,

though, in both cases the approach for incorporating consistency and rational expecta-

tions is similar to ours, even though we seek to accomplish this more directly within the

static, blocking approach. Static models most closely related to our approach are Xue

(1998) and Kimya (2015).

Xue (1998) argued that to resolve the maximality issue, we should consider a sta-

ble set defined over paths of coalition actions rather than on outcomes. In many cases,

such as Examples 1 and 2, this can resolve the problem. However, it may push the choice

between optimism and pessimism to another level. When a path is tested against a devi-

ation by a coalition, the deviation can itself lead to multiple stable paths and so in eval-

uating these multiple paths the pessimism/optimism choice resurfaces. This leads Xue

to define the optimistic stable standard of behavior and the conservative stable standard

of behavior. In Example 3, the predictions of these two concepts match the farsighted

stable set and the LCS, respectively. We are able to avoid this by considering stability

in terms of a given expectation that describes transitions from every outcome. In our

framework, once a coalition makes a change, there is no further ambiguity about the

continuation path. In this respect, our approach is similar to Konishi and Ray (2003),

Ray and Vohra (2014), and Kimya (2015), even though these papers propose solution

concepts that are not defined in terms of stable sets. In these papers, an equilibrium

path need not involve all coalitions doing strictly better, whereas in our framework, a se-

quence of coalition moves will be a farsighted objection, involving strict improvements;

see Kimya (2015) for further discussion.

We should acknowledge that one reason all the examples in this section are so sim-

ple is because they concern abstract games with terminal nodes. The skeptical reader

might wonder whether issues of maximality or consistency are consequential in more

general models of economic interest. Our analysis of simple games and pillage games in

Sections 4 and 5 demonstrates that these issues are indeed of more general importance.

But we must first turn to the task of formally incorporating notions of maximality and

consistency in a definition of farsightedness in coalitional games.

3. F   

Jordan (2006) formulates the idea that farsighted stability can be expressed in terms of

commonly held consistent expectations regarding the final outcome from any state. He

defines an expectation as a function φ : X → X such that for every x ∈ X , φ(φ(x)) =

φ(x). A stationary state of φ is x such that φ(x) = x. Given a farsighted stable set, Z, it

10In Example 3, therefore, the prediction would be that the stable outcomes are either {a�d�e} or {b�d�e}.
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is straightforward to construct an expectation φ that is consistent with farsighted dom-

inance and yields Z as the collection of all stationary outcomes. If x ∈Z, let φ(x) = x. If

x /∈Z, let φ(x) = y for some y ∈Z that farsightedly dominates x.11

So as to deal with the issues discussed in Section 2, we modify Jordan’s approach

by interpreting an expectation to describe the transition from one state to another, not

necessarily the final outcome from a state. In addition, we also find it important to keep

track of the coalition that is expected to make the transition. With this in mind, we

define an expectation as a function F : X → X × N . For a state x ∈ X , denote F(x) =

(f (x)�S(x)), where f (x) is the state that is expected to follow x and S(x) ∈ E(x� f (x)) is

the coalition expected to implement this change. If f (x) = x, then S(x) = ∅, signifying

the fact that no coalition is expected to change x. A stationary point of F is a state x

such that f (x) = x. Given an expectation F(·) = (f (·)� S(·)), let fk denote the k-fold

composition of f . In particular, f 2(x) = f (f (x)). With a slight abuse of notation, let

Fk(x) = F(fk−1(x)).

An expectation is said to be absorbing if for every x ∈ X , there exists k such that

fk(x) is stationary. In this case, let f ∗(x) = fk(x), where fk(x) is stationary.

We seek to describe a set of stable outcomes Z ⊆ X that is “justified” by an expecta-

tion in the sense that Z is the set of stationary points of an expectation F that embodies

farsighted rationality.

An absorbing expectation F is said to be a rational expectation if it has the following

properties:

(I) If x is stationary, then from x, no coalition is effective in making a profitable move

(consistent with F), i.e., there does not exist T ∈ E(x� y) such that uT (f
∗(y)) ≫

uT (x).

(E) If x is a nonstationary state, then F(x) must prescribe a path that is profitable

for all the coalitions that are expected to implement it, i.e., (x�F(x)�F2(x)� � � � �

Fk(x)) is a farsighted objection where fk(x) = f ∗(x).

(M) If x is a nonstationary state, then F(x) must prescribe an optimally profitable

path for coalition S(x) in the sense that there does not exist y such that S(x) ∈

E(x� y) and uS(x)(f
∗(y)) ≫ uS(x)(f

∗(x)).

The set of stationary points, �(F), of a rational expectation F is said to be a rational

expectations farsighted stable set (REFS).

Conditions (I) and (E) are related to but not the same as farsighted internal and ex-

ternal stability (conditions (i) and (ii) in the definition of a farsighted stable set), and the

differences can be significant enough to generate very different results, as we will see.

Since �(F) is a set of stationary states, condition (I) clearly implies that �(F) satisfies

myopic internal stability in the traditional sense. It is weaker than farsighted internal

stability since it requires internal stability only with respect to those farsighted objec-

tions that are consistent with the common expectation F .

11This bears some similarity to Harsanyi’s (1974) attempt to relate the stationary set of an equilibrium in

a noncooperative game to a version of a (farsighted) stable set.
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Condition (E) states that to every x /∈ �(F), there is a farsighted objection (terminat-

ing in �(F)) consistent with the common expectation F . This is stronger than farsighted

external stability since it requires consistency with F .

Condition (M) is the maximality condition—a translation of the corresponding con-

dition of Konishi and Ray (2003) and Ray and Vohra (2014) into our framework. It re-

quires that if S(x) is expected to move from x to f (x), then the final outcome resulting

from this is not Pareto dominated for S(x) by some other move this coalition could have

made. For instance, it would require that in Example 1, f (b) = d, and in Example 2,

f (b) = c. Condition (M) is clearly a minimal requirement of optimality. It is also a suffi-

cient expression of optimality if one takes the view that at a nonstationary state x, S(x) is

the coalition that has the floor, which gives it the sole option to select a transition from x.

However, one could entertain models in which, under certain conditions, some

other coalition may also have the right to intervene and change course. For instance,

it may be possible for some subset of S(x) to thwart f (x) and move elsewhere. This

motivates the following notion of strong maximality:

(M′) If x is a nonstationary state, then F(x) must prescribe an optimally profitable

path in the sense that no coalition has the power to change course and gain,

i.e., there does not exist T ∈ E(x� y) such that T ∩ S(x) �= ∅ and uT (f
∗(y)) ≫

uT (f
∗(x)).

Condition (M′) strengthens (M) by allowing for the possibility that a coalition T that

includes some players from S(x) is allowed to change the transition. This is based on

the idea that a move by S(x) requires the unanimous consent of all its members, which

means that another coalition may seize the initiative if it can enlist the support of at least

one player in S(x).

A expectation F satisfying (I), (E), and (M′) is a strong rational expectation. The set

of stationary points of a strong rational expectation F is said to be a strong rational ex-

pectations farsighted stable set (SREFS).

Note that strong maximality continues to assume that a coalition disjoint from S(x)

cannot interfere in the expected move. An even stronger notion of maximality drops this

assumption as well. While we do not pursue this here, see footnotes 12 and 16 below.

We expect that these differences in maximality notions would get reflected in the de-

tails of the negotiation process embedded in any underlying noncooperative game that

might explain a given notion of a farsighted stable set. An important direction for future

work is to carry forward the general Nash program to the study of stable sets by study-

ing noncooperative games that lead to one kind of stable set or another. Interestingly,

Harsanyi (1974) can be viewed as one such exercise, showing that a (noncooperative)

“equilibrium-point interpretation of stable sets” compels us to replace the dominance

relation of von Neumann and Morgenstern with farsighted dominance.

Every SREFS is clearly a REFS. However, the converse is not true, as illustrated in the

next couple of examples.

E 4. For the two-player game depicted in Figure 4, consider F such that f (b) = d

and S(x) = {1�2}. Since S(x) gains by moving from b to d and there is only one move
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F 4. A REFS need not be a SREFS.

F 5. A REFS may exist but not a SREFS.

available to this coalition, this is clearly a maximal move. If player 1 anticipates that

coalition {1�2} will form and move to d, then he/she will move from a to b. So the REFS

corresponding to F is {c�d}. However, the move by {1�2} from b to d is not strongly

maximal because {2} could do even better by turning down this move and moving to c

instead. In our language, F does not satisfy strong maximality, and so {c�d} is not SREFS.

A strongly maximal rational expectation, say F ′, must have the property that f ′(b) = c

with S(b) = {2}. This dissuades {1} from moving from a to b, ensuring that {a� c�d} is

a SREFS and, of course, also a REFS. Alternatively, {c�d} is a REFS but not SREFS. In

Section 5, we see a more general version of this phenomenon. ♦

Our next example shows that condition (M′) of the SREFS may be too demanding for

existence, even though a REFS may exist.

E 5. In the game shown in Figure 5, there are three possible rational expectation

functions prescribing moves from a to one of b, c, or d. All of them satisfy maximality. Of

course, for each of these expectation functions, all three terminal states are stationary.

So in each case, {b� c�d} is a REFS. However, none of these expectation functions sat-

isfies strong maximality. For instance, consider F such that f (a) = b and S(a) = {1�2}.

This does not satisfy strong maximality since player 2 can join with 3 to move to c, a ter-

minal state. The same argument applies to the other two rational expectation functions.
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F 6. Non-existence.

