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Abstract In this paper, we explore the connection between

the curvature of the background De Sitter space-time with

the spectroscopic study of entanglement of two atoms. Our

set up is in the context of an Open Quantum System (OQS),

where the two atoms, each having two energy levels and rep-

resented by Pauli spin tensor operators projected along any

arbitrary direction. The system mimic the role of a pair of

freely falling Unruh De-Witt detectors, which are allowed to

non-adiabatically interact with a conformally coupled mass-

less probe scalar field which has the role of background ther-

mal bath. The effective dynamics of this combined system

takes into account of the non-adiabatic interaction, which

is commonly known as the Resonant Casimir Polder Inter-

action (RCPI) with the thermal bath. Our analysis revels

that the RCPI of two stable entangled atoms in the quantum

vacuum states in OQS depends on the de Sitter space-time

curvature relevant to the temperature of the thermal bath felt

by the static observer. We also find that, in OQS, RCPI pro-
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duces a new significant contribution appearing in the effec-

tive Hamiltonian of the total system and thermal bath under

consideration. We find that the Lamb shift is characterised by

a decreasing inverse square power law behaviour, L−2, when

inter atomic Euclidean distance, L , is much larger than a char-

acteristic length scale, k, which is the inverse surface gravity

of the background De Sitter space. If the background space

time would have been Minkowskian this shift decreases as,

L−1, and is independent of temperature. Thus, we establish a

connection between the curvature of the De Sitter space-time

with the Lamb shift spectroscopy.
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1 Introduction

Quantum theory of open system has been popular in recent

times mainly because it provides a platform to study time

evolution of system interacting weakly with its environment.

See for examples Ref. [1] for the development of this sub-

ject. This development in Open Quantum SYstems (OQS)

plays a crucial role for studying physical quantum phenom-

ena in nature because they are mostly not isolated from its

environment. It is important to develop a theoretical frame-

work for treating these non-adiabatic interactions in order

to obtain an accurate understanding of quantum mechani-

cal systems. Theoretical tools and techniques developed in

the context of OQS have been very successful in the context

of quantum optics, quantum measurement theory, quantum

statistical mechanics, quantum information theory, quantum

thermodynamics, quantum cosmology, quantum biological

systems. In a most generalised prescription, the time evolu-

tion of OQS is described by the non-adiabatic interactions

between the physical system and its thermal environment.

Consequently, the dynamical behaviour of the OQS cannot be

accurately described using unitary time evolution operators

alone after integrating out the bath degrees of freedom from

the environment. The time evolution of OQS can be explic-

itly determined by solving the effective master equations

of motion, also known as Gorini–Kossakowski–Sudarshan–

Lindblad (GSKL) master equations, from which one can

understand the non-unitary time evolution of the reduced

density matrix of the system. In this context, the time evolu-

tion actually describes the time dependent behaviour of the

system at different stages over time and also the dynami-

cal behaviour of the observables that are associated with the

OQS. The theory of OQS treats the system with dependent

degrees of freedom as a subsystem in a much larger thermal

bath [2]. Due to the complicated structure of the environ-

mental degrees of freedom finding exact analytical solution

of Gorini–Kossakowski–Sudarshan–Lindblad (GSKL) mas-

ter equations are extremely difficult for practical purposes.

Due to this difficulty, a variety of approaches have been

developed in the present context. In this connection, a com-

mon objective is to derive the reduced time dependent

description of the OQS wherein the dynamical behaviour

of the quantum system are considered explicitly and the cor-

responding bath dynamics are described implicitly to know

about the underlying physics of OQS under consideration.

The seemingly obvious approach to deal with such systems,

which is simulating evolution of both system and environ-

ment, would be naive as its complexity evolves exponentially.

The OQS can no longer be defined by a pure state and to

study the modified time evolutionary dynamics in presence

of weak interaction between the system and thermal bath,

density matrix formalism is required. We can study smaller

subsystems to get across this problem by incorporating prob-

abilistic description, where the quantum state of the subsys-

tem is described by density operator. In an OQS, the effects

of dissipation and decoherence is introduced by the envi-

ronment degrees of freedom. The induced effects of deco-

herence and dissipation owing to the system is introduced

by an operator more famously known as the Lindbladian [3].

While dealing with OQS, following crucial assumptions play

significant role to describe the underlying physics:

1. Assumption I:

The combination of the system and the thermal environ-

ment is treated as a large closed system. Therefore we

can assume that the time evolution is given by a unitary

transformation generated by a global Hamiltonian.

2. Assumption II:

The interaction between system and environment is con-

sidered as Markovian, which describes the state of the

quantum mechanical system in the next instant and

dependent only on the current moment, not in the past.

In short, the interaction between the system and ther-

mal bath describes a phenomena without memory. This

approximation is justified when the OQS under consider-

ation has enough time for the system to achieve equilib-

rium state before being quantum mechanically perturbed

again by non-adiabatic interactions with its thermal envi-

ronment.

3. Assumption III:

The interaction between the system and thermal bath is

considered to be weak in nature, which implies that the

only change over time we see originates in the open sys-

tem. This helps us to treat the time evolution of the system

in a perturbative manner.

4. Assumption IV:

In the present context, additionally we have assumed that

system and thermal bath are completely uncorrelated at

the initial time.
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In this paper, we have studied the connection of the curva-

ture of de Sitter spacetime with the two atomic spectroscopy

using the framework of OQS. To construct the theoretical set

up we use a two body entangled system, which is described

by two identical atoms. This two entangled OQS is consid-

ered as our theoretical probe which mimic the role of a pair of

freely falling Unruh de Witt detectors. In this connection, it is

important to note that, the concept of quantum entanglement

describes a physical phenomenon which deals with strong

correlations between the two atomic quantum states of the

entangled particles [4,5] in OQS. Since this non-local prop-

erty of quantum mechanics seemed very puzzling, Einstein,

Podolsky and Rosen (EPR) argued for the existence of hidden

variables in the context of quantum theory [6]. Later Bell pro-

posed a set of inequalities to test their existence which when

untrue, support the non-locality of quantum theory [7]. Bell’s

inequalities have to be violated in inflationary era to get per-

sistent long range quantum correlation in the early universe

cosmology and for this, the concept of quantum entanglement

is commonly used. The violation of the Bell-inequality in de

Sitter space has been addressed with axionic Bell pair to a

great extent in several works [8,9]. Bell-inequality violation

in various cosmological scenario with quenched time depen-

dent mass profiles in de Sitter space has also been extensively

studied in [10,11].

In the present context, we use mainly the concept of two

body quantum entanglement in OQS which currently serves

as one of the leading candidates to study the long range quan-

tum correlation and many other unknown physics of the de

Sitter space. The idea being that two or more entangled atoms

which mimic the role of particle detectors in OQS can be used

to measure the spacetime curvature of de Sitter spacetime and

the consequent thermal effects, some of which we will dis-

cuss in detail in the following sections. In Refs. [12–15], the

authors have explored many more aspects of quantum entan-

glement in the background of a fluctuating scalar field in de

Sitter space. In OQS the interaction of single particle with

conformally coupled massless scalar field in de Sitter space

is identical to the interaction of the same with thermal bath

environment in Minkowski spacetime, making it difficult to

distinguish between the two frameworks. This problem has

led to further investigations with two body entangled OQS

in order to shed light on the quantum structure and nature of

the spacetime of our universe.

In a more general prescription, it is important to note

that, when an accelerated particle detector moves through an

external field in its vacuum state, spontaneous excitation may

occur. The particle behaves as in the presence of a thermal

bath, giving rise to an Unruh Temperature, which is propor-

tional to its acceleration [16,17]. The excitation rate, of such

a particle detector vanishes when it is at rest, but is found

to be non-zero when uniformly accelerated. Same result is

achieved if we analyse the vacuum state of the external con-

formally coupled scalar field in the frame of the accelerating

particle detector. This is known as thermaliszation and shows

that these accelerating detectors act as an OQS in the con-

text of two body physics. Very recently, it has been explicitly

shown that scalar fields coupled conformally to a de Sitter

spacetime can be treated as an out-of-equilibrium system

with a fluctuating background that introduced the thermal

excitations in de Sitter space [18]. Such a detector-system

combined set up sees the above thermalisation phenomena

as a manifestation of the decoherence and dissipation due

to the interactions with the surrounding. Furthermore, the

approach followed in this work is also used to investigate

the Gibbons–Hawking effect [19], which can be treated as a

consequence of the thermalisation effect of the vacuum fluc-

tuation of the external field in the de Sitter spacetime. These

two phenomena encode the thermal behaviour of de Sitter

spacetime.

Another very important outcome of vacuum fluctuations

of quantised fields is Casimir effect which is heavily influ-

enced by the curvature of de Sitter spacetime [20–22].

Casimir effect and the associated Casimir–Polder interac-

tion (CPI) has been verified experimentally in multitudes of

systems at microscopic and macroscopic levels. It has been

used to study properties of quantum entanglement, long range

effect of field correlations, Unruh effect etc. The spacetime

curvature can alter the Casimir–Polder interaction [23–25]

between the atoms [26] in two body OQS. The CPI in the

de Sitter spacetime [27] has been investigated in detail in

refs [15,28–30]. In this paper, we aim to distinguish the cur-

vature of de Sitter spacetime and Minkowski flat spacetime

using Casimir–Polder interaction as a theoretical probe. In

order to distinguish a conformally coupled massless scalar

field with a de Sitter background to that of a Minkowski

spacetime interacting with a thermal bath in which the excited

Bell-states of the pair of atoms interacts with the background

field placed at thermal bath via the exchange of real photons

[31–35]. Additionally, in Ref. [36] the authors have explic-

itly shown the use of Resonance Casimir–Polder interaction

(RCPI) to detect curvature of de Sitter spacetime. In this

paper, we use this methodology to know about the curvature

of de Sitter by analysing the Lamb shift spectra computed

from the two entangled atomic OQS. In [37], the authors

have provided a methodology to distinguish between ther-

mal Minkowski spacetime and de Sitter spacetime using

the entanglement power. However, here we will use RCPI

for the same purpose. Entanglement between quantum field

modes, have been discussed in [38] (for scalar fields) and

[39] (for fermionic fields). Also Unruh-DeWitt detectors and

entanglement harvesting have been studied in case of dif-

ferent spacetimes in these beautiful papers [40–43]. Some

other useful references regarding quantum entanglement are

[44–48]. An excellent review of entanglment in expanding

universe is given in [49], where they also briefly discuss
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the information encoded in such entanglement and other

prospects. Dynamics of such a two qubit system in Unruh

spacetime has been studied in [50]. In [51], the authors have

calculated som information theoretic measures for such a

system.

The various discussions in this paper can be summarised

as follows:

In Sect. 2, we present a brief overview of the dS spacetime.

The background metric has a hyperbolic geometry with a cos-

mological constant � as a solution of Einstein’s field equa-

tions. First, we present the static dS metric. Then compute the

two body two point Wightman functions for the external con-

formally coupled massless scalar field. Once we have these

Wightman functions, we calculate the Fourier transform of

these which we use later to calculate Lamb shift Hamiltonian

and Lindbladian.

In Sect. 3, we describe our model two atomic1 system

conformally coupled to a scalar field in a thermal bath in de

Sitter spacetime. Here, we allow our spins to have any ori-

entation in the spacetime. Then we investigate the reduced

dynamics of a pair of Unruh-De-Witt detectors or atoms to

obtain th Master Equation. Then using the Fourier and Hilbert

transforms of the Wightman functions (calculated in Sect. 2)

we write down the matrix elemnts of Lamb shift Hamilto-

nian and Lindbladian. The details of calculation is given in

appendix A and B.

Further, in Sect. 4, we have derived the expression for the

energy shift to explicitly study the role of Lamb shift spec-

troscopy [52,53] in the context of the two atomic entangled

OQS. To serve this purpose, first of all we actually construct

all possible two atomic entangled states out of the individ-

ual ground and excited states of the two atoms. By using

the tensor product we have constructed four possible combi-

nation of the two body entangled states, which are ground,

excited, symmetric and antisymmetric states. Further, using

these two body entangled quantum states we compute the

expectation values of the most relevant part of the effective

Hamiltonian, known as the Lamb shift Hamiltonian. Using

these energy shifts we distinguish between the geometry of

de Sitter spacetime from that of Minkowski spacetime. Here

we have actually expressed the spectroscopic energy shifts

in terms of the Euclidean distance between the two atoms

separated in the space time and the inverse of the surface

gravity of De Sitter space. Further, we have expressed the

temperature of the thermal bath in terms of the surface grav-

ity of de Sitter space. This allows us to connect macroscopic

description of the environment in terms of the microscopic

quantum mechanical observables of the two entangled OQS

under consideration as well the geometry of our universe.

Here particularly the microscopic observables can be char-

acterised through few sets of spectroscopic integrals (see

1 By atom we mean simple a qubit. Please see Sect. 3 for more clarity.

appendix B) which is in principle divergent in nature in QFT.

To collect only the finite contributions out of these integrals

we apply the Bethe regularisation technique. At the end one

can express the surface gravity in terms of the curvature of

de Sitter space, where curvature is related to the positive cos-

mological constant. This helps us to measure the curvature

of de Sitter space from microscopic quantum spectroscopy.

FInally, we end the article with discussion given in con-

clusion and presenting all the necessary relevant calculations

in the Apendices that follow.

2 Geometry of de Sitter space

The de Sitter space describes a universe with constant pos-

itive curvature and having the same degree of symmetry as

a Minkowski spacetime, which also fits in with the picture

of our current universe quite well. Since we want to work

in this spaceyime, we will have a brief overview of the de

Sitter spacetime in this section. Here our prime objective

is to compute the two body two point (Wightman) correla-

tion function between two atom conformally coupled with

a massless probe external scalar field in de Sitter space. We

will use the results obtained in this section in further sec-

tions to calculate our desired results. To serve this purpose

we start with the background metric which is represented by

the surface of the following hyperboloid:

z2
0 − z2

1 − z2
2 − z2

3 − z2
4 = −α2 = − 3

�
(2.1)

which describes a solution of the Einstein’s field equations

with the following radius of the hyperboloid:

α =
√

3

�
> 0. (2.2)

Here, � is the cosmological constant with positive signature

in De Sitter space and the corresponding embedded metric in

the five dimensional Minkowski space is given by [54,55]:

ds2 =

⎛

⎝dz2
0 −

4
∑

p=1

dz2
p

⎞

⎠ =
(

dz2
0 − dz2

1 − dz2
2 − dz2

3 − dz2
4

)

(2.3)

By applying the following appropriate parametrisation one

can express the five dimensional Minkowski flat metric in

terms of a static four dimensional De Sitter metric, as given

by:

z0 =
√

α2 − r2 sinh

(
t

α

)
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z1 =
√

α2 − r2 cosh

(
t

α

)

z2 = r cos θ

z3 = r sin θ cos φ

z4 = r sin θ sin φ (2.4)

which are consistent with the equation of the surface of the

hyperboloid in five dimension as expressed in Eq. (2.1).

With the above parametrisation the static de Sitter metric

in four dimensions can be expressed as:

ds2 =
(

1 − r2

α2

)

dt2 −
(

1 − r2

α2

)−1

dr2 −r2(dθ2 +sin2 θdφ2)

(2.5)

which is actually characterised by (t, r, θ, φ) in spherical

polar coordinate in four dimensions. In the present context,

to compute the explicit contributions of the two body Wight

function of the probe scalar field present in the external ther-

mal bath the geometry of the re-parametrised four dimen-

sional De Sitter space play the most crucial role. In the next

subsection, we actually compute these two body Wightman

function in detail.

2.1 Two atomic Wightman functions for probe external

field in de Sitter space

To compute the expression for the each of the entries of the

two body Wight function of the probe scalar field present in

the external thermal bath we use the four dimensional static

de Sitter geometry of our space-time. In this set of coordinate

system in four dimension, the Klein–Gordon field equation

for the massless conformally coupled external probe scalar

field for the non-adiabatic environment can be expressed as:
[

1

cosh3
(

t
α

)
∂

∂t

(

cosh3

(
t

α

)
∂

∂t

)

− 1

α2 cosh2
(

t
α

)L2

]

�(t, χ, θ, φ) = 0 (2.6)

where L2 is the Laplacian differential operator in the three

dimensions characterised by the coordinate (χ, θ, φ), which

is explicitly defined as:

L2 = 1

sin2 χ

[
∂

∂χ

(

sin2 χ
∂

∂χ

)

+ 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂φ2

]

(2.7)

where we introduce a new coordinate χ which is related to

the radial coordinate r as: r = sin χ. Now, in the present

context of discussion we are not exactly interested to solve

the wave function for the probe scalar field. Since our prime

objective is to compute the two body two point correlation

function for the probe external scalar field we construct the

two body Green’s function.

From the geometrical structure of the four dimensional

static De Sitter metric it is obvious that the coordinate sin-

gularity,
(

1 − r2/α2
)−2 → ∞, which appears at the point

r = α, and this is identified to be the cosmological horizon

in the present context. Here it is important to note that, in

flat space there is no problem to define the vacuum state (i.e.

Minkowski vacuum) of the quantum field in open quantum

mechanical system. But for curved space the definition of

the vacuum state is more complicated in OQS than the result

obtained in the context of flat space. For the computation of

Wightman function from the present two entangled atomic

open quantum set up, in the curved space we choose specifi-

cally the de Sitter invariant isometric SO(1, 4) group to con-

nect the idea of spectroscopic energy shift with the geometry

of De Sitter space-time. In this computation the isometric

vacuum state (i.e. Bunch Davies and α-vacua) is actually

identified with the quantum mechanical state of open system

described by the conformally coupled massless probe scalar

field. Now, the corresponding two point correlation function,

often known as the Wightman function for massless probe

scalar field takes the following form [54]:

G+(x, x ′) = − 1

4π2

1

(z0 − z′
0)

2 − 
z2 − iǫ
(2.8)

where, ǫ represents an infinitesimal constant, which is

appearing in the representation of Wightman function in

the iǫ prescription. Also, we define the distance between

two static atoms localized at the coordinates (r, θ, φ) and

(r, θ
′
, φ), appearing in this computation as:


z2 = (z1 − z′
1)

2 + (z2 − z′
2)

2 + (z3 − z′
3)

2 + (z4 − z′
4)

2

=
(

α2 − r2
)

[

cosh

(
t

α

)

− cosh

(

t
′

α

)]2

+r2

[
(

cos θ − cos θ
′)2

+
(

sin θ − sin θ
′)2
]

=
(

α2 − r2
)

[

cosh

(
t

α

)

− cosh

(

t
′

α

)]2

+ 4r2 sin2

(

θ

2

)

=
(

α2 − r2
)

[

cosh

(
t

α

)

− cosh

(

t
′

α

)]2

+ L2 (2.9)

Here L represents the Euclidean distance between the coor-

dinates (r, θ, φ) and (r, θ ′, φ), which is defined as:

L = 2r sin

(

θ

2

)

(2.10)
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where, the angular difference 
θ is defined as, 
θ = θ −θ
′
.

Here both the signatures of the 
θ is allowed in the present

context depending on the relative ordering of the angular

coordinates θ and θ
′
. Additionally, the parameter ǫin the

present context represents an infinitesimal constant.The cor-

responding two body Wightman function between two space-

time points for massless probe scalar field can be expressed

as:2

G(x, x ′) =
(

G11(x, x ′) G12(x, x ′)
G21(x, x ′) G22(x, x ′)

)

=
(

〈�(x1, τ )�(x1, τ
′)〉 〈�(x1, τ )�(x2, τ

′)〉
〈�(x2, τ )�(x1, τ

′)〉 〈�(x2, τ )�(x2, τ
′)〉

)

(2.11)

where the components of the two body Wightman function

can be expressed as:

Two atomic Wightman function representing auto correlation:

G11(x, x ′) = G22(x, x ′) = 〈�(x1, τ )�(x1, τ
′)〉 = 〈�(x2, τ )�(x2, τ

′)〉

= − 1

4π2

1
{

(z0 − z′
0)

2 − (z1 − z′
1)

2 − iǫ
}

= − 1

4π2

1
{

(α2−r2)

[
{

sinh
(

t
α

)

− sinh
(

t ′
α

)}2
−
{

cosh
(

t
α

)

−cosh
(

t ′
α

)}2
]

−iǫ

}

= − 1

4π2

1
{

2(α2 − r2)

[

cosh
(

t−t ′
α

)

− 1
]

−iǫ
}

= − 1

4π2

1
{

4(α2 − r2) sinh2
(

t−t ′
2α

)

− iǫ
}

= − 1

4π2

1
{

4(α2 − r2) sinh[2]
(


τ
2
√

g00α

)

− iǫ
}

= − 1

4π2

1
{

4k2 sinh[2]
(


τ
2k

)

− iǫ
}

= − 1

16π2k2

1

sinh2
(


τ
2k

− iǫ
)

Two atomic Wightman function representing cross correlation:

G12(x, x ′) = G21(x, x ′) = 〈�(x1, τ )�(x2, τ
′)〉 = 〈�(x2, τ )�(x1, τ

′)〉

= − 1

4π2

1

(z0 − z′
0)

2 − 
z2 − iǫ

= − 1

4π2

{

(α2 − r2)

[
(

sinh

(
t

α

)

− sinh

(
t ′

α

))2

−
(

cosh

(
t

α

)

− cosh

(
t ′

α

))2
]

− iǫ − r2
[

(cos θ − cos θ ′)2 − (sin θ − sin θ ′)2
]

}−1

2 From the two atomic two body system we get four Wightman func-

tions in the present context due to the interaction between the two atoms

with the external probe conformally coupled massless scalar field. The

diagonal entries of the two body Wightman function represents the auto

correlation function of the atom 1 and atom 2 with the external probe

scalar field present in the thermal bath respectively. Also it is import to

note that, these diagonal entries are same as we have considered two

identical in our computation. On the other hand, the off diagonal entries

of the Wightman function represent the cross correlation between the

atom 1 and atom 2 with the external probe scalar field. Since in the

present context the Wightman function is symmetric and constructed

due to the interaction of two identical atoms with the external probe

scalar field, the contributions appearing from the off-diagonal entries

are exactly same.

= − 1

4π2

1
{

2(α2 − r2)

[

cosh
(

t−t ′
α

)

− 1
]

+ 2r2[cos(θ − θ ′) − 1] − iǫ
}

= − 1

4π2

1
{

2(α2 − r2)

[

cosh
(

t−t ′
α

)

− 1
]

− 4r2 sin[2]
(

θ−θ ′
2

)

− iǫ
}

= − 1

4π2

1
{

4(α2 − r2)

[

sinh[2]
(

t−t ′
2α

)

− iǫ
]

− 4r2 sin[2]
(

θ−θ ′
2

)}

= − 1

16π2k2

1
{

sinh[2]
(


τ
2k

− iǫ
)

− r2

k2 sin[2]
(


θ
2

)
}

where we use the following identity:

sinh

(

τ

2k
− iǫ

)

= sinh

(

τ

2k

)

cosh(iǫ) − cosh

(

τ

2k

)

sinh(iǫ)

(2.12)

where ǫ being an infinitesimal constant which we have

already mentioned earlier. Furthermore, we have used the

fact that since ǫ is an infinitesimal constant then one can

approximate:

sinh(iǫ) = i sin(ǫ)∼ iǫ (2.13)

cosh(iǫ) = cos(ǫ)∼ 1 (2.14)

As a result, we get the following simplified result:

sinh

(

τ

2k
− iǫ

)

∼ sinh

(

τ

2k

)

− iǫ cosh

(

τ

2k

)

(2.15)

Additionally, we have used the following definitions:

k = √
g00α =

√

1 −
( r

α

)2

α =
√

α2 − r2 (2.16)


τ = τ − τ ′ = √
g00(t − t ′) =

√

1 −
( r

α

)2

(t − t ′)

=
√

α2 − r2

(
t − t ′

α

)

= k

(
t − t ′

α

)

(2.17)

with τ being the proper-time in the co-moving frame of the

pair of atoms and k represents the surface gravity in the

present context.
Now that we have our Wightman functions, for later use,

here we calculate the Fourier transform of the two point
field correlation functions in frequency (ω) space for external
massless probe scalar field as follows:

G11(ω) = G22(ω) = −
∫ ∞

−∞
d
τ

eiω
τ

16π2k2 sinh[2]
(


τ
2k

− iǫ
)

= 1

2π

ω

1 − e−2πkω

G12(ω) = G21(ω) = −
∫ ∞

−∞
d
τ

× 1

16π2k2

eiω
τ

sinh2
(


τ
2k

− iǫ
)

− r2

k2 sin2
(


θ
2

)

= 1

2π

ω

1 − e−2πkω
f (ω, L/2) (2.18)
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where, we define the spectral function f (ω, L/2) as:

f (ω, L/2) = 1

Lω

√

1 +
(

L
2k

)2
sin

(

2kω sinh−1

(
L

2k

))

(2.19)

In this expression the Euclidean distance L between the coor-

dinates (r, θ, φ) and (r, θ ′, φ) is already defined earlier.

3 Open quantum system (OQS) of two entangled atoms

3.1 Two atomic OQS model

In this section, we investigate a model of OQS with entan-

glement. For simplicity, we consider a pair of identical static

entangled atoms at an Euclidean distance L apart in the de

Sitter spacetime. The two sets of internal energy levels of

each atom are represented by:

{|gα〉, |eα〉} ∀ α = (1, 2) (3.1)

These are the ground-states and the excited-states for two

atoms respectively. To avoid any further confusion here we

note that, by the word “atom” we actually represented a very

simplest spin bath open quantum model where two spin is

immersed in the thermal bath. Here such spin pairs are char-

acterised by the Pauli spin matrices. However, for a more

general situation where we are interested in very compli-

cated two atomic models of Hamiltonian the present analysis

holds good, but solving that two body OQS problem itself

extremely complicated. So for our better understanding we

restrict ourself to a pair of spins which we are treating as a

pair of atom, using which we will study various underlying

physics of OQS. In this discussion, such pair of atoms are

conformally coupled to a massless scalar field in the De Sit-

ter background. The scalar field acts as a thermal bath for

the pair of entangled atoms. In our discussion, the above two

atomic entangled system are represented by a pair of Unruh-

De-Witt detectors. These two identical atoms interact weakly

with a quantised conformally coupled massless probe scalar

field in its quantum mechanical vacuum state. Consequently,

the corresponding two energy levels of the two atoms are

identified as:

E (±)
α = ±1

2
ω ∀α = (1, 2). (3.2)

Here, ω represents the renormalized energy level for two

atoms, given by:

ω =
{

ω0 + i[K(11)(−ω0) − K(11)(ω0)] Atom1

ω0 + i[K(22)(−ω0) − K(22)(ω0)] Atom2
(3.3)

Here Kαα(±ω0) for α ∈ {1, 2} are Hilbert transformations of

two-point Wightmann functions discussed in previous sec-

tion. Also, ω0 represents the natural frequency of the two

identical atoms. In this context, the atoms are characterised

by the label α ∈ [1, 2] and σα
i ∀i ∈ [1, 2, 3] are the Pauli

matrices.

The Hilbert space of such a system is bipartite in nature,

i. e.

HTotal := HSystem ⊗ HBath, (3.4)

where HSystem and HBath are the corresponding Hilbert

spaces of the system and bath. Also, HTotal represents the

Hilbert space corresponding to the combined configuration

of the system and the bath. This entangled two atomic OQS

can be represented by the following total Hamiltonian:

Htotal(τ )= HSystem(τ )⊗IBath+ISystem⊗HBath(τ )+HInt(τ )

(3.5)

where ISystem and IBath are the identity operators defined for

the system and bath. When we are accessing the system we

don’t see anything from the bath and converse is also true.