So there is no expectation function for which the set {b� c�d} is a SREFS. Alternatively,

{a�b� c�d} cannot be a SREFS because it would violate (I). So there is no SREFS in this

example.12 ♦

In general, even the existence of a REFS is not guaranteed. One example in which this

is the case is the three-player nontransferable utility (NTU) “roommate game” depicted

in Figure 6.

E 6. As shown in Figure 6, from every state there is one two-player coalition that

gains by moving to another state.

It is easy to see that this game possesses no vNM stable set, no farsighted stable set,

and no REFS. ♦

Fortunately, the failure of existence seen in Examples 5 and 6 does not extend to the

applications we consider in Sections 4 and 5. There we are able to establish the existence

of a SREFS under some mild conditions. Apart from showing existence, the main theme

of these sections is that a REFS or SREFS can be very different from a farsighted stable

set (Section 4) and a REFS can be very different from SREFS (Section 5). However, there

is one interesting case in which a SREFS (or REFS) coincides with a farsighted stable set.

A set of states Z is a single-payoff set if u(x) = u(y) for all x� y ∈ Z.

T 1. If Z is a single-payoff REFS, it is a SREFS and a farsighted stable set. Con-

versely, if Z is a single-payoff farsighted stable set, then it is a SREFS.

All proofs are provided in the Appendix.

12An even stronger notion of maximality, which we do not pursue, is the one adopted by Xue (1998). It

allows the expected path to be altered by any coalition, even one that is disjoint from the coalition that is

expected to move. For instance, modify Example 5 so that player 1 is effective in moving from a to b, player

2 from a to c, and player 3 from a to d. Now, REFS and SREFS are the same: they consist of {b� c�d}. But the

extremely strong maximality condition that allows any coalition to change course and prevent someone

else from making a move would result in nonexistence in this example. More general models in which it

can lead to nonexistence are pillage games; see footnote 16 below.
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R 1. Consider a characteristic function game in which the interior of the core is

nonempty. Then, by Theorem 2 of Ray and Vohra (2015), every state with a payoff in the

interior of the core is a single-payoff farsighted stable set. By Theorem 1, all such games

possess a SREFS.

4. S 

In this section, we study the class of monotonic, proper simple games (see von Neumann

and Morgenstern 1944). These are TU games that have the following properties for each

coalition S:

(i) Either v(S)= 1 or v(S)= 0.

(ii) If v(S)= 1, then v(T) = 1 for all S ⊆ T .

(iii) Moreover, if v(S)= 1, then v(N − S)= 0.

The set of efficient payoff allocations, or imputations, in any such game is the nonnega-

tive N-dimensional unit simplex, △. A coalition S such that v(S) = 1 is called a winning

coalition. Let W denote the set of all winning coalitions. For simplicity, assume that

no i ∈ N is a dummy player ; that is, each i belongs to at least one minimal winning

coalition.13

A player i is called a veto player if i is a member of every winning coalition; that is,

i ∈ W for every W ∈ W . The collection of all veto players, also known as the collegium, is

denoted C =
⋂

S∈W S. A collegial game is one in which C �= ∅. The collegium (and the

corresponding game) will be called oligarchic if C is itself a winning coalition. Note that

in the absence of dummy players, an oligarchic game is one in which C = N ; it is a pure

bargaining game, in which the grand coalition is the only winning coalition.

In a simple game, a state x specifies a coalition structure, denoted π(x), and an as-

sociated payoff, u(x), such that
∑

i∈W (x) ui(x) = 1, where W (x) is the winning coalition

(if any) in π(x). We use X0 to denote the set of states where no winning coalition forms

and so ui = 0 for all i. States in X0 are called zero states.

We show that under certain conditions, all such games possess a SREFS. Moreover,

the consistency of expectations underlying a SREFS makes the structure of these sets

very different from the farsighted stable sets identified in Ray and Vohra (2015)

We make the following assumption regarding the effectivity correspondence.

A 1. The effectivity correspondence satisfies the following restrictions:

(a) For every x ∈ X , S ⊆ N , and u ∈ RS
+ with

∑

i∈S ui = v(S), there is y ∈ X such that

S ∈E(x� y) and u(y)S = u.

(b) If S ∈E(x� y), then S ∈ π(y) and T − S ∈ π(y) for every T ∈ π(x).

(c) For all x� y ∈X and T ⊂N , if (W (x)−T) ∈ W , then T ∈E(x� y) only if ui(y) ≥ ui(x)

for all i ∈W (x)− T .

13The proof of our main result in this section can be easily modified to accommodate the presence of

dummy players.
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Condition (a) states that every coalition can form and divide its worth in any way

among its members. Condition (b) states that when a coalition S forms, it does not af-

fect any coalition that is disjoint from it, and if it includes some members of a coalition,

then the residual remains intact. This is a natural way to describe the immediate change

in the coalition structure resulting from the formation of a coalition. Condition (c) re-

quires that if, with the formation of T , the residual in W (x) remains winning, then the

players in W (x) − T cannot lose.14 It includes the condition that if W (x) ∩ T = ∅, then

u(x) = u(y). Conditions (b) and (c) should be interpreted as natural restrictions that

prevent a coalition from reorganizing the payoffs or coalition structure of those outside

it. We mentioned earlier the pitfalls of not imposing such restrictions in the context of

farsighted solution concepts.

In an oligarchic game, any strictly positive payoff is in the interior of the core. By

Remark 1, any state with a strictly positive payoff, along with coalition N , is a SREFS. In

the remainder of this section, therefore, we concentrate on non-oligarchic games.

We discuss in detail an example that illustrates one of the main themes of this

section—namely the difference between REFS or SREFS and the farsighted stable set

in simple games.

4.1 An example

Consider the following three-person example.

E 7 (A three-player, TU game, (N�v), with one veto player). We have N =

{1�2�3}, v({1�2}) = v({1�3}) = v(N)= 1, and v(S)= 0 for all other S. ♦

Ray and Vohra (2015) show that under Assumption 1, every farsighted stable set in

this game assigns a fixed payoff to the veto player, strictly between 0 and 1, while the

remaining surplus can be divided in any way among players 2 and 3. More precisely, for

every a ∈ (0�1), there is a farsighted stable set Za with the set of payoffs {u ∈ R3
+ | u1 =

a�u2 + u3 = 1 − a}; see Figure 7, where the vertices of the simplex denote states at which

the entire surplus is an allocation to one of the three players.

However, no set of the form Za can be a REFS because the external stability of Za

(in the sense of a farsighted stable set) relies on inconsistent expectations. To see this,

consider why the allocation u is not in Za. There is first an objection by {2�3}, resulting

in the coalition structure {{1}� {2�3}} and 0 payoff to all players. Call this state x0. This

is followed by a move by N to a point in A. Additionally, u′ is not stable because there

is first a move by {2�3} to x0, followed by a move by N to a point in B. In the first case,

x0 is expected to be replaced by a point in A, while in the second case it is expected

to be replaced by a point in B. This is precisely the kind of “inconsistent” expectation

that must be ruled out in a REFS or SREFS. In other words, a farsighted stable set in this

example cannot be a REFS.

14Of course, this also implies that W (x)−T ∈ π(y). Condition (b) goes beyond this because it also applies

to residuals that are not winning.
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F 7. A farsighted stable set, Za, in Example 7.

F 8. SREFS in Example 7.

We now show that in this example there is a SREFS, Z, consisting of a finite set of

states Z = {(u1�π1)� (u2�π2)� (u3�π3)}, where for some a ∈ (0�1) and b ≡ (1 − a)/2,

u1 = (a�b�b)� π1 = {N}�

u2 = (a+ b�b�0)� π2 =
{

{1�2}� {3}
}

�

u3 = (a+ b�0� b)� π3 =
{

{1�3}� {2}
}

�
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The three imputations corresponding to Z are shown in Figure 8. To sustain Z as a

SREFS, we construct an expectation described by the following rules. In what follows,

we write x = (u�π) and xi = (ui�πi), i = 1�2�3.

(i) For each x ∈Z, f (x) = x.

(ii) If x is such that u= (0�0�0), then S(x) =N and f (x) = x1.

(iii) For each x /∈Z such that u1 ≥ a+ b, S(x)= {2�3} and f (x) = ((0�0�0)�π).

(iv) For each x /∈Z such that u1 < a+ b and u2 < b, S(x) = {1�2} and f (x) = x2.

(v) If x is not covered by (i)–(iv) above, and u1 < a + b and u3 < b, then S(x) = {1�3}

and f (x) = x3.

(vi) Finally, if x is not covered by (i)–(v) above and u1 < a, then S(x) = {1} and f (x) =

((0�0�0)�π).

This describes F for all x ∈X .

Clearly, F satisfies (I) and (E). To check (M′), note that in all states in Z players 2 and

3 get either b or 0. This implies strong maximality in cases (ii) and (iii). The deviations in

(iv) and (v) are strongly maximal since 1 gets a + b, her highest possible payoff in Z. In

case (vi), (M′) is satisfied because players 2 and 3 have no reason to move, which means

that player 1 does not possess a farsighted objection that could end up at x2 or x3.

This completes the demonstration that Z is a SREFS.

4.2 The main theorem

In more general non-oligarchic games, Ray and Vohra (2015) show that it is possible to

construct a farsighted stable set in which veto players, and perhaps some others, receive

a fixed payoff while the remainder of the surplus is shared in any arbitrary way among

the remaining players. Such sets, known as discriminatory stable sets, also play an im-

portant role in vNM stable set theory, though with the rather important difference that

in vNM stable sets it is non-veto players who received a fixed payoff. In contrast, SREFSs

do not seem to have the structure of discriminatory stable sets. Instead, in most cases

SREFSs yield finite payoff sets. We have of course already observed this in Example 7, but

this is also the more general conclusion that emerges from the proof of our next result.

Although the notion of a farsighted stable set does not impose maximality, in non-

oligarchic simple games this property does seem to hold. In this model, therefore, the

difference between farsighted stable sets and SREFSs seems to stem from consistency

and history independence.

For most simple games we have been able to constructively prove the existence of

a SREFS. There is, however, one particular case for which existence has proven to be

elusive. This is the case in which there is a three-player minimal winning coalition with

precisely one veto player. Our existence result applies whenever there are two or more

veto players or whenever the size of a minimal winning coalition exceeds three. We do

need to make the following assumption.
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A 2. There does not exist a three-player minimal winning coalition with pre-

cisely one veto player.

Subject to this assumption we are able to construct a SREFS for all collegial games.

T 2. A SREFS exists in every non-oligarchic collegial game satisfying Assump-

tions 1 and 2.

Can Assumption 2 can be dispensed with or will this case yield an example in which

a SREFS does not exist? As of now this question remains open.

Of course, a large class of simple games does not have any veto player, the simplest

example being the majority game in which any majority of players constitutes a win-

ning coalition. von Neumann and Morgenstern (1944) identified a class of constant-

sum games that have a vNM stable set known as a main simple solution. Suppose there

is a ∈ ℜN
+ such that

∑

i∈S ai = 1 for every minimal winning coalition S. For each min-

imal winning coalition S, define uS to be the imputation such that uSi = ai for all i ∈ S

and uSi = 0 otherwise. If the game is a constant-sum game, then the set of all such im-

putations is a vNM stable set, known as the main simple solution. For instance, the

imputation (0�5�0�5�0) and its permutations constitute a main simple solution in the

three-person majority game. It can be shown that the set of states corresponding to a

main simple solution is a SREFS.

Suppose U is a main simple solution with associated vector a ∈ ℜN
+ . Let Z(U) =

{x ∈ X | u(x) ∈ U}. We claim that Z(U) is a SREFS. Since U is a vNM stable set, for

every x /∈ Z(U), there is S ⊆ N and y ∈ Z(U) such that S ∈ E(x� y) and uS(y) ≫ uS(x).

For every x /∈ Z(U), pick any (S� y) with this property and set F(x) = (y�S). If there are

several such (S� y), pick one arbitrarily. For every x ∈ Z(U), let f (x) = x. Clearly, F is

an expectation that satisfies (E). Suppose it does not satisfy (I). Then there is x ∈ Z(U)

and T ∈ E(x� y) such that uT (f
∗(y)) ≫ uT (x). Let S be the minimal winning coalition

such that u(x) = uS . Since ui(x) = ai for all i ∈ S, no i ∈ S can get a higher payoff at

any other state in Z(U), which implies that S ∩ T = ∅. Of course, S must be contained

in the winning coalition at x. By Assumption 1(c), uS(y) = uS(x) = aS , i.e., y ∈ Z(U)

and therefore f ∗(y) = y. But then uT (f
∗(y)) ≫ uT (x) means that uT (y) ≫ uT (x), with

y ∈ Z(U), which contradicts the myopic internal stability of U . Thus, F satisfies (I). It

clearly satisfies strong maximality, (M′), because if any S gains by moving from x to y ∈

Z(U), then ui(y) = ai for all i ∈ S and there is no other y ′ ∈ Z(U) such that ui(y
′) > ui(y)

for any i ∈ S.

5. P 

In this section, we show that in pillage games, in contrast to simple games, maximal-

ity and strong maximality rather than consistency play a crucial role in identifying far-

sighted stability. In Jordan’s (2006) model of “wealth is power,” we find that there is an

important distinction between REFS and SREFS, both of which can be different from

the vNM stable set or the farsighted stable set. In the Acemoglu et al. (2008) model of
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political power, we see another interesting illustration of the difference between REFS

and SREFS. Acemoglu et al. (2008) propose the unique ruling coalition (URC) as a so-

lution concept and characterize it both through axioms as well as the subgame perfect

equilibrium of a noncooperative model of coalition formation. In this model, REFSs co-

incide with farsighted stable sets and include the URC, but they generally include other

outcomes as well. We show that SREFS provides just the refinement of REFS that yields

precisely the URC. Hence SREFS provides a new characterization of the URC.

In a pillage game, a coalition can appropriate the resources of any other coalition

that has less power. Given a set of players N , the set of wealth allocations is △, the unit

simplex in RN . We consider the class of pillage games in which wealth is power: the

power of coalition S is simply its aggregate wealth. Given wealth allocations w and w′,

let L(w�w′) = {i ∈N | w′
i <wi} denote the set of players who lose in moving from w to w′.

We define the effectivity correspondence in this model as15

S ∈E
(

w�w′
)

if and only if
∑

i∈S

wi >
∑

i∈L(w�w′)

wi and wi = w′
ifor all i /∈ S ∪L

(

w�w′
)

� (1)

This expresses the notion that a coalition can pillage another only if its power is strictly

greater than that of the victims. Moreover, only the winners’ and losers’ wealth payoffs

can be affected through the act of pillaging. That is, if j is neither among those who

have been pillaged nor part of the coalition that changes w to w′, then wj = w′
j . This

last condition rules out a pillaging coalition sharing its spoils with others. While this

condition is of no consequence for myopic notions of stability, it becomes important in

the context of farsighted stability. As we remarked earlier, it makes no sense to allow a

deviating coalition to affect the distribution of the payoff of outsiders. This is illustrated

in Example 8 below, where a gift can turn out to be hazardous to the recipients—a Trojan

horse. We therefore assume throughout this section that the effectivity correspondence

is defined by (1).

Given the effectivity correspondence, notions of the core, myopic and farsighted sta-

ble set, REFS, and SREFS remain unchanged.

By way of background, it is useful to begin with Jordan’s analysis of the (myopic) vNM

stable set.

A number a ∈ [0�1] is said to be dyadic if a = 0 or a = 2−k for some nonnegative

integer k. For every positive integer k, let

Dk =
{

w ∈ △ | wi is dyadic for every i and if wi > 0, then wi ≥ 2−k
}

�

The set of all dyadic allocations is D =
⋃

kDk. The set of all allocations in which one

player captures the entire surplus, D0, is the set of tyrannical allocations. Of course, all

such allocations are in the core. It is easy to see that the only other allocations in the core

are ones in which two players share the surplus equally. In other words, the core is D1.

Jordan (2006) provides the following characterization of the stable set.

15Although Jordan (2006) does not explicitly define an effectivity correspondence, our formulation is

consistent with his.
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T 3 (Jordan). The unique vNM stable set is D.

Jordan (2006) illustrates the issue of farsightedness by considering the three-

player example in this model, where D consists of the allocations (1�0�0), (0�5�0�5�0),

(0�5�0�25�0�25), and all their permutations. From the allocation (0�5�0�25�0�25), player 1,

by pillaging 2, can achieve the allocation (0�75�0�0�25). While the latter is not in the sta-

ble set, it allows player 1 to then pillage 3 and achieve the tyrannical allocation (1�0�0),

which is stable. In other words, (1�0�0) is a farsighted objection to (0�5�0�25�0�25). Note

that if player 3 anticipates the second step in this move, she should not remain neutral

when player 1 pillages 2. Jordan (2006) formalizes this idea by explicitly introducing

expectations. He shows that if otherwise neutral players act in accordance with the

expected (final) outcome, then the stable set, D, is indeed stable in a farsighted sense.

However, Jordan’s analysis does not really conform to a framework in which the ef-

fectivity correspondence specifies which coalition(s) is (are) effective in changing a cur-

rent state wk−1 to wk, independently of where wk ends up. For instance, in the three-

player example, whether player 1 is effective in changing the allocation (0�5�0�25�0�25)

to (0�75�0�0�25) cannot depend on any further changes that may be expected to take

place. What is the farsighted stable set if we adopt the effectivity correspondence speci-

fied in (1)? As our next result shows, it turns out to be identical to D1, the core.

T 4. Suppose the effectivity correspondence is defined as in (1). Then the unique

farsighted stable set is D1, the core.

We now turn to a consideration of SREFSs and REFSs in this model. Dyadic alloca-

tions in which players with positive wealth share equally play an important role in this

analysis. For every nonnegative integer k, let Bk = {x ∈ △ | xi = 0 or xi = 2−k�∀i} and

B =
⋃

kBk. Note that B0 is the set of tyrannical allocations and B0 ∪B1 =D1.

Our next example illustrates a crucial difference between REFSs and SREFSs in this

model.

E 8. The pillage game with four players. The unique SREFS is B but there are

two REFSs, B as well as B0 ∪B1. ♦

The core, or D1 = B0 ∪ B1, in this example is the set of all permutations of alloca-

tions of the form (1�0�0�0) and (0�5�0�5�0�0). Since B2 consists of the equal-division

allocation, w̄ = (0�25�0�25�0�25�0�25), then B = D1 ∪ {w̄}. It is easy to see, that there can

be no further pillaging from any allocation in D1. So every REFS, and therefore every

SREFS, contains D1. In fact, D1 is a REFS and so is B, but only the latter is a SREFS. The-

orems 5 and 6 provide general existence results for REFS and SREFS, respectively. But

the four-player case is useful for illustrating the difference between REFS and SREFS.

For the four-player game, consider an expectation function F such that �(F) is a

SREFS. As we already observed, D1 ⊆ �(F). We now argue that this inclusion is strict

by showing that w̄ ∈ �(F). Observe that if w is such that only two players have positive

worth, unless they are equal, F must specify that the more powerful player pillages the
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weaker one to end up at a tyrannical allocation. Now consider w such that three players

have positive wealth and one has zero wealth. Without loss of generality, suppose w1 ≥

w2 ≥w3 > 0 and w4 = 0. We now describe why w /∈ �(F). There are two distinct cases.