Here, the identity operators as appearing in the system and

bath corresponds to the no access. More precisely, if one

observer is sitting on the system, made by atom 1 and atom

2, then that observer will not feel any further effect from

the thermal bath environment. On the other hand, once the

observer is sitting at the reference frame of thermal bath, that

observe will not see any further effect from the two entangled

OQS. However, in the interaction term both the system and

thermal bath explicitly contribute and due to the entangle-

ment one cannot separate their contribution from this term

in the Hamiltonian. Here τ represents the proper time in the

co-moving frame of two atoms. To make things clear, we

would like to highlight the fact that instead of proper time

one could use the static time cooardinate(t). In that case,

one might have to deal with the inherent curvature of de-

Sitter spacetime explicitly in every calculation. However, the

use of proper time incorporates this curvature effect directly

through it’s relation with static time, as will be discussed later.

More details of each of the terms of the total Hamiltonian is

as follows:

1. System:

The system Hamiltonian of the two entangled atoms are

described by the linear combination of the individual con-
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tributions coming for each atom3:

HSystem(τ ) =
2
∑

α=1

ω

2
n̂α. �σα

= ω

2

2
∑

α=1

[

nα
1 σα

1 cos αα + nα
2 σα

2 cos βα

+nα
3 σα

3 cos γ α
]

(3.7)

where, the sum is taken over two individual contribution

appearing from the Hamiltonians of the two atoms. In

the above expression the normal vectors for two atoms

are represented by nα
i ∀α = 1, 2, & i = 1, 2, 3 and the

corresponding projection of Pauli-matrices are charac-

terised by the direction cosine of Euler angles α, β and

γ respectively.

2. Thermal bath:

The thermal bath Hamiltonian in the present context is

characterised by a free rescaled field �(x) = a(τ )χ(x),

where the original massless scalar field χ(x) is confor-

mally coupled with De Sitter background with scale fac-

tor a(τ ). The Hamiltonian in the de Sitter background

can be written as:

HBath(τ )

=
∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφ

×

⎡

⎢
⎢
⎢
⎣

�2
�(τ, r, θ, φ)

2
+ r2 sin2 θ

2

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

r2 (∂r�(τ, r, θ, φ))2

+

(

(∂θ�(τ, r, θ, φ))2 + (∂φ�(τ,r,θ,φ))2

sin2 θ

)

(

1 − r2

α2

)

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

⎤

⎥
⎥
⎥
⎦

(3.8)

where ��(τ, r, θ, φ) is the canonically conjugate

momentum of the scalar field �(x).

3. System-thermal bath interaction:

The interaction Hamiltonian is characterised by the fol-

lowing expression:

3 Here we define the following direction cosines for two entangled

atoms:

cos(αα
1 ) = cos(αα), cos(αα

2 ) = cos(βα), cos(αα
3 ) = cos(γ α)

(3.6)

α = (1 ⇒ atom 1, 2 ⇒ atom 2).

HInt(τ ) = μ

2
∑

α=1

n̂α. �σαφ(xα)

= μ

2
∑

α=1

[nα
1 σα

1 cos αα + nα
2 σα

2 cos βα

+nα
3 σα

3 cos γ α]φ(xα) (3.9)

where, μ represents the coupling between the pair of

atoms and the external massless scalar field placed at

the thermal bath. While deriving the reduced dynamics

of the two atomic detectors, we consider the weak cou-

pling limiting approximation between the pair of atoms

and the external massless probe scalar field. We assume

that the coupling parameter μ is sufficiently small so that

perturbation theory is applicable in the open quantum

mechanical system under consideration.

3.2 Time dynamics of two atomic OQS

To construct the effective Hamiltonian from the time dynam-

ics of the present system, we first consider that there is no

correlation between the pair of atoms with the the external

probe free scalar field. Hence, the thermal density-matrix

of the combined system and thermal environment can be

expressed in the following form:

ρTotal(0) = ρSystem(0)
︸ ︷︷ ︸

System

⊗ ρBath(0)
︸ ︷︷ ︸

Thermal bath

(3.10)

where ρSystem(0) and ρBath = |0〉〈0| represent the initial

density matrix for the pair of atoms (system) and environment

(bath) degrees of freedom. Here, |0〉 characterise the vacuum

state of the external free scalar field.

Now it is important to note that, in the interaction picture

of OQS, the time evolution of the total density matrix can be

written in the following form:

∂ρTotal(τ )

∂τ
= −i[HTotal(τ ), ρTotal(τ )] (3.11)

One can further write the most general structure of the time

evolved version of the total density matrix of the combined

system and thermal bath, as given by:

ρTotal(τ ) = ρSystem(τ )
︸ ︷︷ ︸

System

⊗ ρBath(τ )
︸ ︷︷ ︸

Thermal bath

+ ρcorrelation(τ )
︸ ︷︷ ︸

Interaction

.

(3.12)

Now, we have already started with the assumption that the

non-adiabatic interaction between the system and thermal

bath is switched on at t = 0 (from initial structure of the

total density matrix) and prior to that the interaction between
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the system and the thermal bath is extremely weak or absent

for which there is no correlation exists in the OQS under

consideration i.e.

ρcorrelation(0) = 0 (3.13)

The idea of having no correlation at the initial stage is not

very restrictive in nature, since for the computational pur-

pose we can always find a time prior to which the system

and environment did not interact. In the weak coupling lim-

iting situation, the time evolved density matrix can be further

simplified as:

ρTotal(τ ) ≈ ρSystem(τ )
︸ ︷︷ ︸

System

⊗ ρBath(τ )
︸ ︷︷ ︸

Thermal bath

, (3.14)

which is valid through a time scale on which the perturbation

theory in OQS is valid. Furthermore, we also assume that the

time scale corresponding to the correlation, τBath, which is

sometimes identified to be the relaxation time scale of the

thermal bath, assumed to be extremely weak. Here one can

write:

Time evolution of the bath for time scale τ

>> τBath : ρBath(τ ) ≈ ρBath(0) (3.15)

In this context, the time evolved total density matrix can be

represented as:

ρTotal(τ ) = UTotalρTotal(0)U
†
Total

= UTotal

⎛

⎜
⎝ρSystem(0)
︸ ︷︷ ︸

System

⊗ ρBath(0)
︸ ︷︷ ︸

Thermal bath

⎞

⎟
⎠U

†
Total

(3.16)

where UTotal represents the time evolution operator of OQS

under consideration.

Since, we are only interested in the reduced dynamics of

the density matrix of the entangled atoms only, therefore, we

trace out the external field (thermal bath) degrees of free-

dom from the total combined open quantum two atomic sys-

tem. Consequently, the reduced density matrix of such a two

atomic system can be expressed as:

ρSystem(τ ) = TrBath[ρTotal(τ )] (3.17)

Further, doing simplifications one can write the reduced den-

sity matrix of the system after performing the partial trace

operation over the bath degrees of freedom in the following

simplified form:

ρSystem(τ ) =
∑

k

〈k|UTρT(0)U
†
T|k〉

=
∑

k

〈k|UT|0〉 ρS(0)
︸ ︷︷ ︸

System

〈0|U †
T|k〉

=
∑

k

Mk ρS(0)
︸ ︷︷ ︸

System

M
†
k (3.18)

The subscript T in the above equations refers to the term

Total. where |k〉 represents all possible orthonormal basis

states of the thermal bath defined in the Hilbert space HBath.

Here, additionally we define the operator Mk as:

Mk = 〈k|UTotal|0〉 = TrBath [|0〉〈k|UTotal] (3.19)

which is defined on the Hilbert space corresponding to the

system under consideration i.e. HSystem.

Since in the present context, the time evolution operator

UT is unitary i.e. U
†
TUT = IT, which further implies that:

∑

k

M
†
kMk =

∑

k

〈0|U †
T|k〉〈k|UT|0〉

= 〈0|U †
T

(

∑

k

|k〉〈k|
)

︸ ︷︷ ︸

≡IBath

UT|0〉 = 〈0|U †
TUT|0〉

= 〈0|0〉 = ISystem (3.20)

Now, we explicitly mention about the properties of the system

density matrix:

1. Hermiticity:

The system density matrix is hermitian in nature which

can be tested as:

ρ
†
System(τ ) =

⎛

⎜
⎝

∑

k

Mk ρSystem(0)
︸ ︷︷ ︸

System

M
†
k

⎞

⎟
⎠

†

=
∑

k

Mk ρSystem(0)
︸ ︷︷ ︸

System

M
†
k = ρSystem(τ )

(3.21)

The last step can be justified using the fact that the density

matrix at time t = 0 is hermitian.

2. Positivity:

The system density matrix also satisfies positivity prop-

erty.

Now, the non-unitary time evolution of the reduced density

matrix in the weak coupling limiting situation can expressed

in terms of the Gorini–Kossakowski–Sudarshan–Lindblad

(GKSL) master equation in OQS, as given by:

∂ρSystem(τ )

∂τ
=−i[Heff , ρSystem(τ )]+L[ρSystem(τ )] (3.22)
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where Heff is the effective Hamiltonian of the two atomic

system under consideration, which incorporates the effect of

inter atomic interaction aka Resonant Casimir Polder Inter-

action (RCPI). Also, the last term in the above mentioned

evolution is known as the Lindbladian,4 which describes the

dissipative contribution due to the influence of the thermal

bath on the two entangled atomic system. In the following

subsections, we discuss about the effective Hamiltonian and

the Lindbadian with greater detail.

3.2.1 Effective Hamiltonian construction

As we are primarily interested in entanglement properties

of atoms we trace out the bath degrees of freedom. When

one does that in the path integral formalism, one obtains an

effective Hamiltonian.

For our setup of a two qubit system interacting with the

scalar field this is given by:

Heff = HSystem + HLamb Shift

=
2
∑

α=1

ω

2
n̂α. �σα

︸ ︷︷ ︸

System

− i

2

2
∑

α,β=1

3
∑

i, j=1

H
(αβ)

i j (nα
i .σα

i )(n
β

j .σ
β

j )

︸ ︷︷ ︸

Lamb shift=Heisenberg spin chain

(3.23)

where the first term in the effective Hamiltonian represents

the system Hamiltonian of the two atomic system which are

interacting with each other and one can treat this term to be

a self interaction at the level of Hamiltonian. The specific

details of this issue we have already mentioned earlier. The

second part necessarily captures the interaction between the

two atoms as it has contribution from both atoms. In con-

densed matter theory (e.g. in Ising model), one usually con-

siders nearest neighbour interactions to study the quantum

mechanical behaviour and phase transition. Our second part

of the above Hamiltonian resembles with that well known

Ising model Hamiltonian and mimics the role of an spin-

spin interaction Hamiltonian in Heisenberg spin chain model

which arises from the interaction between the two atoms and

the external field. The terminology Lamb shift was first used

in the context of a hydrogen-like atom where in the low-

est order approximation in the fine structure constant energy

level shift was determined from an effective Hamiltonian.

Following the same, we and also in other Refs. [27,36,50]

people have used the terminology Lamb shift in the present

context to describe the energy level shift or spectroscopic

shift of the effective Hamiltonian describing spin-spin self

interaction.

4 In the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master

equation in OQS, the it Lindbladian operator is sometimes known as the

Dissipator which captures the effect of dissipation within the framework

of quantum mechanics.

Hence for usual practice, we will name this specific part

of Hamiltonian, in our case also, as Lamb shift Hamiltonian.

Here, n̂ is the the normal unit vector for individual atom

under consideration. Also the angles between normal vector

and the Pauli matrices are characterised by the three Euler

angles, α, β and γ . Therefore, the Lamb shift Hamiltonian

[27,36,50] can be simplified in terms of the Eulerian angles

as:

HLamb shift = − i

2

2
∑

α,β=1

3
∑

i, j=1

H
(αβ)

i j (nα
i .σα

i )(n
β

j .σ
β

j )

= − i

2

2
∑

α,β=1

3
∑

i, j=1

H
(αβ)

i j cos(αα
i ) cos(α

β

j )σ
α
i σ

β

j

(3.24)

Now, to know the explicit contribution in the effective
Hamiltonian in the present two entangled atomic set up we
define the following set of Pauli operators:

Atom 1 :⇒ σ 1
i = σi ⊗ σ0, Atom 2 :⇒ σ 2

i = σ0 ⊗ σi (3.25)

which is actually expressed in terms of the tensor product of

2 × 2 identity matrix σ0 and the three 2 × 2 Pauli matrices

σi , ∀i = 1, 2, 3, which satisfy the following conditions:

Pauli matrix algebra : [σi , σ j ]=2iǫi jkσk ,
{

σi , σ j

}

=2δi j σ0.

(3.26)

Here also it is obvious from the mathematical structures of

these Pauli operators obey the following algebra:

[

σα
i , σ

β

j

]

= 2iδαβǫi jkσ
α
k ,

{

σ 1
i , σ 1

j

}

=
{

σ 2
i , σ 2

j

}

= 2δi jσ0 ⊗ σ0,

{

σ 1
i , σ 2

j

}

= 2σi ⊗ σ j (3.27)

where (i, j) = 1, 2, 3 and (α, β) = 1, 2. With these set of

definition of the Pauli matrices the Pauli operators can be

expressed in terms of the tensor product as:

σ 1
1 =

(

0 σ0

σ0 0

)

, σ 2
1 =

(

σ1 0

0 σ1

)

, (3.28)

σ 1
2 =

(

0 −iσ0

iσ0 0

)

, σ 2
2 =

(

σ2 0

0 σ2

)

, (3.29)

σ 1
3 =

(

σ0 0

0 − σ0

)

, σ 2
3 =

(

σ3 0

0 σ3

)

. (3.30)

In this context, one can obtain the matrix elements of Hαβ

appearing in the Lamb shift Hamiltonian from the two point

correlator which is given as:

Gαβ(
τ = τ − τ ′) = 〈�(xα, τ )�(xβ , τ ′)〉 (3.31)
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The Fourier-transform of the above two point propagator in

frequency (ω0) space can be written as:

Gαβ(±ω0) =
∫ ∞

−∞
d
τ e±iω0
τ Gαβ(
τ), (3.32)

where ω0 represents the difference between the energy levels

of the ground and the excited states of the atoms respectively.