Case 1. Suppose w = (1/3�1/3�1/3�0). Any two of the first three players can pillage

the remaining player with positive wealth to provide 0�5 to each member of the coalition,

which is stable. Since the only possible act of pillage at w must come from a two-player

coalition, any such move satisfies strong maximality. Thus f (w) must be of the form

fi(w) = fj(w) = 0�5 for i� j ∈ {1�2�3}.

Case 2. Suppose w1 ≥w2 >w3 >w4 = 0. If player 1 pillages 3, he becomes more pow-

erful than 2 and we know that F must then predict the tyrannical allocation (1�0�0�0).

Since player 1 ends up with the entire surplus, the move by 1 to pillage 3 is strongly

maximal. This establishes that w /∈ �(F) and that S(w) = {1} is one possibility for the

coalition that is expected to move at w. If w1 = w2 or if w1 = 0�5 and w2 > w3, then

S(w) = {2} would be another possibility. But—and this is crucial for our arguments to

follow—a strongly maximal F rules out the possibility that S(w) = {1�2}. While {1�2} can

pillage player 3, maximality demands that there be no further change. Otherwise one of

the two players in {1�2} would not have made a profitable move in the first place. Thus

S(w) = {1�2} must mean that f (w) = (0�5�0�5�0�0). While this would be maximal for

{1�2}, it would violate strong maximality since player 1 would have done even better by

pillaging player 3 on her own to move to (w1 + w3�w2�0�0) and then to (1�0�0�0). (We

saw a similar phenomenon in Example 4). Thus, strong maximality implies that either

S(w) = {1} or S(w) = {2}.16 For concreteness, consider w = (0�375�0�375�0�25�0). It is a

maximal move for {1�2} to pillage player 3 and move to (0�5�0�5�0�0). But this is not

strongly maximal. For F to satisfy strong maximality, one of the stronger players must

pillage player 3 on her own and end up with the entire surplus.

It is now easy to see that w̄ ∈ �(F). The only possible acts of pillage at w̄ are for a

three-player coalition to pillage the fourth player or for a two-player coalition to pillage

one of the remaining players. The former action cannot be consistent with F because

we have already shown that if only three players have positive wealth, there must be a

further act of pillage, resulting in one of the three players in the original move eventu-

ally losing. The latter action is also ruled out because, as we have shown in the previ-

ous paragraph, strong maximality leads to a tyrannical outcome; one of the two players

eventually loses. This completes the proof that w̄ ∈ �(F) and �(F) �= D1.

To complete the proof that B = �(F), consider any allocation w �= w̄ such that all four

players have positive wealth. Without loss of generality, let w1 ≥ w2 ≥ w3 ≥ w4 > 0 with

w1 >w4. It follows that w1 +w2 > 0�5. It is sufficient to show that w cannot be stationary

under F . If w1 < 0�5, then w2 < 0�5 as well, and {1�2} can pillage players 3 and 4 to arrive

at the stable allocation (0�5�0�5�0�0). By internal stability, this implies that w /∈ �(F). If

w1 ≥ 0�5, since w1 >w4 > 0, player 1 can pillage player 4 to move to (w1 +w4�w2�w3�0),

where w1 +w4 > 0�5 and w1 +w4 >w2. Now it is easy to see that f ∗(w1 +w4�w2�w3�0) =

16Note that if w1 = w2, either case is possible, but it would then be impossible for F to satisfy the even

stronger maximality condition described in footnote 12. If S(x) = {1}, then {2} would like to disrupt this

move and become the coalition that pillages 3 and vice versa if S(x) = {2}.



1212 Dutta and Vohra Theoretical Economics 12 (2017)

(1�0�0�0). This means that player 1’s move to pillage 4 is strongly maximal. By internal

stability, this must again imply that w /∈ �(F).

Matters are quite different as far as REFSs are concerned. It is possible to construct

a rational expectations function F such that �(F) = D1 is a REFS. The construction of

F (see the proof of Theorem 5 for details) has the property that from every unequal

allocation, the most powerful pillages a least powerful player, and this leads sequen-

tially to a tyrannical allocation. The only remaining issue is to define F in such a way

that w̄ = (0�25�0�25�0�25�0�25) is rendered unstable. This can be done by defining F as

follows:

(i) We have f (w̄)= (0�375�0�375�0�25�0)≡ w′ with S(w̄) = {1�2}. That is, players 1 and

2 jointly pillage player 4 and divide w̄4 equally.

(ii) We have f (w′) = f ∗(w′) = (0�5�0�5�0�0) with S(w′) = {1�2}. Here, players 1 and 2

pillage player 3 and share w′
3 equally.

Note that at w̄ or w′, if {1�2} did not divide their gains equally, at the next stage the

more powerful of the two will pillage the remaining player(s) and obtain her tyrannical

allocation. Thus, the less powerful of the two would not have joined in the act of pillage.

This means that f (w̄) and f (w′) describe a maximal move by {1�2} in the sense of con-

dition (M). It is now easy to see that D1 is a REFS. But as we have already seen, it cannot

be a SREFS.

We now turn to existence for the general case of an arbitrary number of players. For

any positive integer n, let k(n) be the largest integer such that 2k ≤ n.

T 5. For any positive integer k∗ ≤ k(n),
⋃k∗

0 Bk is a REFS.

Recall that B =
⋃k(n)

0 Bk and is therefore the largest REFS identified by Theorem 5.

And there are many others, including the unique farsighted stable set B0 ∪ B1 = D1. In

this model, therefore, unlike simple games, the farsighted stable set can be justified on

the basis of consistent and rational expectations. It does not, however, meet the strong

maximality test, as shown by Example 8. In other words, Theorem 5 cannot be strength-

ened to assert that
⋃k∗

0 Bk is a SREFS for all k > 0. However, as our next result shows

(formalizing the message from Example 8), one of the REFS identified in Theorem 5 is a

SREFS.

T 6. Suppose the effectivity correspondence is as in (1). Then B is a SREFS.

We close this section with a discussion of Acemoglu et al. (2008). They study a model

of political coalition formation in which the power of each player is exogenously given.

For each i ∈N , γi > 0 denotes i’s political power. The power of coalition S is γS =
∑

i∈S γi.

Coalition S ⊆ T is winning in T if γS >αγT , where α ∈ [0�5�1). Denote by W(T) the set of

subsets of T that are winning in T . If such a coalition exercises its power, it captures the

entire surplus and becomes the ruling coalition. The other players are eliminated and

play no further role. However, the ruling coalition may itself be subject to a new round

of power grab from within.
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The distribution of wealth is determined through an exogenous rule that depends

only on the identity of the ruling coalition. Assume that for every player it is better to

be in a ruling coalition than not. Moreover, it is better to be in a ruling coalition with

lower aggregate power. As Acemoglu et al. (2008) point out, a particular example of such

a rule, which we adopt for the sake of simplicity, is

wi(S) =

{

γi/γS if i ∈ S�

0 otherwise.

A state can now be defined as the ruling coalition: at state S, the ruling coalition is S and

the wealth distribution is w(S). The set of states is therefore N . Winning coalitions are

the ones effective in changing a state:

S ∈E(T�S) if and only if S is winning in T �

This means that if a change occurs, the new ruling coalition is smaller. If such a change is

expected to lead to a further change, then a winning coalition will choose not to exercise

its power. This is a result of the fact that any further change must leave some member(s)

of the original winning coalition with a payoff of 0. In other words, if there is a farsighted

objection S�S1� � � � � Sm leading from S to Sm, it must be the case that m = 1; farsighted

dominance is equivalent to dominance.17
 Harsanyi (1974) refers to a farsighted dom-

inance relation with this property as trivial and points out that if this property holds

for every farsighted dominance of one state over another, then the vNM stable set is

equivalent to the farsighted stable set.

Another feature of this model that makes it very tractable is that objections can only

come from subsets of the ruling coalition (internal blocking). This makes it possible to

construct a stable set recursively. Of particular interest in these models are the stable

sets that can be reached from N , inlcuding possibly N itself. We illustrate this through

the following example.

E 9 (Four-player example of the Acemoglu et al. 2008 model). Suppose N =

{1�2�3�4}, γ = (2�4�6�8), and α = 0�5. ♦

A vNM stable set can be constructed as follows. Any ruling coalition consisting of

one individual clearly belongs to the stable set (it is in the core). Any ruling coalition

consisting of two players is not in the stable set because the more powerful player will

eliminate the weaker one; there is an objection leading to a stable state. Next, con-

sider the three-player coalitions. The coalition {1�2�4} is not stable because player 4 has

enough power to eliminate the other two. Let the collection of the other three-player

coalitions be denoted S = {{1�3�4}� {2�3�4}� {1�2�3}}. It is easy to see that no coalition

in S is threatened by a single powerful player. In each instance, two of the players have

enough power to eliminate the third, but the resulting outcome is not stable, as we have

17Recall that in Jordan’s pillage game, a farsighted objection could last several steps, although at each

step it would be the same coalition making the change. This difference stems from the fact that in the

Acemoglu et al. model, only the winning coalition survives to the next stage; there are no neutral players.