In turn, the elements of the effective Hamiltonian matrix H
αβ

i j

are given by the following Hilbert transform of the Wightman

function (two point correlator) as given by:

K
αβ(±ω0) = P

π i

∫ ∞

−∞
dω

Gαβ(±ω)

ω ± ω0

= P

π i

∫ ∞

−∞
dω

1

ω ± ω0

∫ ∞

−∞
d
τ e±iω
τ Gαβ(
τ)

(3.33)

where P is the Principal value of the integral.

Now, the elements of co-efficient matrix H
(αβ)

i j of the

effective Hamiltonian can be explicitly represented by the

following expression:

H
(αβ)

i j = A(αβ)δi j − iB(αβ)ǫi jkδ3k − A(αβ)δ3iδ3 j (3.34)

where, the quantities A(αβ) and B(αβ) for the two atomic

system are defined as:

A(αβ) = μ2

4
[K(αβ)(ω0) + K(αβ)(−ω0)]

B(αβ) = μ2

4
[K(αβ)(ω0) − K(αβ)(−ω0)] (3.35)

Here, μ is the coupling parameter which represents the inter-

action strength between the system and the external thermal

bath (conformally coupled scalar field) degrees of freedom.

Determining the structure of the elements of the co-efficient

matrix H
(αβ)

i j in terms of the two atomic two point correlation

function (Wightman function) of external free conformally

coupled massless scalar field in de Sitter background actually

fixes the structure of the effective Hamiltonian in the present

context.

We define the following uantities (equality sign holds

because of symmetry of Hilbert transformations as seen in

Appendix A.

A11 = A22(≡ A1) A12 = A21(≡ A2)

B11 = B22(≡ B1) B12 = B21(≡ B2) (3.36)

From Eq. 3.34, the non-vanishing Hamiltonian matrix

elemnts are as follows :

H
(11)
11 = H

(22)
11 = A1 H

(11)
12 = H

(22)
12 = −iB1

H
(11)
21 = H

(22)
21 = iB1 H

(11)
22 = H

(22)
22 = A1

H
(12)
11 = H

(21)
11 = A2 H

(12)
12 = H

(21)
12 = −iB2

H
(12)
21 = H

(21)
21 = iB2 H

(12)
22 = H

(21)
22 = A2 (3.37)

and these will explicitly contribute to the final expression for

the expectation values of the Lamb shift Hamiltonian.

3.2.2 Lindbladian construction

The fluctuation-dissipation into the system is introduced by

the additional contribution in the time-evolution equation of

the reduce density-matrix often known as the Lindbladian

[3] or the Lindblad operator in OQS. The second signif-

icant term in the Gorini–Kossakowski-Sudarshan–Lindblad

(GKSL) master equation is actually characterised as the Lind-

bladian or Quantum Dissipator of the OQS, which is for the

present two atomic model can be written as:

L[ρSystem(τ )] = 1

2

3
∑

i, j=1

2
∑

α,β=1

C
αβ

i j

×
[

2(n
β

j .σ
β

j )ρSystem(τ )(nα
i .σα

i )

−
{

(nα
i .σα

i )(n
β

j .σ
β

j ), ρSystem(τ )

}]

(3.38)

where, ρSystem(τ ) is the reduced density matrix of the

two entangled atomic system where we have trace over

the external bath scalar field degrees of freedom. The co-

efficient matrix C
αβ

i j is known as the Gorini–Kossakowski–

Sudarshan–Lindblad matrix, which is constructed under

the weak coupling limiting approximation on the coupling

parameter μ, as appearing in the interaction Hamiltonian.5

In the context of any OQS, Lindbladian captures the effect

of dissipation implicitly describing by the system operator

(nα
i .σα

i ), which one can treat as an influence of the thermal

bath on the two entangled atomic system under considera-

tion.

Following the same procedure performed in the pre-

vious section to compute the co-efficient matrix element,

H
(αβ)

i j , in the present context the elements of the Gorini–

Kossakowski Sudarshan–Lindblad matrix, C
(αβ)

i j , as appear-

ing in the expression for the Linbladian can be expressed as:

C
(αβ)

i j = Ã(αβ)δi j − iB̃(αβ)ǫi jkδ3k − Ã(αβ)δ3iδ3 j , (3.39)

5 In the case of closed quantum mechanical system all the entries of

the Gorini–Kossakowski–Sudarshan–Lindblad matrix is zero. Conse-

quently, the time evolution of the reduced density matrix is described

by the quantum Liouville equation, which is the quantum mechanical

analog of the classical Liouville equation.
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where, the quantities Ã(αβ) and B̃(αβ) for the two atomic

system are defined as:

Ã(αβ) = μ2

4
[G(αβ)(ω0) + G(αβ)(−ω0)]

B̃(αβ) = μ2

4
[G(αβ)(ω0) − G(αβ)(−ω0)] (3.40)

In the later half of the paper we will explicitly compute

the entries of the Gorini–Kossakowski Sudarshan–Lindblad

matrix, C
(αβ)

i j to fix the mathematical structure of the Lind-

bladian operator in the present two entangled atomic OQS

under consideration. This can be done once we compute the

all of the possible combinations of two body Wightman (two

point) correlation function for the external probe scalar field

placed in the thermal bath.

The non-vanishing elements of the Gorini–Kossakowski–

Sudarshan–Lindblad matrix, C
(αβ)

i j elements are obtained

from Eq. 3.39;

C
(11)
11 = C

(22)
11 = Ã1 C

(11)
12 = C

(22)
12 = −iB̃1

C
(11)
21 = C

(22)
21 = iB̃1 C

(11)
22 = C

(22)
22 = Ã1

C
(12)
11 = C

(21)
11 = Ã2 C

(12)
12 = C

(21)
12 = −iB̃2

C
(12)
21 = C

(21)
21 = iB̃2 C

(12)
22 = C

(21)
22 = Ã2 (3.41)

In this paper, one of our prime objectives are to find out the

expectation value of the of the Lamb shift Hamiltonian of the

OQS described by two atoms, which are entangled with each

other. Fixing the co-efficient matrix H
(αβ)

i j in terms of the two

atomic two point correlation function (Wightman function)

of external free conformally coupled massless scalar field

in De Sitter background helps us to compute the analytical

expression for the energy shift explicitly. To compute this

expression the main ingredient is the all possible quantum

mechanical states which we have to construct in the present

context from the ground and excited states of the two atoms.

Using these atomic states we construct four possible quantum

mechanical two atomic entangled states for the combined

system (two atomic system+thermal bath), which are ground

state, excited state, symmetric state and antisymmetric state

respectively. We explicitly do this computation in the later

part of the paper.

4 Lamb shift spectroscopy from OQS of two entangled

atoms

Lamb shifts are obtained by taking the expectation value of

Lamb shift Hamiltonian in all the states of the two atomic

system. Here, we first present all the states for the atomic

system formed from the individual atomic states.

Set of eigenstates (|g1〉, |e1〉 and |g2〉, |e2〉) of the two

atomic OQS is given as:

A. For atom 1:

Ground state ⇒

|g1〉 = 1√
2

√

1 + cos(γ 1)

⎛

⎝
−
(

cos(α1) − i cos(β1)
)

1 + cos(γ 1)
1

⎞

⎠

⇒ Eigenvalue E
(2)
G = −ω

2

Excited state ⇒

|e1〉 = 1√
2

√

1 + cos(γ 1)

⎛

⎝

1
(

cos(α1) + i cos(β1)
)

1 + cos(γ 1)

⎞

⎠

⇒ Eigenvalue E
(2)
E = ω

2

B. For atom 2:

Ground state ⇒

|g2〉 = 1√
2

√

1 + cos(γ 2)

⎛

⎝
−
(

cos(α2) − i cos(β2)
)

1 + cos(γ 2)
1

⎞

⎠

⇒ Eigenvalue E
(2)
G = −ω

2

Excited state ⇒

|e2〉 = 1√
2

√

1 + cos(γ 2)

⎛

⎝

1
(

cos(α2) + i cos(β2)
)

1 + cos(γ 2)

⎞

⎠

⇒ Eigenvalue E
(2)
E = ω

2

In the collective state representation of OQS, the ground

state (|G〉), excited state (|E〉), symmetric state (|S〉) and the

antisymmetric state (|A〉) of the two-entangled atomic OQS

[56] can be expressed as:

1. Ground state:

|G〉 = |g1〉 ⊗ |g2〉 = 1

2

√

(1 + cos(γ 1))(1 + cos(γ 2))

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(

cos(α1) − i cos(β1)
)

1 + cos(γ 1)

(

cos(α2) − i cos(β2)
)

1 + cos(γ 2)

−
(

cos(α1) − i cos(β1)
)

1 + cos(γ 1)

−
(

cos(α2) − i cos(β2)
)

1 + cos(γ 2)
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.1)
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2. Excited state:

|E〉 = |e1〉 ⊗ |e2〉 = 1

2

√

(1 + cos(γ 1))(1 + cos(γ 2))

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
(

cos(α2) + i cos(β2)
)

1 + cos(γ 2)(

cos(α1) + i cos(β1)
)

1 + cos(γ 1)(

cos(α1) + i cos(β1)
)

1 + cos(γ 1)

(

cos(α2) + i cos(β2)
)

1 + cos(γ 2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.2)

3. Symmetric state:

|S〉 = 1√
2
[|e1〉 ⊗ |g2〉 + |g1〉 ⊗ |e2〉]

= 1

2
√

2

√

(1 + cos(γ 1))(1 + cos(γ 2))

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(

cos(α1) − i cos(β1)
)

1 + cos(γ 1)
−
(

cos(α2) − i cos(β2)
)

1 + cos(γ 2)

1 −
(

cos(α1) − i cos(β1)
)

1 + cos(γ 1)

(

cos(α2) + i cos(β2)
)

1 + cos γ 2

1 −
(

cos(α1) + i cos(β1)
)

1 + cos(γ 1)

(

cos(α2) − i cos(β2)
)

1 + cos(γ 2)(

cos(α1) + i cos(β1)
)

1 + cos(γ 1)
+
(

cos(α2) + i cos(β2)
)

1 + cos(γ 2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.3)

4. Antisymmetric state:

|A〉 = 1√
2
[|e1〉 ⊗ |g2〉 − |g1〉 ⊗ |e2〉]

= 1

2
√

2

√

(1 + cos(γ 1))(1 + cos(γ 2))

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(

cos(α1) − i cos(β1)
)

1 + cos(γ 1)
−
(

cos(α2) − i cos(β2)
)

1 + cos(γ 2)

1 +
(

cos(α1) − i cos(β1)
)

1 + 4̧ptos(γ 1)

(

cos(α2) + i cos(β2)
)

1 + cos(γ 2)

−1 −
(

cos(α1) + i cos(β1)
)

1 + cos(γ 1)

(

cos(α2) − i cos(β2)
)

1 + cos γ 2
(

cos(α1) + i cos(β1)
)

1 + cos(γ 1)
−
(

cos(α2) + i cos(β2)
)

1 + cos(γ 2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.4)

Now, the expectation value of the Lamb shift Hamilto-

nian HL S with respect to the ground state (|G〉), excited state

(|E〉), symmetric state (|S〉) and the antisymmetric state (|A〉)
are given by (see Appendix C):

δEG = 〈G|HL S |G〉

= −μ2 P

8π2
[−
{

cos(α1) cos(β1) cos(γ 1)+ cos(α2) cos(β2) cos(γ 2)
}


1

+
{

cos[2](α1) + cos[2](β1) + cos[2](α2) + cos[2](β2)
}


2

+
{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)
}


3]

δEE = 〈E |HL S |E〉

= −μ2 P

8π2
[
{

cos(α1) cos(β1) cos(γ 1) + cos(α2) cos(β2) cos(γ 2)
}


1

+
{

cos[2](α1) + cos[2](β1) + cos[2](α2) + cos[2](β2)
}


2

+
{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)
}


3]

δES = 〈S|HL S |S〉

= −μ2 P

8π2
[�(B2 + C2 − A2 − D2) cos(α1) cos(α2)
3

+ �(A2 + B2 + C2 + D2) cos(β1) cos(β2)
3

+
{

cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)
}


2]

δE A = 〈A|HL S |A〉

= −μ2 P

8π2
[�(D̃2 + Ã2 − B̃2 − C̃2) cos(α1) cos(α2)
3

− �( Ã2 + B̃2 + C̃2 + D̃2) cos(β1) cos(β2)
3

+
{

cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)

}


2] (4.5)

where 
1, 
2 and 
3 are the spectroscopic integrals calcu-

lated in Appendix B. Here, we write those again to maintain

consistency

1. Spectroscopic Integral I:


1 :=
∫ ∞

−∞
dω

2ω0 ω
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)
= 0

(4.6)

2. Spectroscopic Integral II:


2 :=
∫ ∞

−∞
dω

ω2

(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)
= 0

(4.7)

3. Spectroscopic Integral III:


3 :=
∫ ∞

−∞
dω

2 ω2 f (ω, L/2)
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

= 2π

L

√

1 +
(

L
2k

)2
cos

(

2kω0 sinh−1

(
L

2k

))

(4.8)

4.1 Bethe regularised Lamb shift spectra

Using these spectroscopic integrals we obtain the simplified

result for Lamb shifts
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1. Bethe regularised energy shift from Ground and

Excited states:

Here, we evaluate the contributions coming from the

ground state and excited state expectation values, as given

by:

δEY = −μ2 P

8π2

{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)
}


3

= −μ2 P

4π

1

L

√

1 +
(

L
2k

)2

×
{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)
}

× cos

(

2ω0k sinh−1

(
L

2k

))

∀ Y = (G, E) (4.9)

Under a certain case for which

{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)

}

= 0

we have,

δEG = 0 = δEE (4.10)

This directly implies that in this particular orientation of

the qubits guided by the values of the α’s and β’s sat-

isfying the above equation the ground and excited states

does not contribute in the Lamb shift spectroscopy of two

entangled qubits in OQS.