1214 Dutta and Vohra Theoretical Economics 12 (2017)

just noted. This means that all coalitions in S are stable and N is not; it will be replaced

by one of these three-player coalitions. Thus, the stable set consists of singletons and the

collection S . In fact, this is also a farsighted stable set because farsighted dominance is

equivalent to myopic dominance in this model. To verify this directly in this example,

it is only necessary to establish the farsighted internal stability for states in S . While

two players could eliminate a third, this cannot result in a farsighted objection ending

in a stable state because the weaker of the two will get eliminated at the next stage. We

conclude that N is not stable and will be replaced by one of the coalitions in S .18

Recall that farsighted internal stability is stronger than condition (I) of the REFS and

myopic external stability is stronger than condition (E) of the REFS. In fact, the equiva-

lence of farsighted dominance and myopic dominance also yields equivalence with the

REFS. To see this, consider a set of states Z that is a stable set as well as a farsighted sta-

ble set. For every state S ∈ Z, let F(S) = S. (Because X = N , we abuse notation slightly

to consider F as a function from N → N .) For S /∈ Z, define F(S) to be a subcoalition

of S that dominates it (myopically) and belongs to Z. If there are several such coali-

tions, pick one arbitrarily. By construction, F satisfies (E). It satisfies (I) because Z is a

farsighted stable set. Finally, it satisfies (M) because for every nonstationary state, S, it

prescribes a move by coalition F(S) that ends with F(S). Since this is the only profitable

move available to F(S), it is trivially maximal.

Acemoglu et al. (2008) provide an axiomatic characterization of a solution to this

model, which they refer to as the unique ruling coalition (URC), and also show that it co-

incides with the subgame perfect equilibria of a noncooperative model of coalition for-

mation. The URC is a refinement of the REFS or the stable set. This difference turns out

to hinge on the difference between REFS and SREFS. In fact, in this model SREFS refines

REFS precisely to the URC.19 This can be illustrated through Example 9. As explained

above, in constructing a rational expectation F , we have the freedom to choose F(N) to

be any one of the three coalitions in S . In particular, we could define F(N) = {2�3�4}.

But players 3 and 4 could do better by forming {1�3�4}; recall that the payoff to a player is

higher in a coalition with lower aggregate power. In other words, F does not satisfy (M′).

In fact, strong maximality in this model, not just in Example 9, reduces to the condition

that if S is not a stationary state, then F(S) has the lowest aggregate power among all

stable coalitions that are winning in S:

If S /∈ �(F)� then F(S) ∈ arg min
T∈�(F)∩W∗(S)

γT � where W∗(S) denotes W(S)− S�

If γ is generic in the sense that γS �= γT for any S�T , S �= T , then clearly F(S) is unique

for every S. The unique strong rational expectation can be computed recursively as fol-

lows. Of course, F(S) = S if |S| = 1. Suppose F(S) has been defined for all S such that

18The singletons are also stable, but none of those states is reachable from N .
19Ray and Vohra (2014) show that their notion of an EPCF yields the same predictions as an REFS, but an

appropriately chosen protocol is needed to sharpen the equilibria to coincide with the URC. See also Kimya

(2015).



Theoretical Economics 12 (2017) Rational expectations and farsighted stability 1215

|S|<k. Then for S with |S| = k,

F(S) =

⎧

⎨

⎩

arg min
T∈�(F)∩W∗(S)

γT if �(F)∩W∗(S) �=∅�

S otherwise.

The term F(S) is the same as φ(S), the Acemoglu et al. (2008) notion of the URC for

player set S. Thus we have yet another characterization of the URC: it is the unique

SREFS. In this model, the farsighted stable set or REFS generally yields a set of outcomes

that strictly includes the URC. Strong maximality refines it precisely to the URC.

6. C 

This paper provides a framework for the analysis of cooperative solution concepts that

combines farsightedness with the principles underlying the von Neumann–Morgenstern

stable sets. We go beyond the recent work of Ray and Vohra (2015) by restricting coali-

tional moves to be maximal. We do so under the assumption that all coalitions hold

common or consistent beliefs about the continuation path of future coalitional moves.

Another interpretation of consistency is history independence: future moves from any

state are independent of previous moves culminating in the current state. An interest-

ing avenue for future research is to incorporate maximality without assuming history

independence.

We model consistency through the use of an expectation function, which describes

the transition from one state to another as well as the coalition that makes the move.

Analogues of internal and external stability that define a stable set are easily incorpo-

rated in this framework. These and two versions of maximality then give rise to two

different solution concepts: the rational expectations farsighted stable set (REFS) and

the strong rational expectations farsighted stable set (SREFS).

In a series of examples, we show that these solution concepts lead to predictions that

are intuitively more appealing than the Chwe largest consistent set or the Ray–Vohra

farsighted stable set. However, Theorem 1 identifies one situation where SREFS, REFS,

and the farsighted stable set coincide. This is the case in which there is a unique payoff

at all states in the farsighted stable set. As shown in Ray and Vohra (2015), any payoff

in the interior of the core of a characteristic function game can be identified as such a

farsighted stable set. According to Theorem 1 it is also a SREFS.

We apply our solution concepts to two broad classes of games. The first is the class

of proper simple games. We prove constructively that under a mild assumption, all

games with veto players have a nonempty SREFS. The SREFS turns out to be quite dif-

ferent from the farsighted stable set identified by Ray and Vohra (2015), the main driver

for the difference being consistency. Our second application is for the class of pillage

games, first studied by Jordan (2006) to analyze cooperative situations without well de-

fined property rights over resources. We show that both a REFS and a SREFS exists for

all such games. Again, these solution concepts turn out to make predictions that are

quite different from that made by the farsighted stable set. In this case, the main driving
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force for the difference is maximality. In this model there is also an important difference

between REFSs and SREFSs.

Finally, we show that the SREFS provides another characterization of the ultimate

ruling coalition, a solution concept advanced by Acemoglu et al. (2008) in their analysis

of political coalition formation.

A

P  T 1. Suppose Z is a single-payoff REFS. Since all stationary states

have the same payoff, Z is clearly also a SREFS and satisfies farsighted internal stability

in the definition of a farsighted stable set. Moreover, condition (E) implies farsighted

external stability in the definition of a farsighted stable set. Thus Z is a farsighted stable

set.

To prove the second part of the theorem, consider a single-payoff farsighted stable

set X0. Define X1 to be the set of states from which there is a farsighted objection to

some state in X0 in a single step. More precisely,

X1 =
{

x ∈X −X0 | ∃x0 ∈X0� S ∈E
(

x�x0
)

with uS
(

x0
)

≫ uS(x)
}

�

Since X0 is a farsighted stable set, from every x ∈X −X0, there is a farsighted objection

leading to some x0 ∈ X0: x� (x1� S1)� � � � � (x′� S′)� (xm� Sm). Clearly x′ ∈ X1, which estab-

lishes the nonemptiness of X1. We now recursively define subsets of X from which there

are farsighted objections leading to X0 in a minimal number of steps. All of these sets

are disjoint and cover X . The construction is as follows.

Suppose Xj is defined for all j = 1� � � � �k. Define Xk+1 to be the set of all other states

from which there is a farsighted objection leading to X0 such that the first step is a state

in Xk:

Xk+1 =

{

x ∈X −

k
⋃

j=0

Xj
∣

∣

∣
there is a farsighted objection x�

(

x1� S1
)

� � � � �
(

xm� Sm
)

,

with x1 ∈Xk and xm ∈X0

}

�

Note that if Xk+1 = ∅, then
⋃k

j=0 X
k = X . To complete the proof, we construct a func-

tion F : X → X × N , where F(x) = (f (x)�S(x)) such that f (x0) = x0 for every x0 ∈ X0

and, for every x ∈ Xk+1, f (x) ∈ Xk. We know that from x ∈ Xk+1 there is a farsighted

objection leading to some state in X0 that proceeds by first moving to a point in Xk.

We choose f (x) as one such point along with a unique coalition that initiates such

a farsighted objection. The function F is constructed recursively. For x ∈ X1, define

f (x) = x0 ∈ X0 and S(x) to be a coalition that has a one step objection from x to x0. If

there are multiple such coalitions, choose one arbitrarily. This describes a unique tran-

sition from X1 to X0. Having defined F :Xj �→Xj−1 ×N for all j = 1� � � � �k, if Xk+1 �= ∅,
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for x ∈ Xk+1 let S1 be a coalition that has a farsighted objection from x to xm ∈ X0, de-

noted x� (x1� S1)� � � � � (xm� Sm), such that x1 ∈ Xk. Let F(x) = (x1� S1). Note that there

may be multiple such farsighted objections. In that case, pick F(x) to be the first el-

ement of any such sequence. Proceeding in this way, we have constructed a function

F : X → X ×N with X0 as its set of stationary points. It remains to be shown that F is a

strong rational expectation.

Since the stationary points of F have the same payoff vector, it trivially satisfies con-

dition (I) in the definition of a rational expectation.

To prove condition (E), consider x ∈ X − X0. Of course, there is some k ≥ 0 such

that x ∈ Xk+1. From the construction of F , we know that there exists a farsighted objec-

tion from x to xm ∈ X0, say, x� (x1� S1)� (x2� S2)� � � � � (xm� Sm), such that F(x) = (x1� S1).

(There is no presumption that (x2� S2) = F2(x) or that m = k.) Let u0 denote the

(common) payoff corresponding to each of the (single-payoff) states in X0. Obviously,

uS1(xm) = u0
S1 ≫ uS1(x). Since fk(x) ∈ X0, u(fk(x)) = u0, which implies that S1 gains in

moving along the path (x�F(x)�F2(x)� � � � �Fk(x)). By the same reasoning, S2 also gains

by moving from f (x) along the path (F2(x)� � � � �Fk(x)), and so on for all Sj , j = 1� � � � � Sk.

Thus, (x�F(x)�F2(x)� � � � �Fk(x)) is a farsighted objection from x to fk(x) ∈ X0.