2. Bethe regularised energy shift from Symmetric and

Antisymmetric states:

Now, from the present analysis we observe that the RCPI

between the two entangled atoms in the De Sitter back-

ground is being contributed only by the symmetric and

antisymmetric part of the Hamiltonian HL S as it consists

of the term f (ω, L/2), which contains a measure of the

Euclidean distance L between the two entangled atoms.

This actually contributes in the shift in the energy lev-

els or more precisely the inter atomic interaction energy

computed from the symmetric (|S〉) and antisymmetric

(|A〉) quantum state constructed out of two entangled

atoms in De Sitter space. On the other hand, we have

already seen that there is no such term present in the shift

in the energy levels between the ground state and excited

state constructed solely from the quantum states |G〉 and

|E〉 for two atoms. This is appearing due to the non inter

atomic interaction appearing between the uncorrelated

two atomic quantum states in the second order of pertur-

bation theory of OQS under consideration in this work.

The presence of the Euclidean distance dependent term

in the expression of the symmetric and the antisymmetric

part of the shift in the energy level defines the gradient of

a potential between the two atoms in the curved de Sitter

space and is the manifestation of the RCPI between them.

Therefore, only the terms which contributes towards the

RCPI between the two entangled atoms are given by the

following expression:

δES(L) = −μ2 P

8π2
[�Ŵ1(α

1, α2, β1, β2)
3

+
{

cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)
}


2]

δE A(L) = −μ2 P

8π2
[�Ŵ1(α

1, α2, β1, β2)
3

+
{

cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)
}


2]
(4.11)

where we have introduced two functionsŴ1(α
1, α2, β1, β2)

and Ŵ2(α
1, α2, β1,

β2), which are defined as:

Ŵ1(α
1, α2, β1, β2) ≡ (B2 + C2 − A2 − D2) cos(α1) cos(α2)

+ (A2 + B2 + C2 + D2) cos(β1) cos(β2)

Ŵ2(α
1, α2, β1, β2) ≡ (D̃2 + Ã2 − B̃2 − C̃2) cos(α1) cos(α2)

− ( Ã2 + B̃2 + C̃2 + D̃2) cos(β1) cos(β2)

Using the result obtained in Appendix B, we get the fol-

lowing simplified result for the inter atomic interaction

energy shift:

δES(L) = − μ2�

8π L

√

1 +
(

L
2k

)2

× cos

(

2ω0k sinh−1

(
L

2k

))

Ŵ1(α
1, α2, β1, β2)

δE A(L) = μ2�

8π L

√

1 +
(

L
2k

)2

× cos

(

2ω0k sinh−1

(
L

2k

))

Ŵ2(α
1, α2, β1, β2)

(4.12)

We get the following characteristic features:

1. If we increase the value of the Euclidean distance (L),

then the oscillation in the Lamb shift increase with respect

to the surface gravity in the region L ≤ k.

2. We also found that the magnitude of the saturation value

of the Lamb shift decrease with increasing value of the

Euclidean distance (L) in the region L > k.

Further, it is important to note that, the final results of

the inter atomic energy shifts depend on the background De

Sitter metric through the following relation:

k = √
g00α =

√

α2 − r2 =
√

3

�
− r2 (4.13)
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This directly implies that the parameter k is directly related to

the positive cosmological constant of De Sitter space. Con-

sequently, one can theoretically probe De Sitter space using

a pair of entangled atoms in OQS in presence of RCPI. Here

it is important to note that the result obtained for inter atomic

energy level shift for two detectors (two entangled atoms) can

be interpreted as the energy level shift obtained for a single

detector immersed in a thermal bath with temperature:

T = 1

2πk
= 1

2π
√

α2 − r2
= 1

2π

√

3
�

− r2

(4.14)

which is interpreted as the Unruh Temperature. A freely

falling observer under a steady acceleration observes this

temperature in de-Sitter space. In this case, the inter atomic

interaction exhibits non thermal behaviour and carrying non

thermal fluctuation.

Now, to understand the detailed physical features of the

obtained result for energy level shift from RCPI in de Sitter

space we consider two limiting situations, as given by:

1. Case I:

When the inter atomic distance is much larger than char-

acteristic length scale k i.e. L >> k. In this case the two

entangled atomic system is placed near to the cosmo-

logical horizon. In this limit, the energy-level shift from

RCPI can be simplified as:

δES(L) = − μ2�

8π L2
cos

(

2ω0k sinh−1

(
L

2k

))

Ŵ1(α
1, α2, β1, β2)

δE A(L) = μ2�

8π L2
cos

(

2ω0k sinh−1

(
L

2k

))

Ŵ2(α
1, α2, β1, β2)

(4.15)

This result shows that the energy level shift is non trivially

dependent on the parameter k because of that fact that in

this case curvature of the De Sitter space is significant.

Here we observe that the RCPI in the limit L >> k falls

as 1/L2, which shows that the first order correction to

the energy maintains the inverse square law in De Sitter

space.

2. Case II:

When the inter atomic distance is of the order of the char-

acteristic length scale k i.e. L ∼ k. In this case the two

entangled atomic system is placed exactly at the cosmo-

logical horizon. In this limit, the energy-level shift from

RCPI can be simplified as:

δES(L) = − μ2�

4
√

5π L
cos

(

2ω0 L sinh−1

(
1

2

))

Ŵ1(α1, α2, β1, β2)

δE A(L) = μ2�

4
√

5π L
cos

(

2ω0 L sinh−1

(
1

2

))

Ŵ2(α1, α2, β1, β2)

(4.16)

This result shows that the energy level shift is depen-

dent on the parameter k because of that fact that in this

case curvature of the de Sitter space is comparable to

the atomic distance, which will give rise to the following

constraint condition:

L = 2r sin

(
θ − θ ′

2

)

∼ k (4.17)

Here we observe that the RCPI in the limit L ∼ k falls

as 1/L , which shows that the first order correction to the

energy maintains the inverse law in Minkowski space.

3. Case III:

When the inter atomic distance is much smaller than char-

acteristic length scale k i.e. L << k. In this case the two

entangled atomic system is placed far from the cosmo-

logical horizon. In this case it is possible to find a local

inertial frame of reference where all physical principles

coincides with that in Minkowski space. In this limit, the

energy-level shift from RCPI can be simplified as:

δES(L) = −μ2�

8π L
Ŵ1(α

1, α2, β1, β2) cos (ω0 L)

δE A(L) = μ2�

8π L
Ŵ2(α

1, α2, β1, β2) cos (ω0 L) (4.18)

This result shows that the energy level shift is indepen-

dent on the parameter k because of that fact that in this

case curvature of the De Sitter space is negligibly small.

This result exactly matches with the result obtained for

Minkowski space. Here we observe that the RCPI in the

limit L ∼ k falls as 1/L , which shows that the first order

correction to the energy maintains the inverse law in De

Sitter space and exact Minkowski space.

Additionally, in all of these physical limits we found the

following features:

• Feature I:

We also observe that the RCPI contains the Eulerian

angles within it in both the limiting results. This suggests

that the shift in energy is described by the Eulerian angles

which means that the RCPI is a function of the direction

along which the spin of the atoms is directed along. In de

Sitter space the RCPI is dependent on how the spin of the

two atoms are oriented. The orientation of the spins of

the two atoms which is determined by the Euler angles of

rotation αi , β i and γ i ∀i = 1, 2, 3, quantifies the RCPI

along arbitrary direction of spin projection.

• Feature II:

The Euler angles of rotation determines the manifestation

of the thermal environment that the atoms see in their

comoving frame. Furthermore, we observe that the pre-

factors in the energy shifts determines the parameter k
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associated with the temperature [13,14,19,57–59] of the

thermal bath:

T = 1

2πk
=
√

T 2
GH + T 2

Unruh = 1

2πα

√

1 + r2

(

α2 − r2
)

= 1

2π

√

�

3

√

1 + r2

(
3
�

− r2
) (4.19)

where, the Gibbons–Hawking temperature and Unruh

temperature are defined through the following expres-

sions:

TGH = 1

2πα
= 1

2π

√

�

3
(4.20)

TUnruh = a

2π
= 1

2πα

r√
α2 − r2

= 1

2π

√

�

3

r
√

3
�

− r2

(4.21)

with the proper acceleration given by:

a = 1

α

r√
α2 − r2

=
√

�

3

r
√

3
�

− r2

(4.22)

which is defined in the co-moving frame of the two entan-

gled atoms for the given OQS under consideration.

• Feature III:

Now, it is important to note that in De Sitter space the

curvature can be quantified though the Ricci scalar, which

can be further expressed in terms of the cosmological

constant as:

RDS = 12

α
= 12

√

�

3
(4.23)

As a result, the Gibbons–Hawking temperature and

Unruh temperature can be expressed in terms of the

Curvature of De Sitter space as:

TGH = RDS

24π
(4.24)

TUnruh = RDS

24π

RDSr
√

144 − (RDSr)2
(4.25)

Consequently, the temperature of thermal bath can be

expressed in terms of the curvature of de Sitter space as:

T = 1

2πk
= RDS

24π

1
√

1 −
(

RDSr
12

)2
(4.26)

In this case, the RCPI can be expressed in terms of the

curvature of the de Sitter space as:

δES(L) = − μ2� Ŵ1(α1, α2, β1, β2)

8π L

√
√
√
√
√
√1 +

⎛

⎜
⎝

L RDS

24

√

1−
(

RDSr

12

)2

⎞

⎟
⎠

2

× cos

⎛

⎜
⎜
⎝

24ω0

RDS

√

1 −
(

RDSr

12

)2

sinh−1

⎛

⎜
⎜
⎝

L RDS

24

√

1 −
(

Rr
12

)2

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

δE A(L) = μ2� Ŵ2(α1, α2, β1, β2)

8π L

√
√
√
√
√
√1 +

⎛

⎜
⎝

L RDS

24

√

1−
(

RDSr

12

)2

⎞

⎟
⎠

2

× cos

⎛

⎜
⎜
⎝

24ω0

RDS

√

1 −
(

RDSr

12

)2

sinh−1

⎛

⎜
⎜
⎝

L RDS

24

√

1 −
(

Rr
12

)2

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

(4.27)

In the limiting situation, L >> k = 12

√

1 −
(

RDSr
12

)2
/

RDS, the RCPI can be expressed in terms of the curvature

of the de Sitter space as:

δES (L >> k) = − 3μ2�

RDSL2π

× cos

⎛

⎝
24ω0

RDS

√

1 −
(

RDSr

12

)2

sinh−1

×

⎛

⎜
⎜
⎝

L RDS

24

√

1 −
(

RDSr
12

)2

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

Ŵ1(α
1, α2, β1, β2)

δE A (L >> k) = 3μ2�

RDSL2π

× cos

⎛

⎝
24ω0

RDS

√

1 −
(

RDSr

12

)2

× sinh−1

⎛

⎜
⎜
⎝

L RDS

24

√

1 −
(

RDSr
12

)2

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

Ŵ2(α
1, α2, β1, β2)

(4.28)

Here one can consider another limiting situation, where

L ∼ k = 12

√

1 −
(

RDSr
12

)2
/RDS . For this case, RCPI

can be expressed in terms of the curvature of the de Sitter

space as:
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δES (L ∼ k) = − RDSμ2�

48
√

5π

√

1 −
(

RDSr
12

)2

× cos

⎛

⎝
24ω0

RDS

√

1 −
(

RDSr

12

)2

sinh−1

(
1

2

)
⎞

⎠

× Ŵ1(α
1, α2, β1, β2)

δE A (L ∼ k) = RDSμ2�

48
√

5π

√

1 −
(

RDSr
12

)2

× cos

⎛

⎝
24ω0

RDS

√

1 −
(

RDSr

12

)2

sinh−1

(
1

2

)
⎞

⎠

× Ŵ2(α
1, α2, β1, β2) (4.29)

• Feature IV:

Now, if we take the limit RDS → 0 (i.e. � → 0 or

α → ∞), then we get:

lim
RDS→0

TGH =0, lim
RDS→0

TUnruh = 0 �⇒ lim
RDS→0

T = 0

�⇒ k → ∞ (4.30)

In this case te RCPI will be reduced to the result obtained

in the limiting situation L << k, which is exactly same

result as obtained for the Minkowski space.

• Feature V:

Here additionally it is important to note that, only if the

Unruh temperature vanishes, the corresponding proper

acceleration of static atom vanishes i.e. a = 0 and this

can be obtained when the atoms are localised at r = 0.

As a result, kinematic contribution will not appear in the

expression for RCPI. However, in this case, the RCPI is

still can be expressed in terms of the curvature of the

De Sitter space, as in this case temperature of the ther-

mal bath is quantified by the non vanishing Gibbons–

Hawking temperature i.e.