To see that condition (M′) is satisfied, note that no player, and therefore no coalition,

can gain by deviating from the path prescribed by F because any deviation leads to the

same payoff vector, u0. This establishes condition (M′) and completes the proof that F

is a strong rational expectation with �(F) = Z. �

The proof of Theorem 2 makes use of the following lemma.

L 1. There exists a positive number d < 1/|C|, a vector b ∈ RN−C
+ , and a nonempty

collection of coalitions J in N −C such that the following statements hold:

(i) For every J ∈ J , C ∪ J is a minimal winning coalition, bJ ≫ 0 and
∑

j∈J bj = ǫ ≡

1 − d|C|.

(ii) There does not exist a winning coalition C ∪ T ′ such that
∑

j∈T ′ bj < ǫ.

(iii) We have 1 >
∑

j∈N−C bj > ǫ.

P. Let J ′ = {J ⊂N−C | C∪J is a minimal winning coalition}. Without loss of gen-

erality, assume that the coalitions in J ′ = {J1� � � � � JK} are ranked in nondecreasing order

of cardinality, so |Jk| ≤ |Jk+1| for all k= 1� � � � �K − 1.

Choose ǫ ∈ (0�1) such that ǫ < |J1|/|N −C| and let d ≡ (1−ǫ)/|C|. We now construct

an algorithm that yields b and J ⊆ J ′ satisfying the desired properties.

Let Jf , f > 1, be the first coalition in J ′ that has a nonempty intersection with some

Jk, k< f . If no such f exists, then set f =K + 1 and JK+1 = ∅.

Step 1. For all k < f , let bi = ǫ/|Jk| for all i ∈ Jk. Note that for all k�k′ < f , Jk ∩

Jk
′
= ∅, so this construction is well defined. Clearly, b and Jk satisfy condition (i) of the

lemma for all k < f . Moreover, since the coalitions in J ′ are in nondecreasing order of

cardinality,

for any k< k′ < f� i ∈ Jk� and j ∈ Jk
′
� we have b̄ =

ǫ
∣

∣J1
∣

∣

≥ bi ≥ bj > 0� (2)
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Define A1 =
⋃f−1

k=1
Jk. Then, for every i ∈ A1, bi as defined above is the “terminal“

value. For i /∈ A1, we construct bi iteratively.

For every k ≥ f , we recursively define nonnegative numbers t1
i for all i ∈ Jk − A1 as

follows. Suppose t1
j have been defined for all j ∈Gk ≡

⋃k−1
j=1 Jj −A1. If Jk − (Gk ∪A1) �=

∅, for every i ∈ Jk − (Gk ∪A1) let

t1
i = max

[

0�

ǫ−
∑

j∈Jk∩A1

bj −
∑

j∈Jk∩Gk

t1
j

∣

∣Jk −
(

Gk ∪A1
)
∣

∣

]

�

Since there are no dummy players, every i ∈ N − C belongs to at least one coalition in

J ′, and has therefore been assigned a nonnegative number bi or t1
i . It follows from (2)

that for all i /∈A1, t1
i ≤ b̄.

Let J 1 = {J ∈ J ′|
∑

i∈J∩A1 bi +
∑

i∈J−A1 t1
i < ǫ}.

If J 1 =∅, terminate the algorithm, set bi = t1
i for all i /∈A1, and go to Step 3.

Suppose J 1 �= ∅. Since J ∈ J 1 implies that |J| ≥ |Jk| for all k < f and J ∈ J 1, it

follows from (2) that for every J ∈ J 1, J − A1 �= ∅. Let Jk1 be a coalition in J 1 that

maximizes (ǫ −
∑

j∈Jk∩A1 bj)/|J
k − A1|, ties being broken arbitrarily. For each i ∈ Jk1 −

A1, set

bi =

ǫ−
∑

j∈Jk1 ∩A1

bj

∣

∣Jk1 −A1
∣

∣

�

Since Jk1 −A1 �= ∅, A2 ≡A1 ∪ Jk1 is a strict superset of A1.

Step 2. Since some of the components of the t vector have increased, the remaining

components may not be feasible. So now repeat Step 1 with A2 replacing A1.

For k ≥ f , k �= k1, we define t2
i recursively as follows. Suppose t2

i have been defined

for all j ∈G′k ≡
⋃k−1

j=1 Jj −A2. If Jk − (G′k −A2) �= ∅, for every i ∈ Jk − (G′k ∪A2) let

t2
i = max

[

0�

ǫ−
∑

j∈Jk∩A2

bj −
∑

j∈Jk∩G′k

t2
j

∣

∣Jk −A2
∣

∣

]

�

As in Step 1, it follows from (2) that t2
i ≤ b̄ for all i /∈ A2. Let J 2 = {J ∈ J |

∑

i∈J∩A2 bi +
∑

i∈(J−A2) t
2
i < ǫ}. By construction, Jk1 /∈ J 2. If J 2 is empty, terminate the algorithm

with bi = t2
i for all i ∈ N − (C ∪A2) and move to Step 3. Otherwise, choose the coalition

Jk2 that maximizes (ǫ−
∑

j∈Jk∩A2 bj)/|J
k −A2| in this set. For each i ∈ Jk2 −A2, set

bi =

ǫ−
∑

j∈Jk2 ∩A2

bj

∣

∣Jk2 −A2
∣

∣

�

C 1. The term Jk2 −A2 is nonempty.
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Suppose not. Since Jk2 ∈ J 2 and, by hypothesis, Jk2 ⊆ A2, then
∑

i∈Jk2∩A2 bi =
∑

i∈Jk2∩A1 bi +
∑

i∈S t
1
i < ǫ. Recall that for i ∈ S ⊆ Jk1 −A1, t1

i = (ǫ−
∑

i∈A1∩Jk1 bi)/|J
k1 −

A1|. But this means that

ǫ−
∑

i∈Jk2∩A1

bi

|S|
>

ǫ−
∑

i∈Jk1∩A1

bi

∣

∣Jk1 −A1
∣

∣

�

which contradicts the choice of Jk1 . Hence the claim is true and A3 ≡A2 ∪ Jk2 is a strict

superset of A2.

Since the sets Ak are strictly increasing over stages, the algorithm terminates.

Step 3. At this stage we have constructed b such that bi ≤ b̄ for all i ∈ N − C, and

for all J ∈ J ′, d|C| +
∑

i∈J bj ≥ 1. Clearly then condition (ii) of the lemma holds. Define

J = {J ∈ J ′ | bJ ≫ 0 and
∑

i∈J bi = ǫ}, which is nonempty because Jk ∈ J for all k < f .

Of course, J satisfies condition (i).

Since bi ≤ b̄ for all i ∈ N − C, then
∑

i∈N−C bi ≤ |N − C|b̄ = (|N − C|ǫ)/|J1| < 1. To

establish condition (iii) of the lemma, it remains to show that
∑

j∈N−C bj > ǫ. Recall

that for every J ∈ J ,
∑

i∈J bi = ǫ, which implies that this condition clearly holds if f > 2.

Suppose f = 2, i.e., J1 ∩ J2 �= ∅. Since J1 and J2 are minimal winning coalitions, neither

is a subset of the other. By construction, bi > 0 for all i ∈ J1 ∪ J2. This together with the

fact that
∑

i∈J1 b1 = ǫ implies that
∑

i∈N−C bi ≥
∑

i∈J1∪J2 bi > ǫ. �

P  T 2. We construct a SREFS for two distinct cases. The first is the

case, as in Example 7, where minimal winning coalitions consist of C and any one of the

non-veto players. For the second case, in which there is at least one minimal winning

coalition with two or more non-veto players, our construction relies on Lemma 1 and

Assumption 2.

Case 1: C ∪ {j} ∈ W for all j /∈ C.

Let a > 0 and b > 0 be such that |C|a+ |N −C|b = 1. Define x̂ so that π(x̂) =N and

ui(x̂)=

{

a if i ∈ C�

b if i /∈ C�

For every j /∈ C, let Xj be the set of all states x in which the winning coalition contains

C ∪ {j} and the payoff vector has the property that ui(x) ≥ a for all i ∈ C, uj(x) = b, and

uk(x) = 0 for all k /∈ C ∪ {j}.

We claim that Z =
⋃

j /∈C Xj ∪ {x̂} is a SREFS: it is the set of stationary points of a

strong rational expectation F satisfying the following properties:20

P1.1. For x ∈Z, f (x) = x.

P1.2. For x ∈X0, S(x) =N and f (x) = x̂.

20In what follows it is understood that π(f (x)) is the immediate change in π(x) resulting from the for-

mation of S(x), as formalized in Assumption 1(b).
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The remainder of the rules for F relate to x ∈ X −Z −X0.

P1.3. For x such that uj(x) < b for all j ∈N −C, S(x) =N −C and f (x) ∈X0.

P1.4. For x such that uj(x) ≥ b for all j ∈ N − C, since x /∈ Z, there must be a veto

player i for whom ui(x) < a. Let {i′} be the lowest indexed player of this kind. In this case

we have S(x) = {i′} and f (x) ∈X0.

P1.5. For x such that uj(x) ≥ b for some non-veto player but not all, let j′ be the

lowest indexed non-veto player such that uj′(x) < b. There are now two distinct cases

for describing F :

(a) Suppose s(x) ≡ 1 − b −
∑

i∈C max{a�ui(x)} > 0. Then S(x) = C ∪ {j′}, ui(f (x)) =

max{a�ui(x)} + s/|C|, and uj′(f (x)) = b. Note that f (x) ∈Xj′ .

(b) Suppose s(x) ≤ 0. In this case, unlike the previous one, it is not possible to con-

struct an objection that leads to Z in one step. However, it must be the case that there is a

veto player i for whom ui(x) < a. Otherwise, s(x) = 0, which contradicts the supposition

that x /∈Z. In this case, as in P1.4, S(x)= {i′} and f (x) ∈X0.

For x /∈Z, f ∗(x) = x̂ in all cases except P1.5(a). It is easy to see that in every instance

all the players in S(x) prefer f ∗(x) to x, which means that F satisfies (E).

Since all non-veto players weakly prefer x̂ to any other state in Z and since a winning

coalition must include at least one such player, it follows that (M′) is satisfied in case

P1.2. The same reasoning applies to case P1.3. In case P1.4, player i′ cannot construct

another farsighted objection as none of the non-veto players are interested in moving,

which implies that this move is strongly maximal. In case P1.5(a), there is no state in

Z that all the veto players prefer to f (x) and so (M′) holds. Finally, in case P1.5(b), it is

clear that player i′ cannot construct an objection leading to any other state in Z. Thus,

in all cases (M′) is satisfied.

To see that F satisfies (I), consider a possible farsighted move from x̂ that ends at

some x ∈ Xj . Since all non-veto players weakly prefer x̂ to x, none of them can be part

of the first move from x̂. But then the first move must lead to a state in X0, which only

results in returning to x̂, making it impossible for the initiating coalition to gain. Next,

consider a move from x ∈ Xj that ends up at x̂. Since all players in C ∪ {j} weakly prefer

x to x̂, the first move must come from non-veto players other than j. But then Assump-

tion 1(c) on the effectivity correspondence implies that the payoff remains u(x) through

the entire sequence of moves, contradicting the supposition that the state eventually

becomes x̂. Finally, consider the possibility of a farsighted move that leads from xj ∈ Xj

to some xk ∈ Xk, k �= j. Again, by Assumption 1(c), the first coalition in such a move

cannot be from a coalition that is disjoint from C ∪ {j}. Moreover, such a coalition can-

not include j, since j prefers xj to xk. It cannot include C since it is impossible for all

i ∈ C to gain in moving from xj to xk. The only remaining possibility is that it includes

some strict subset of C. But that leads to a state in X0, from which the final outcome is

x̂, not xk.

This completes the the proof of Case 1.

Case 2: There exists a minimal winning coalition C ∪ J such that J ⊂N −C and |J| ≥ 2.

Let d, b, and J be as in Lemma 1. Define a ≡ (1 −
∑

i∈N−C bi)/|C|. By condition (iii)

of Lemma 1, a ∈ (0� d).
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Let S∗ =
⋃

J∈J J and let N∗ = C ∪ S∗. Since C ∪ J is a winning coalition for every

J ∈ J , clearly N∗ is a winning coalition.

Define X̂ to consist of all states x such that W (x) ⊇N∗ and

ui(x) =

{

a if i ∈ C�

bi if i /∈ C�

Corresponding to each Jk ∈ J , define Xk as the set of states in which the winning

coalition contains C ∪ Jk and the payoff vector corresponding to xk ∈Xk is

ui
(

xk
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d if i ∈ C�

bi if i ∈ Jk�

0 otherwise.

Let X̄ be the set of all (nonzero) states x such that

ui(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d if i ∈ C�

bi if i ∈W (x)−C�

0 otherwise.

Of course, corresponding to every Jk ∈ J , Xk ⊆ X̄ . However, X̄ may also include a state

x with W (x) = C ∪K and K /∈ J because bK is not strictly positive.

We claim that Z = X̄ ∪ X̂ is a SREFS.

To prove this, we construct a rational expectations function F with the following

properties: (a) f (x) = x for all x ∈Z, (b) for x ∈X−Z−X0, f (x) ∈X0, and (c) for x ∈X0,

f (x) ∈ Z, depending on the nature of π(x).

Let T = {i ∈N −C |C ∪{i} ∈ W}. Note that if i ∈ T , then {i} ∈A1 as constructed in the

proof of Lemma 1. Moreover, given that we are considering Case 2, A1 also includes at

least one coalition J such that |J| ≥ 2. This means that T is a strict subset of S∗. It is also

easy to see from the proof of Lemma 1 that J includes at least two distinct coalitions,

which implies that |S∗| ≥ 3.

To describe the transition from zero states, we partition X0 into three disjoint sets:

X0
1 is the set of all zero states in which the coalition structure contains precisely one

two-player coalition consisting of one player from C and the other from S∗; X0
2 is the set

of zero states containing precisely two two-player coalitions, {i� j} and {i′�k} such that

i� i′ ∈ C, j ∈ T ⊂ S∗ and k ∈ S∗ − T ; the set of all other zero states is denoted X0
3 .

For each k ∈ S∗, pick a unique J(k) ∈ J that contains k. The existence of such J(k)

follows from condition (i) of Lemma 1. With some abuse of notation, let Xk refer to the

set of states in which the winning coalition is C ∪ J(k), and the payoff is d for all i ∈ C

and bj for all j ∈ J(k).

We now provide a complete description of F .

P2.1. For x ∈Z, f (x) = x.

P2.2. For x ∈X0
3 , S(x) =N∗ and f (x) ∈ X̂ .
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P2.3. For x ∈X0
1 , let (i�k) with i ∈ C and k ∈ S∗ be the unique two-player coalition of

this form in π(x). Let S(x) = C ∪ J(k) and f (x) ∈ Xk.

P2.4. For x ∈X0
2 , let (i�k) with i ∈ C and k ∈ S∗ −T be the unique pair of this form in

π(x). Let S(x) = C ∪ J(k) and f (x) ∈Xk.

The remainder of the rules for F relate to x ∈ X −Z −X0.

P2.5. There is k ∈ S∗ such that uk(x) < bk and i ∈ C such that ui(x) < d.

There are three subcases to consider:

(a) Either |C| �= 2 or W (x) = C ∪ J, where |J| ≥ 3.

Let H be the two-player coalition consisting of the lowest indexed player i ∈ C with

ui(x) < d and the lowest indexed player k ∈ S∗ such that uk(x) < bk. Define S(x) = H. If

H is a winning coalition, let f (x) ∈ Xk. Otherwise, x′ = f (x) ∈ X0. Now, since |C| �= 2 or

|J| ≥ 3, invoking Assumption 1(b), H is the unique coalition in π(x′) consisting of one

player from C and another from S∗. Thus, x′ ∈ X0
1 and f (x′) ∈ Xk with ui(f (x

′)) = d >

ui(x) and uk(f (x
′)) = bk > uk(x). Thus, H has a farsighted objection to x that leads to a

state in Xk.

(b) We have |C| = 2 and W (x) = C ∪ J, where |J| = 2.

Since |S∗| ≥ 3 and |J| = 2, there exists k ∈ S∗ − J. Since k /∈ W (x), uk(x) = 0. Without

loss of generality, let k be the lowest indexed player in S∗ − J. Let S(x) = H = {i�k}.

Clearly, for x′ = f (x), H is the unique coalition in π(x′) with one player from C and

another from S∗. Thus, x′ ∈X0
1 and, as in the previous paragraph, f ∗(x) ∈Xk.

(c) We have |C| = 2 and W (x) = C ∪ {j} for some j ∈ T .

Recall that T is a strict subset of S∗, i.e., there exists k ∈ S∗ − T . Of course k �= j

and uk(x) = 0 < bk. Let i be the lowest indexed player in C such that ui(x) < d and let

S(x) = H = {i�k}. Note that x′ = f (x) ∈ X0
2 , with H as the unique two-player coalition in

π(x′) with one player from C and another from S∗ − T . This means that f (x′) ∈Xk.

P2.6. Suppose x /∈ Z is such that there is k ∈ S∗ with uk(x) < bk and ui(x) ≥ d for all

i ∈ C. We now define S(x) to ensure that f (x) ∈X0
3 .

Since ui(x) ≥ d for all i ∈ C, we must have R≡ {j ∈W (x)−C | uj(x) < bj} �=∅. Other-

wise, by (ii) of Lemma 1, ui(x) = d for all i ∈ C and uj(x) = bj for all j ∈ W (x)−C, which

means that x ∈ X̄ , a contradiction to the hypothesis that x /∈ Z. Let R′ be a minimal

subset of R such that W (x)−R′ is not winning; i.e., W (x)−R′ is not winning but the ad-

dition of any single player, j, from R′ would make W (x)− (R′ − {j}) a winning coalition.

By Assumption 2, this winning coalition cannot be of the form {i� j�k}, where i is a veto

player and j and k are non-veto players. This must mean that W (x)−R′ cannot consist

of precisely one veto player and one non-veto player. Moreover, since W (x) − R′ /∈ W ,

with S(x)= R′, f (x) ∈X0
3 .

P2.7. If x is such that uj(x) ≥ bj for all j ∈ S∗, since x /∈Z, there must be a veto player

i for whom ui(x) < a. Let {i′} be the lowest indexed player of this kind and let S(x) = {i′}.

Since |S∗| ≥ 3, by Assumption 1(b), f (x) ∈X0
3 .

This completes the description of F . Note that in each case x /∈ Z, the expectation

leads in at most two steps to a state in Z. It is also easy to see that all players in S(x)

strictly gain in moving from x to f ∗(x). Thus F satisfies (E).