T = 1

2πk
= TGH = RDS

24π
(4.31)

In this case, the RCPI can be expressed in terms of the

curvature of the de Sitter space as:

δES(L) = − μ2�

8π L

√

1 +
(

L RDS
24

)2

× cos

(
24ω0

RDS

sinh−1

(
L RDS

24

))

Ŵ1(α
1, α2, β1, β2)

δE A(L) = μ2�

8π L

√

1 +
(

L RDS
24

)2

× cos

(
24ω0

RDS

sinh−1

(
L RDS

24

))

Ŵ2(α
1, α2, β1, β2)

(4.32)

In the limiting situation, L >> k = 12/RDS, the RCPI

can be expressed in terms of the curvature of the de Sitter

space as:

δES(L >> k = 12/RDS) = − 3μ2�

RDSL2π

× cos

(
24ω0

RDS

sinh−1

(
L RDS

24

))

Ŵ1(α
1, α2, β1, β2)

δE A(L >> k = 12/RDS) = 3μ2�

RDSL2π

× cos

(
24ω0

RDS

sinh−1

(
L RDS

24

))

Ŵ2(α
1, α2, β1, β2)

(4.33)

Here one can consider another limiting situation, where

L ∼ k = 12/RDS. For this case, RCPI can be expressed

in terms of the curvature of the De Sitter space as:

δES(L ∼ k = 12/RDS) = − RDSμ2�

48
√

5π

× cos

(
24ω0

RDS

sinh−1

(
1

2

))

Ŵ1(α
1, α2, β1, β2)

δE A(L ∼ k = 12/RDS) = RDSμ2�

48
√

5π

× cos

(
24ω0

RDS

sinh−1

(
1

2

))

Ŵ2(α
1, α2, β1, β2)

(4.34)

• Feature VI:

Now, we compare the obtained results for Lamb shift

in De Sitter space with the result corresponding to the

Minkowski space. For this purpose we consider a spe-

cific situation where two static atoms are interacting with

the environment, where it is represented by the massless

scalar field in OQS. In this system, the two point field

correlation can be expressed in terms of the Wightman

function given by:

G11(x, x ′) = G22(x, x ′)

= − 1

4π2

∞
∑

q=−∞

1
(

τ − τ ′ − i
{ q

T
+ ǫ

})2

= − 1

4π2

∞
∑

q=−∞

1

(τ − τ ′ − i {2πkq + ǫ})2

= 1

16π2k2
cosec2

(
ǫ + i(τ − τ ′)

2k

)

G12(x, x ′) = G21(x, x ′)
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= − 1

4π2
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= − 1

4π2

∞
∑

q=−∞

1

(τ − τ ′ − i {2πkq + ǫ})2 − L2

= 1

16π2kL
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⎛

⎝
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⎬
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− cot
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2k
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(4.35)

where L is the Euclidean distance between two atoms

in OQS. Using this Wightman function we can carry for-

ward the similar calculation for Lamb shift from the RCPI

in Minkowsi space, which will finally give rise to the fol-

lowing expression:

δE
(M)
S = −μ2�

8π L
Ŵ1(α

1, α2, β1, β2)cos (ω0 L)

δE
(M)
A = μ2�

8π L
Ŵ2(α

1, α2, β1, β2) cos (ω0 L) (4.36)

From the above mentioned result it is clearly observed

that the Lamb shift obtained from RCPI in Minkowski

space not containing any contribution from the tempera-

ture of the thermal bath, T = 1/2πk and only depends

on Euler angles and the Euclidean distance L . Also we

found that this result exactly matches with the result

obtained for the case L << k with two inertial atoms

in the static patch of de Sitter space. This result addi-

tionally implies that the inter-atomic interaction between

two atoms behave differently in Minkowski space and in

the static patch of de Sitter space. For two or more atoms

one can construct the ground, excited, symmetric and

antisymmetric entangled states, out of which symmetric

and antisymmetric entangled quantum states will give

rise to non-zero spectroscopic shifts in the two limiting

situation, L ≫ k and L ≪ k. Using these limiting results

one can able to probe RCPI and distinguish between the

static de Sitter and Minkowski flat space-time in a very

precise manner. But instead of using two atoms if we

use only one single atom within the framework of OQS

then one cannot implement the methodology quantum

mechanical entanglement in the present scenario. For the

single atomic non-entangled case one can only construct

the ground state and excited state, but there will be no

symmetric and antisymmetric states exist, which are .the

necessary ingredient to probe RCPI using which one can

able to distinguish the effects of Minkowski flat space-

time and static patch of de Sitter space-time. For two or

more atomic scenario the atoms are entangled with each

other and interacting with a thermal bath which is mod-

elled with scalar field embedded in the static patch of de

Sitter space. In this scenario, RCPI can be used to study

the spectroscopic shift from the spin-spin self interaction

from the effective part of the Hamiltonian. On the other

hand, when we describe the present scenario with a single

atom which is interacting with a thermal bath modelled

by a scalar field in static de Sitter background due to the

absence of having any quantum entanglement RCPI will

be replaced by a very simple self interacting quadratic

term. Consequently, using the spectroscopic shift for sin-

gle atom-bath system one cannot distinguish between the

Minkowski space-time and static patch of the de Sitter

space. Here two or more atomic OQS is the only feasi-

ble option using which one can precisely distinguish the

behaviour of RCPI in Minkowski space and in the static

patch of de Sitter space due to having quantum entangle-

ment between the atoms which are interacting with the

thermal bath. In short, the phenomena of quantum entan-

glement play very significant role in the present context

of discussion as this can be only explained through two

or more atomic systems to probe the curvature of the

space-time through RCPI. in the spectroscopic shift com-

putation. But as the quantum entanglement is not there

in single atomic system, one cannot probe the curvature

of the space-time in the present context.

• To understand the obtained results in a more better way

and to compare with the previously obtained results in the

same literature we discuss now two limiting situations,

which are appended below:

1. Limit I:

In this case we fix the position of the two detectors at

the angular positions (α1 = π/2, β1 = π/2, γ 1 =
0) and (α2 = π/2, β2 = π/2, γ 1 = 0) respectively.

In this limit, HA matches with the model studied in

previous works, but HL S does not.

2. Limit II:

In this case we fix the position of the two detectors at

the angular positions (α1 = 0, β1 = 0, γ 1 = 0) and

(α2 = 0, β2 = 0, γ 1 = 0) respectively. In this limit,

HA does not match the model studied in previous

works, but HL S does.

In Table 1, we have explicitly mentioned the comparison

between our work and previous works.

In Fig. 1, the behaviour of the spectroscopic Lamb shifts

have been plotted with respect to the Euclidean distance

between the two qubits. It is clearly observed that for smaller
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Table 1 Comparison between our work and previous works

Our work Limit I Limit II

HA = ω
2

∑2
α=1 n̂.σα HA = ω

2

∑2
α=1 σα

3
(previous work)

HA = ω
2

∑2
α=1(σ

α
1 + σα

2 + σα
3 )

HL S = − i
2

∑2
α,β=1

∑3
i, j=1 H

(αβ)

i j (nα
i .σα

i )(n
β

j .σ
β

j ) HL S = − i
2

∑2
α,β=1

∑3
i, j=1 H

(αβ)

i j σα
3 σ

β
3

(previous work)

HL S = − i

2

2
∑

α,β=1

3
∑

i, j=1

H
(αβ)

i j σα
i σ

β

j

Fig. 1 Behaviour of spectroscopic shifts wrt the euclidean distance

between the qubits. The other parameters are kept fixed (ω =
1, k ≈ 1061, μ = 0.1, ω0 = 1)

Fig. 2 Behaviour of spectroscopic shifts wrt the temperature of the

thermal bath. The other parameters are kept fixed (ω = 0.5, L = 1, μ =
0.1, ω0 = 1)

values of L , the shifts fluctuate with a very large amplitude.

The rate of fluctuation increases with increasing L with a

decreasing amplitude and for asymptotically large value of

L the shifts diminish to zero. A naive interpretation from this

plot can be that to measure a finite shift, smaller values of L

is preferred to larger values.

Fig. 3 Behaviour of spectroscopic shifts wrt the curvature of the De-

Sitter spacetime. The other parameters are kept fixed (ω = 1, L =
1, μ = 0.1, ω0 = 1)

In Fig. 2, the spectroscopic Lamb shifts are plotted against

the temperature of the thermal bath. It can be seen that for

lower temperature of the bath a finite value of the spectral

shift is obtained. However, after a certain characteristic tem-

perature the spectral shifts start decaying and finally reach

zero. This finite value of the spectral shifts for smaller val-

ues of the temperature of the thermal bath suggests that by

this indirect mechanism one can expect a large value of the

inverse curvature parameter k for the static patch of de Sitter

space, which is related to the temperature of the thermal bath

via the relation T = 1/2πk.

In Fig. 3, we have plotted the characteristics of the spec-

troscopic Lamb shifts with respect to the curvature of the de

Sitter background. It can be seen that for lower values of the

curvature a finite value of the spectral shift is obtained. How-

ever, after a certain characteristic value of RDS the spectral

shifts start diminishing in an oscillatory fashion and gradu-

ally go to zero. For larger values of RDS , the spectral shifts

oscillates rapidly to give negligible value. Although from this

indirect detection mechanism, it is not possible to determine

the exact value of the de Sitter curvature but one can predict

that its value is smaller than a certain characteristic value and

can never be larger than that.
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5 Conclusion

In this paper, we have established a direct connection between

the curvature of De Sitter space and atomic spectroscopy for

an OQS described by two entangled atoms. For this purpose,

without doing any terrestrial and space observations design-

ing a laboratory atomic experiment is very useful to establish

the connection between space time geometry and quantum

mechanics. To summarise, in this work, we have addressed

the following issues to implement the above mentioned

idea:

• To begin with, we have started our discussion with an

OQS characterised by two entangled atoms. We have

considered the two body quantum entanglement as in this

situation it is allowed to exchange energy through Lamb

shift in terms of the geometry of De Sitter space-time. In

this theoretical construction these two atomic pair repre-

sents Unruh-De-Witt detectors, which are considered to

be conformally coupled to a background scalar field in

thermal bath.

• The non-adiabatic interaction between the detectors and

the thermal bath in OQS is characterised by RCPI, which

plays the key ingredient to determine the curvature of De

Sitter space from the Lamb shift spectroscopy.

• In order to study the full dynamics of the two entangled

atoms in OQS for any arbitrary position of two detec-

tors, we have used a generalised Hamiltonian described

by Pauli operators which include contributions from the

Euler rotation angles due to projection in any arbitrary

direction. This direction of projection actually playing the

role of direction of observation of the atoms in the atomic

detectors. In this discussion, the Lamb shift Hamiltonian

includes a term that arises from the interaction between

the atomic detectors with the background test scalar field.

This is the most significant term which can be experimen-

tally probed using atomic spectroscopy to detect to geom-

etry of De Sitter space-time. In the time dynamics of the

reduced density matrix a generalised expression for this

contributions actually sourced by the interaction between

the atomic detectors with the test scalar field, encapsu-

lated by the Linbaldian operator in two body quantum

entangled open system. This study actually helps us to

know about the time evolution of the OQS from the per-

spective of experimentalist in the atomic detector’s side.

• Apart from solving this prime issue, another significant

motivation of our work is to quantify the two point corre-

lation function (i.e Wightman function) between the two

entangled atoms for OQS in the De Sitter background.

This results in expressions for four possibilities of the

Wightman function that would now directly relate the

quantum fluctuations in the background geometry of De

Sitter space to the Lamb shift in atomic spectroscopy.

• To compare between the geometrical features of De Sit-

ter and Minkowski flat space we have also computed the

Lamb shift from the two body entangled OQS set up in the

thermal state for the flat case. In the case of De Sitter space

the Lamb shift is described by inverse square power law

dependence on the Euclidean distance (L), which is char-

acterised by the length scale associated with the breaking

of local inertial description of the two entangled atomic

OQS. On the other hand, in the Minkowski flat case we

do not get any temperature dependence and in this case

the the spectroscopic Lamb Shift is described by L−1

behaviour. From this discussion it is evident that, even

both thermal Minkowski and De Sitter space satisfy sim-

ilar kind of properties and cannot explicitly discriminated

by a single external probe field, but using non adiabatic

RCPI it is possible to differentiate between these two

geometrical space-times.

• From the obtained result for the Lamb shift it is evident

that, if the geometry of the space-time is curved, par-

ticularly if it is De Sitter space then in the context of

two body entangled OQS the non-adiabatic inter-atomic

RCPI is purely characterised by three important contri-

butions which are appended bellow:

1. The amplitude of the Lamb shift is mainly charac-

terised by the L−2 factor, which indicates the inverse

square power law decay in the limiting situation

L >> k, where the inter atomic distance is larger

than the characteristic length scale k.

2. In the amplitude of the Lamb shift another angular

modulation factor contribute, given by the following

expression lying within the following window:

0 < (cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)) < 4.

This factor is appearing in the coefficient of the cut-

off dependent contribution after applying Bethe rugu-

larisation procedure. However, in the limiting situa-

tion where the Bethe cut-off frequency is smaller than

the natural frequency of the two entangled atomic

system i.e. ωc << ω0, such contribution will not

contribute in the amplitude of Lamb shift.

• On the other hand, in case of flat space-time the ampli-

tude of the Lamb shift is proportional to L−1, and the

angular modulation factor D lying within the same win-

dow as mentioned above. Most importantly, in the final

expression for the Lamb shift as appearing in the case

of flat space no signature of the actual origin of quan-

tum state i.e. whether it is non-thermal or thermal, can be

observable.

• Finally, we have added a short discussion regarding the

Gibbons Hawking temperature and Unruh temperature

that these detectors would measure when accelerating
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through the De Sitter background space-time. We have

included this discussion regarding the equilibrium tem-

perature of the thermal bath as it can be directly expressed

in terms of the curvature of the De Sitter space and con-

sequently the energy shift can be expressed in terms of

these fundamental quantities.

The future prospects of our work are appended point-wise.

• It is completely true fact that in quantum field theory in

de Sitter space (e.g. inflationary perturbations), 2-point

functions encode the power spectrum while 3-point func-

tions encode aspects of non-gaussianities. But to explain

this quantum entanglement is not the necessary ingre-

dient. Now one can consider the three atomic entangle-

ment where one needs to consider pair wise entangle-

ment and third atom is not entanglement. Considering

this possibility one can construct ground, excited, sym-

metric and antisymmetric entangled states using which

one can study the perturbation in static de Sitter back-

ground and after path integrating out the bath degrees of

freedom (scalar field in our consideration) one can explic-

itly compute two, point function and the associated power

spectrum and three point functions and the associated

non-gaussianities in the present context. If this type com-

putation is performed in the present context, then that will

be surely very helpful to probe the underlying physics of

quantum mechanical entanglement at the level of corre-

lation functions. It is expected that the result obtained

from one un-entangled atom and the entangled two/three

or more atom at the level finding the quantum correlation

function will be different and distinguishable. Now if one

can able to test these possibilities through various obser-

vational probes, then one can say that whether quantum

mechanical entanglement is at all be tested in near future

or not. By following the referees suggestion regarding

this issue we are now thinking of doing the same compu-

tation in near future and we believe this analysis will be

helpful to explore various unknowns in this context. We

have added this point in the discussion of future direction

of the present work in the conclusion section.6

• Last but not the least, in the present context one can

also study the de Sitter entropy from the gravitational

entanglement in the static patch of de Sitter space-time.

In this connection, one can use generalizations of Ryu-

Takayanagi holographic entanglement [60,61] by follow-

ing the references [62,63] and related works in this area.

Also one can use, the concept of the well known ER =

EPR [64], and related ideas on geometry-entanglement

in the context of de Sitter space. Till now we have not

been used the concept and computational techniques of

6 We are thankful to the referee for pointing this issue.

the gravitational entanglement to compute the de Sitter

entropy. We have used the tools and techniques of quan-

tum field theory to study the result of de Sitter entropy

in various different contexts. It would be really good and

interesting if the calculation can be performed in the grav-

itational side as well to give complete understanding and

overview of the full theory.7

• In future we will extend our discussion for multi entan-

gled (even and odd number of atoms) OQS to understand

the connection between curvature of De Sitter space and

Lamb shift.

• Also, our plan also is to study the non-unitary dissipative

time dynamics of the system from which one can com-

pute the expression for the equilibrium temperature of

the bath, which help us to check the consistency about

the expression for the temperature obtained from gravity

sector.

• One can also study various quantum information the-

oretic measure from the present multi entangled open

quantum theory set up to know more about many body

quantum entanglement.

• Study of quantum fluctuations and related inflationary

perturbations from the OQS is not well established yet in

the context of early universe cosmology. For this reason

it is good to study the cosmological consequences from

the correlation functions and comparison with the var-

ious observables from OQS to know about many more

unknown physical facts.

• Many body localisation and eigenstate thermalisation,

study of tensor networks [65–67] and physics of quantum

chaos [18,68–74] from the open quantum set up are also

unexplored issues which one can study in detail from the

present set up as well.
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Appendix A: Coefficients of the Lamb shift Hamiltonian

and Lindbladian

In this appendix, we will calculate the co-efficient matrix

elements of the Lamb shift Hamiltonian and Lindbladian.

For this purpose, we will use the Fourier transform of the

two point correlation functions as given in the Eq. 2.18. For

clarity, we re write those equations here again.

G
11(ω) = G

22(ω) = −
∫ ∞

−∞
d
τ

eiω
τ

16π2k2 sinh[2]
(


τ
2k

− iǫ
)

= 1

2π

ω

1 − e−2πkω
, (A.1)

G
12(ω) = G

21(ω) = −
∫ ∞

−∞
d
τ

1

16π2k2

× eiω
τ

sinh2
(


τ
2k

− iǫ
)

− r2

k2 sin2
(


θ
2

)

= 1

2π

ω

1 − e−2πkω
f (ω, L/2), (A.2)

where, we define the spectral function f (ω, L/2) as:

f (ω, L/2) = 1

Lω

√

1 +
(

L
2k

)2
sin

(

2kω sinh−1

(
L

2k

))

(A.3)

Now, the elements of co-efficient matrix H
(αβ)

i j of the

effective Hamiltonian can be explicitly represented by the

following expression:

H
(αβ)

i j = A(αβ)δi j − iB(αβ)ǫi jkδ3k − A(αβ)δ3iδ3 j (A.4)

where

A(αβ) = μ2

4
[K(αβ)(ω0) + K(αβ)(−ω0)]

B(αβ) = μ2

4
[K(αβ)(ω0) − K(αβ)(−ω0)] (A.5)

Kαβ(±ω0)∀(α, β = 1, 2) represents the Hilbert transform

of the two point function in Fourier space, which we have

defined in the Eq. 3.33. These are given as follows:

K11(ω0) = K22(ω0) = P

2π2i

∫ ∞

−∞
dω

1

ω − ω0

ω

1 − e2πkω

K12(ω0) = K21(ω0) = P

2π2i

∫ ∞

−∞
dω

1

ω − ω0

ω

1 − e2πkω
f (ω, L/2)

(A.6)

From the symmetry of Hilbert transformed correlations,

it is easy to note that

A11 = A22 A12 = A21 B11 = B22 B12 = B21 (A.7)

From Eq. A.5

A1 ≡ A11 = A22 = μ2

4

[

K(11)(ω0) + K(11)(−ω0)

]

B1 ≡ B11 = B22 = μ2

4

[

K(11)(ω0) − K(11)(−ω0)

]

A2 ≡ A12 = A21 = μ2

4

[

K(12)(ω0) + K(12)(−ω0)

]

B2 ≡ B12 = B21 = μ2

4

[

K(11)(ω0) − K(11)(−ω0)

]

(A.8)

Further using Eq. (A.6) in Eq. (A.8) we get the following

simplified expression for A1, B1, A2 and B2:

A1 = = μ2 P

4π2i

∫ ∞

−∞
dω

ω2

(ω + ω0)(ω − ω0)(1 − e−2πkω)
,

(A.9)

B1 = = μ2 P

4π2i

∫ ∞

−∞
dω

ω0ω

(ω + ω0)(ω − ω0)(1 − e−2πkω)
,

(A.10)

A2 = = μ2 P

4π2i

∫ ∞

−∞
dω

ω2 f (ω, L/2)

(ω + ω0)(ω − ω0)(1 − e−2πkω)
,

(A.11)

B2 = = μ2 P

4π2i

∫ ∞

−∞
dω

ω0ω f (ω, L/2)

(ω + ω0)(ω − ω0)(1 − e−2πkω)
.

(A.12)

We will calculate the above spectroscopic integrals explic-

itly in the next section.

Similarly, the elements of the Gorini–Kossakowski–

Sudarshan–Lindblad matrix, C
(αβ)

i j , as appearing in the
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expression for the Linbladian can be expressed as:

C
(αβ)

i j = Ã(αβ)δi j − iB̃(αβ)ǫi jkδ3k − Ã(αβ)δ3iδ3 j , (A.13)

where, the quantities Ã(αβ) and B̃(αβ) for the two atomic

system are defined as:

Ã(αβ) = μ2

4
[G(αβ)(ω0) + G(αβ)(−ω0)] (A.14)

B̃(αβ) = μ2

4
[G(αβ)(ω0) − G(αβ)(−ω0)] (A.15)

Again from symmetry of Fourier transformed correlations

it can be seen that

Ã11 = Ã22(≡ Ã1) Ã12 = Ã21(≡ Ã2)

B̃11 = B̃22(≡ B̃1) B̃12 = B̃21(≡ B̃2) (A.16)

Now

Ã1 = μ2

4

[

G(11)(ω0) + G(11)(−ω0)

]

= μ2

4

[

G(22)(ω0) + G(22)(−ω0)

]

= μ2

8π
ω0

[
1

1 − e−2πkω0
− 1

1 − e2πkω0

]

, (A.17)

B̃1 = μ2

4

[

G(11)(ω0) − G(11)(−ω0)

]

= μ2

4

[

G(22)(ω0) − G(22)(−ω0)

]

= μ2

8π
ω0

[
1

1 − e−2πkω0
+ 1

1 − e2πkω0

]

, (A.18)

Ã2 = μ2

4

[

G(12)(ω0) + G(12)(−ω0)

]

= μ2

4

[

G(21)(ω0) + G(21)(−ω0)

]

= μ2

8π
ω0

[
f (ω0, L/2)

1 − e−2πkω0
− f (−ω0, L/2)

1 − e2πkω0

]

, (A.19)

B̃2 = μ2

4

[

G(12)(ω0) − G(12)(−ω0)

]

= μ2

4

[

G(21)(ω0) − G(21)(−ω0)

]

= μ2

8π
ω0

[
f (ω0, L/2)

1 − e−2πkω0
+ f (−ω0, L/2)

1 − e2πkω0

]

. (A.20)

Appendix B: Calculation of Bethe regularised spectro-

scopic integrals

In the following subsections we explicitly compute the Bethe

regularised integrals, which are very useful to compute the

expressions for the energy shift from ground, excited, sym-

metric and antisymmetric state respectively. These integrals

are appended below:

Integral I: 
1 :=
∫ ∞

−∞
dω

2ω0 ω
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

(B.1)

Integral II: 
2 :=
∫ ∞

−∞
dω

ω2

(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

(B.2)

Integral III: 
3 :=
∫ ∞

−∞
dω

2ω2 f (ω, L/2)
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

(B.3)

B.1: Spectroscopic integral I

In this subsection we explicitly compute the finite contribu-

tion from the following integral:


1 :=
∫ ∞

−∞
dω

2ω0 ω
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)
. (B.4)

It is important to note that in the large frequency range,

−∞ < ω < ∞, one can further expand the integrand by

taking large ω approximation as:

F(ω0, ω, k) := 2ω0 ω
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

−−−→
ω→∞

2ω0 ω

(ω + ω0) (ω − ω0)
:= F(ω0, ω) (B.5)

This implies that, after taking large ω approximation the inte-

grand of 
1 becomes independent of the parameter k, which

representing the surface gravity.

Now, further using this approximation the integral 
1 can

be further simplified as:


1 ≈
∫ ∞

−∞
dω F(ω0, ω) =

∫ 0

−∞
dω F(ω0, ω)

︸ ︷︷ ︸

≡ U1(ω0)

+
∫ ∞

0

dω F(ω0, ω)

︸ ︷︷ ︸

≡ U2(ω0)

(B.6)

where we have decomposed the integrals into two parts, indi-

cated by U1(ω0) and U2(ω0) in the parenthesis symbol. Now,

here we see that in the large frequency range, −∞ < ω < ∞,

we get:

U1(ω0)=
∫ 0

−∞
dω F(ω0, ω)=−

∫ ∞

0
dω F(ω0, ω)=−U2(ω0)

(B.7)

Now, we see here that both U1(ω0) and U2(ω0) gives diver-

gent contributions in the frequency range, −∞ < ω < 0 and
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0 < ω < ∞. To get the finite contributions from these inte-

grals we introduce a cut-off regulator ωc, by following Bethe

regularisation technique. After introducing this cut-off we

get:

U1(ω0, ωc) =
∫ 0

−ωc

dω F(ω0, ω) = −
∫ ωc

0

dω F(ω0, ω)

= −U2(ω0, ωc) = −ω0 ln

[

1 −
(

ωc

ω0

)2
]

(B.8)

Consequently, we get the following expression for the inte-

gral 
1, as given by:


1 = U1(ω0, ωc) + U2(ω0, ωc)

= ω0 ln

[

1 −
(

ωc

ω0

)2
]

− ω0 ln

[

1 −
(

ωc

ω0

)2
]

= 0

(B.9)

B.2: Spectroscopic integral II

In this subsection we explicitly compute the finite contribu-

tion from the following integral:


2 :=
∫ ∞

−∞
dω

ω2

(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)
(B.10)

It is important to note that in the large frequency range,

−∞ < ω < ∞, one can further expand the integrand by

taking large ω approximation as:

E(ω0, ω, k) := ω2

(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

−−−→
ω→∞

ω2

(ω + ω0) (ω − ω0)
:= E(ω0, ω) (B.11)

This implies that, after taking large ω approximation the inte-

grand of 
2 becomes independent of the parameter k, which

representing the surface gravity.

Now, further using this approximation the integral 
2 can

be further simplified as:


2 ≈
∫ ∞

−∞
dω E(ω0, ω) =

∫ 0

−∞
dω E(ω0, ω)

︸ ︷︷ ︸

≡ W1(ω0)

+
∫ ∞

0

dω E(ω0, ω)

︸ ︷︷ ︸

≡ W2(ω0)

(B.12)

where we have decomposed the integrals into two parts,

indicated by W1(ω0) and W2(ω0) in the parenthesis sym-

bol. Now, here we see that in the large frequency range,

−∞ < ω < ∞, we get:

W1(ω0) =
∫ 0

−∞
dω E(ω0, ω) = −

∫ ∞

0

dω E(ω0, ω) = −W2(ω0)

(B.13)

Now, we see here that both W1(ω0) and W2(ω0) gives diver-

gent contributions in the frequency range, −∞ < ω < 0 and

0 < ω < ∞. To get the finite contributions from these inte-

grals we introduce a cut-off regulator ωc, by following Bethe

regularisation technique. After introducing this cut-off we

get:

W1(ω0, ωc) =
∫ 0

−ωc

dω E(ω0, ω) =
∫ ωc

0

dω E(ω0, ω)

= W2(ω0, ωc) = ωc − ω0 tanh−1

(
ωc

ω0

)

(B.14)

Consequently, we get the following expression for the inte-

gral 
2, as given by:


2 = W1(ω0, ωc) + W2(ω0, ωc) = 2

{

ωc − ω0 tanh−1

(
ωc

ω0

)}

(B.15)

Now, if we further use the approximation that, ωc << ω0

i.e. the Bethe regularised cut-off is smaller than the natural

frequency of the two entangled atomic system under consid-

eration, then we get8:


2 = W1(ω0, ωc) + W2(ω0, ωc) = 2

{

ωc − ω0

(
ωc

ω0

)}

= 0

(B.17)

B.3: Spectroscopic integral III

In this subsection we explicitly compute the finite contribu-

tion from the following integral:


3 :=
∫ ∞

−∞
dω

2ω2 f (ω, L/2)
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)
(B.18)

where, we define the spectral function f (ω, L/2) as:

f (ω, L/2) = 1

Lω

√

1 +
(

L
2k

)2
sin

(

2kω sinh−1

(
L

2k

))

(B.19)

8 In the limit, ωc << ω0 we can approximate the Taylor series expan-

sion of the following function as:

tanh−1

(
ωc

ω0

)

=
(

ωc

ω0

)

+ 1

3

(
ωc

ω0

)3

+ · · · ≈
(

ωc

ω0

)

. (B.16)
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It is important to note that in the large frequency range,

−∞ < ω < ∞, one can further expand the integrand by

taking large ω approximation as:

O(ω0, ω, k) := 2ω2 f (ω, L/2)
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

−−−→
ω→∞

2ω2 f (ω, L/2)

(ω + ω0) (ω − ω0)
:= ˜O(ω0, ω, k) (B.20)

This implies that, after taking large ω approximation the inte-

grand of 
3 becomes not independent of the parameter k,

which representing the surface gravity.