To show that F satisfies (M′), it is useful to note that a non-veto player j ∈ N − C

receives either bj or 0 in Z while a veto player i receives either a or d > a. In cases P2.3,
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P2.4, and P2.5, the move from x is initiated by a coalition of the form {i�k} with i ∈ C

and k /∈ C leading either directly or in two steps to a state in Xk. Since neither i nor k

prefers any other state in Z, strong maximality holds in all these cases. In case P2.2, S(x)

includes all non-veto players and every such j receives bj at f ∗(x) = f (x). Thus, none

of them can do better as part of some other objecting coalition, implying that (M′) is

satisfied. The same argument also applies to case P2.6. In case P2.5, non-veto players

have no reason to join any deviating coalition, and so any objection coalition must be

a subset of C. Since |S∗| ≥ 3, Assumption 1(b) implies that non-veto players can only

move to X0
3 (and then to X̂). Thus, the move by {i′} is strongly maximal.

Finally, we show that F satisfies (I).

Take any x̄ ∈ X̄ and x̂ ∈ X̂ . Then all i ∈ W (x̄) weakly prefer x̄ to x̂. So if there is a

farsighted objection from x̄ to x̂, and K is the first coalition to move, then K ⊆N −W (x̄).

From Assumption 1(c), it follows that if K ∈ E(x̄�x), then ui(x) ≥ ui(x̄) for all i ∈ W (x̄).

Repeated application of this argument rules out any farsighted objection. Notice that an

identical argument ensures that there cannot be a farsighted objection from a state in X̄

to another state in X̄ . Obviously there cannot be a farsighted objection from a state in

X̂ to another state in X̂ since the payoff vector for all states in X̂ is unique.

Finally, consider the possibility of a farsighted objection from x̂ to x̄, where x̂ ∈ X̂

and x̄ ∈ X̄ . All members of N −C weakly prefer x̂ to x̄. So the first deviation must come

from some subset of C. Since |S∗| ≥ 3, Assumption 1(b) implies that this leads to a state

x in X0
3 , and f (x) = x̂. This establishes that Z satisfies (I) and completes the proof that

Z is a SREFS. �

P  T 4. Suppose Z is a farsighted stable set. It is obvious that no play-

ers have the power to beneficially change a tyrannical allocation since one player has

already captured the entire surplus. It must therefore belong to every farsighted stable

set (as well as to every REFS). It is easy to see that allocations where two players get 0�5

are also stable in this sense. Thus, D1 ⊆ Z.21

To complete the proof, we now show that for every w /∈ D1, there is a farsighted ob-

jection that terminates in D1. There are two cases:

(i) A state w /∈ D1 is such that wi = wj for all i� j such that wi > 0, wj > 0. This means

that there are k players who receive 1/k, where k ≥ 3. Suppose two such players, say i

and j, pillage a third and share the spoils equally. This increases the power of i and j. If

there are any other players remaining with 1/k, then i and j pillage one such player in

the next step. This process continues until we arrive at an allocation in D1 where i and j

get 0�5 each. This is clearly a farsighted objection.

(ii) There are i and j such that wi > wj > 0. Let i′ be a player such that wi′ ≥ wi for

all i. Of course, i′ can pillage a player with lower wealth. This results in i′ becoming

more powerful, and she can now pillage any other player j, with wj > 0, if there is any.

Through this process of sequential pillaging, i′ can achieve the tyrannical allocation in

which she has the entire wealth. This describes a farsighted objection, leading from w

to a tyrannical allocation in D1. �

21The fact that the core is a subset of the farsighted core is a feature of pillage games. In general, it is

possible that the core is disjoint from every farsighted stable set or REFS; recall Example 7.
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P  T 5. We construct an expectation F as follows:

(i) Suppose w is such that wi >wj > 0 for some i� j. Let i′ be the lowest indexed player

such that wi′ ≥wi for all i and let j′ be the lowest indexed player such that wj′ <wi′ . Then

the expectation is that i′ pillages j′: f (w) =w′, where w′
i′ = wi′ +wj′ , w

′
j′ = 0, and wk =w′

k
for all k �= i′� j′, and S(w) = {i′}. Note that f ∗(w) is the tyrannical allocation where i′ gets

the entire wealth.

(ii) Suppose w is such that all players with positive wealth have the same wealth

but this is not 2−k for any integer k. In other words, m players get 1/m but m �= 2k for

any integer k. Let k̂ be the largest k such that 2k < m. Then f (w) ∈ B
k̂

and S(w) is

the coalition consisting of the lowest indexed 2k̂ players getting 1/m at w. Note that

S(w) has the power to make this move since the total wealth of this coalition at w is

2k̂/m= 2k̂+1/2m> 1
2

.

(iii) For w ∈ B, f (w) =w.

We have constructed F such that �(F) = B. It remains to be shown that F satisfies

conditions (I), (E), and (M′).

Suppose F does not satisfy (I). Then there exists w ∈ Bk and S ∈ E(w�w′) such that

f ∗(w′)= w′′ ∈ Bk′ and w′′
S ≫wS . The last inequality implies that k′ <k.

First, suppose that w′ is such that w′
i >w′

j for some pair i� j. Then w′′ is a tyrannical

allocation, so that |S| = 1. But then S /∈E(w�w′) since wi =wj if wi�wj > 0.

So w′ must satisfy w′
i = w′

j if w′
i�w

′
j > 0. Also, since E satisfies the equation (1), S =

{i|w′
i >wi}. Putting these together, we must have w′ =w′′; that is, w′ ∈ Bk′ .

Since w′
i > 0 implies that w′

i = 2−k′
and wi > 0 implies that wi = 2−k, this means that

w′
i ≥ 2wi for i ∈ S—those with positive wealth at w′ must have at least twice as much as

they did at w. Since the added wealth must have been pillaged, those who were pillaged

must have had at least as much wealth at w as the pillagers. So
∑

{i∈S}

wi ≤
∑

{i:w′
i=0}

wi�

This implies that S /∈E(w�w′).

To see that (E) is satisfied, considerw /∈ B. Ifw is covered by case (i), the only coalition

that moves at each step is the singleton consisting of the lowest indexed player with the

highest wealth at w, and, at each step, this coalition does better by eventually attaining

the tyrannical allocation. Thus (E) holds for w in case (i). For w covered by case (ii), S(w)

moves in one step to a stationary allocation, which is an improvement since it involves

equal sharing in a smaller coalition, and condition (E) is therefore satisfied.

We now turn to condition (M′). For w in case (i), maximality is trivially satisfied

since the singleton that moves ultimately achieves the tyrannical allocation. Suppose

w is covered by case (ii) and (M′) is not satisfied. This means that there is a coalition

T with T ∩ S(w) �= ∅ that does better than f (w). Since all stationary allocations satisfy

equal division among players with positive wealth, |T | < |S(w)|. Recall that |S(w)| = 2k̂,

which implies that if |T | = 2k
′

for some integer k′ < k̂, then T does not have the power

to change w. Thus, T �= 2−k for some positive integer k, in which case the final outcome

according to F results in a smaller coalition and some player in T gets 0. This contradicts

the supposition that T can do better than f (w). �
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P  T 6. Choose any positive integer k∗ ≤ k(n) and define B(k∗) ≡
⋃k∗

0 Bk.

For any w, define H(w) = {i ∈N : wi ≥wj ∀j ∈N} and let H̄(w) be the subset of H(w)

consisting of the 2k-lowest indexed players in H(w), where k is the largest integer not

exceeding k∗ with 2k ≤ |H(w)|.

Given k∗, F is defined as follows.

(i) If w ∈ B(k∗), then f (w) =w.

(ii) If w /∈ B(k∗) and |H(w)| ≥ 2k
∗
, let j′ be the lowest indexed agent not in H̄(w) with

wj′ > 0. Such j′ must exist since w /∈ B(k∗). Then S(w) = H̄(w) and f (w) =w′, where

w′
i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wi +
wj′

∣

∣H̄(w)
∣

∣

if i ∈ H̄(w)�

wi if i /∈ H̄(w)∪
{

j′
}

�

0 if i = j′�

(iii) If w /∈ B(k∗), |H(w)| < 2k
∗
, and there is a pair i� j with wi >wj > 0, then the lowest

indexed agent i∗ ∈H(w) pillages the lowest indexed agent j∗ /∈H(w). So S(w) = {i∗} and

f (w) =w′, where

w′
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wi +wj∗ if i = i∗�

wi if i �= i∗� j∗�

0 if i = j∗�

(iv) If w /∈ B(k∗), |H(w)| < 2k
∗

and if H(w) = {i|wi > 0}, then S(w) = H̄(w) and f (w) =

w′, where

w′
i =

⎧

⎪

⎨

⎪

⎩

1
∣

∣H̄(w)
∣

∣

if i ∈ H̄(w)�

0 if i /∈ H̄(w)�

We note that in (iv) above, |H̄(w)| > |(H(w) − H̄(w))| and so H̄(w) can pillage the rest,

and hence f is well defined.

The proof that F satisfies (I) is virtually identical to that in Theorem 5, and we only

give a very short sketch of the proof. Again, suppose w ∈ Bk with k ≤ k∗ and some S has

a farsighted objection ending in Bk′ , where k′ < k. Then,|S| ≥ 2 since no singleton has

the power to pillage anyone at w. But then the first move from w must be to some w′ that

is an equal allocation; any unequal allocation terminates in a tyrannical allocation. Just

as before, w′ itself must be a stationary allocation, and then S cannot have the power to

pillage the remaining players.

We now check (M). In cases (ii) and (iv), each i ∈ H̄(w) ends up getting 1/|H̄(w)|.

There cannot be a better deviation. In case (iii), the agent initiating the deviation ends

getting 1. Hence, (M) is satisfied.

Finally, it is easy to check that (E) is satisfied. In each of cases (ii)–(iv), S(w) has a

farsighted objection culminating in some allocation in B(k∗). �
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