Now, further using this approximation the integral 
3 can

be further simplified as:


3 ≈
∫ ∞

−∞
dω ˜O(ω0, ω, k) =

∫ 0

−∞
dω ˜O(ω0, ω, k)

︸ ︷︷ ︸

≡ Q1(ω0,k)

+
∫ ∞

0

dω ˜O(ω0, ω, k)

︸ ︷︷ ︸

≡ Q2(ω0,k)

(B.21)

where we have decomposed the integrals into two parts, indi-

cated by Q1(ω0, k) and Q2(ω0, k) in the parenthesis sym-

bol. Now, here we see that in the large frequency range,

−∞ < ω < ∞, we get:

Q1(ω0, k) =
∫ 0

−∞
dω ˜O(ω0, ω, k) =

∫ ∞

0

dω ˜O(ω0, ω, k)

= Q2(ω0, k) = π

L

√

1 +
(

L
2k

)2
cos

(

2kω0 sinh−1

(
L

2k

))

(B.22)

Consequently, we get the following expression for the inte-

gral 
3, as given by:


3 = Q1(ω0, k)+Q2(ω0, k)

= 2π

L

√

1 +
(

L
2k

)2
cos

(

2kω0 sinh−1

(
L

2k

))

(B.23)

Appendix C: Calculation of Lamb shift spectroscopy

from two entangled atomic OQS

In this appendix, we explicitly compute the expectation value

of Lamb shift Hamiltonian which will contribute to the

atomic spectroscopy. To serve this purpose let us first express

the Lamb Shift Hamiltonian in terms of the Pauli operators

(defined earlier):

HLambshift ≡ HL S =
2
∑

α,β=1

H
(αβ)

L S = H
(11)
L S + H

(22)
L S + H

(12)
L S + H

(21)
L S

(C.1)

where the Lamb shift Hamiltonian corresponding to all pos-

sible allowed interaction between two atoms are represented

by the following expressions:

H
(11)
L S = − i

2
[H

(11)
11 σ 1

1 σ 1
1 cos2(α1) + H

(11)
12 σ 1

1 σ 1
2 cos(α1) cos(β1)

+ H
(11)
13 σ 1

1 σ 1
3 cos(α1) cos(γ 1)

+ H
(11)
21 σ 1

2 σ 1
1 cos(β1) cos(α1) + H

(11)
22 σ 1

2 σ 1
2 cos2(β1)

+ H
(11)
23 σ 1

2 σ 1
3 cos(β1) cos(γ 1)

+ H
(11)
31 σ 1

3 σ 1
1 cos(γ 1) cos(α1) + H

(11)
32 σ 1

3 σ 1
2 cos(γ 1) cos(β1)

+ H
(11)
33 σ 1

3 σ 1
3 cos2(γ 1)]

H
(22)
L S = − i

2
[H

(22)
11 σ 2

1 σ 2
1 cos2(α2) + H

(22)
12 σ 2

1 σ 2
2 cos(α2) cos(β2)

+ H
(22)
13 σ 2

1 σ 2
3 cos(α2) cos(γ 2)

+ H
(22)
21 σ 2

2 σ 2
1 cos(β2) cos(α2) + H

(22)
22 σ 2

2 σ 2
2 cos2(β2)

+ H
(22)
23 σ 2

2 σ 2
3 cos(β2) cos(γ 2)

+ H
(22)
31 σ 2

3 σ 2
1 cos(γ 2) cos(α2)

+ H
(22)
32 σ 2

3 σ 2
2 cos(γ 2) cos(β2) + H

(22)
33 σ 2

3 σ 2
3 cos2(γ 2)]

H
(12)
L S = − i

2
[H

(12)
11 σ 1

1 σ 2
1 cos(α1) cos(α2) + H

(12)
12 σ 1

1 σ 2
2 cos(α1) cos(β2)

+ H
(12)
13 σ 1

1 σ 2
3 cos(α1) cos(γ 2)

+ H
(12)
21 σ 1

2 σ 2
1 cos(β1) cos(α2) + H

(12)
22 σ 1

2 σ 2
2 cos(β1) cos(β2)

+ H
(12)
23 σ 1

2 σ 2
3 cos(β1) cos(γ 2)

+ H
(12)
31 σ 1

3 σ 2
1 cos(γ 1) cos(α2) + H

(12)
32 σ 1

3 σ 2
2 cos(γ 1) cos(β2)

+ H
(12)
33 σ 1

3 σ 2
3 cos(γ 1) cos(γ 2)]

H
(21)
L S = − i

2
[H

(21)
11 σ 2

1 σ 1
1 cos(α2) cos(α1) + H

(21)
12 σ 2

1 σ 1
2 cos(α2) cos(β1)

+ H
(21)
13 σ 2

1 σ 1
3 cos(α2) cos(γ 1)

+ H
(21)
21 σ 2

2 σ 1
1 cos(β2) cos(α1) + H

(21)
22 σ 2

2 σ 1
2 cos(β2) cos(β1)

+ H
(21)
23 σ 2

2 σ 1
3 cos(β2) cos(γ 1)

+ H
(21)
31 σ 2

3 σ 1
1 cos(γ 2) cos(α1) + H

(21)
32 σ 2

3 σ 1
2 cos(γ 2) cos(β1)

+ H
(21)
33 σ 2

3 σ 1
3 cos(γ 2) cos(γ 1)]

All the entangled states are constructed out of all possible

quantum states of two atoms |g1〉, |g2〉, |e1〉 and |e2〉 in Sect.

4. Here we derive the explicit contributions of the ground

state, excited state, symmetric and antisymmetric state to the

expectation value of Lamb shift Hamiltonian.

C.1: For ground state

For the ground state of two entangled atoms (|G〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(11)
L S ) are given by:
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〈G|σ 1
1 σ 1

1 |G〉 = 1 〈G|σ 1
1 σ 1

2 |G〉 = −i cos(γ 1)

〈G|σ 1
1 σ 1

3 |G〉 = i cos(β1)

〈G|σ 1
2 σ 1

1 |G〉 = i cos(γ 1) 〈G|σ 1
2 σ 1

2 |G〉 = 1

〈G|σ 1
2 σ 1

3 |G〉 = −i cos(α1)

〈G|σ 1
3 σ 1

1 |G〉 = −i cos(β1) 〈G|σ 1
3 σ 1

2 |G〉 = i cos(α1)

〈G|σ 1
3 σ 1

3 |G〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(11)
L S ) with respect to the ground state

can be written as:

δE
(11)
G = 〈G|H (11)

L S |G〉

= − i

2
[H

(11)
11 〈G|σ 1

1 σ 1
1 |G〉 cos2(α1)

+ H
(11)
12 〈G|σ 1

1 σ 1
2 |G〉 cos(α1) cos(β1)

+ H
(11)
13 〈G|σ 1

1 σ 1
3 |G〉 cos(α1) cos(γ 1)

+ H
(11)
21 〈G|σ 1

2 σ 1
1 |G〉 cos(β1) cos(α1)

+ H
(11)
22 〈G|σ 1

2 σ 1
2 |G〉 cos2(β1)

+ H
(11)
23 〈G|σ 1

2 σ 1
3 |G〉 cos(β1) cos(γ 1)

+ H
(11)
31 〈G|σ 1

3 σ 1
1 |G〉 cos(γ 1) cos(α1)

+ H
(11)
32 〈G|σ 1

3 σ 1
2 |G〉 cos(γ 1) cos(β1)

+ H
(11)
33 〈G|σ 1

3 σ 1
3 |G〉 cos2(γ 1)]

= − i

2
[H11

11 cos2(α1) + H11
22 cos2(β1) + H11

33 cos2(γ 1)

+ i(−H11
12 + H11

13 + H11
21 − H11

23 − H11
31 + H11

32 )

× cos(α1) cos(β1) cos(γ 1)]

For the ground state of two entangled atoms (|G〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(12)
L S ) are given by:

〈G|σ 1
1 σ 2

1 |G〉 = cos(α1) cos(α2) 〈G|σ 1
1 σ 2

2 |G〉 = −i cos(α1) cos(β2)

〈G|σ 1
1 σ 2

3 |G〉 = cos(α1) cos(γ 2)

〈G|σ 1
2 σ 2

1 |G〉 = −i cos(β1) cos(α2) 〈G|σ 1
2 σ 2

2 |G〉 = cos(β1) cos(β2)

〈G|σ 1
2 σ 2

3 |G〉 = cos(β1) cos(γ 2)

〈G|σ 1
3 σ 2

1 |G〉 = cos(γ 1) cos(α2) 〈G|σ 1
3 σ 2

2 |G〉 = cos(γ 1) cos(β2)

〈G|σ 1
3 σ 2

3 |G〉 = cos(γ 1) cos(γ 2)

Consequently, the expectation value of the part of the

Lamb shift Hamiltonian (H
(12)
L S ) with respect to the ground

state can be written as:

δE
(12)
G = 〈G|H (12)

L S |G〉

= − i

2
[H

(12)
11 〈G|σ 1

1 σ 2
1 |G〉 cos(α1) cos(α2)

+ H
(12)
12 〈G|σ 1

1 σ 2
2 |G〉 cos(α1) cos(β2)

+ H
(12)
13 〈G|σ 1

1 σ 2
3 |G〉 cos(α1) cos(γ 2)

+ H
(12)
21 〈G|σ 1

2 σ 2
1 |G〉 cos(β1) cos(α2)

+ H
(12)
22 〈G|σ 1

2 σ 2
2 |G〉 cos(β1) cos(β2)

+ H
(12)
23 〈G|σ 1

2 σ 2
3 |G〉 cos(β1) cos(γ 2)

+ H
(12)
31 〈G|σ 1

3 σ 2
1 |G〉 cos(γ 1) cos(α2)

+ H
(12)
32 〈G|σ 1

3 σ 2
2 |G〉 cos(γ 1) cos(β2)

+ H
(12)
33 〈G|σ 1

3 σ 2
3 |G〉 cos(γ 1) cos(γ 2)]

= − i

2
[H12

11 cos2(α1) cos2(α2) + H12
12 (−i) cos2(α1) cos2(β2)

+ H12
13 cos2(α1) cos2(γ 2)

+ H12
21 (−i) cos2(β1) cos2(α2) + H12

22 cos2(β1) cos2(β2)

+ H12
23 cos2(β1) cos2(γ 2)

+ H12
31 cos2(γ 1) cos2(α2) + H12

32 cos2(γ 1) cos2(β2)

+ H12
33 cos2(γ 1) cos2(γ 2)]

For the ground state of two entangled atoms (|G〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(21)
L S ) are given by:

〈G|σ 2
1 σ 1

1 |G〉 = cos α1 cos α2 〈G|σ 2
1 σ 1

2 |G〉 = −i cos β1 cos α2

〈G|σ 2
1 σ 1

3 |G〉 = cos γ 1 cos α2

〈G|σ 2
2 σ 1

1 |G〉 = −i cos α1 cos β2 〈G|σ 2
2 σ 1

2 |G〉 = cos β1 cos β2

〈G|σ 2
2 σ 1

3 |G〉 = cos γ 1 cos β2

〈G|σ 2
3 σ 1

1 |G〉 = cos α1 cos γ 2 〈G|σ 2
3 σ 1

2 |G〉 = cos γ 2 cos β1

〈G|σ 2
3 σ 1

3 |G〉 = cos γ 1 cos γ 2

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(21)
L S ) with respect to the ground state

can be written as:

δE
(21)
G = 〈G|H (21)

L S |G〉

= − i

2
[H

(21)
11 〈G|σ 2

1 σ 1
1 |G〉 cos(α2) cos(α1)

+ H
(21)
12 〈G|σ 2

1 σ 1
2 |G〉 cos(α2) cos(β1)

+ H
(21)
13 〈G|σ 2

1 σ 1
3 |G〉 cos(α2) cos(γ 1)

+ H
(21)
21 〈G|σ 2

2 σ 1
1 |G〉 cos(β2) cos(α1)

+ H
(21)
22 〈G|σ 2

2 σ 1
2 |G〉 cos(β2) cos(β1)

+ H
(21)
23 〈G|σ 2

2 σ 1
3 |G〉 cos(β2) cos(γ 1)

+ H
(21)
31 〈G|σ 2

3 σ 1
1 |G〉 cos(γ 2) cos(α1)

+ H
(21)
32 〈G|σ 2

3 σ 1
2 |G〉 cos(γ 2) cos(β1)

+ H
(21)
33 〈G|σ 2

3 σ 1
3 |G〉 cos(γ 2) cos(γ 1)]

= − i

2
[H21

11 cos2(α2) cos2(α1) + H21
12 (−i) cos2(α2) cos2(β1)

+ H21
13 cos2(α2) cos2(γ 1)

+ H21
21 (−i) cos2(β2) cos2(α1) + H21

22 cos2(β2) cos2(β1)

+ H21
23 cos2(β2) cos2(γ 1)

+ H21
31 cos2(γ 2) cos2(α1) + H21

32 cos2(γ 2) cos2(β1)

123
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+ H21
33 cos2(γ 2) cos2(γ 1)]

For the ground state of two entangled atoms (|G〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(22)
L S ) are given by:

〈G|σ 2
1 σ 2

1 |G〉 = 1 〈G|σ 2
1 σ 2

2 |G〉 = −i cos γ 2

〈G|σ 2
1 σ 2

3 |G〉 = i cos β2

〈G|σ 2
2 σ 2

1 |G〉 = i cos γ 2 〈G|σ 2
2 σ 2

2 |G〉 = 1

〈G|σ 2
2 σ 2

3 |G〉 = −i cos α2

〈G|σ 2
3 σ 2

1 |G〉 = −i cos β2 〈G|σ 2
3 σ 2

2 |G〉 = i cos α2

〈G|σ 2
3 σ 2

3 |G〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(22
L S ) with respect to the ground state can

be written as:

δE
(22)
G = 〈G|H (22)

L S |G〉

= − i

2
[H

(22)
11 〈G|σ 2

1 σ 2
1 |G〉 cos2(α2)

+ H
(22)
12 〈G|σ 2

1 σ 2
2 |G〉 cos(α2) cos(β2)

+ H
(22)
13 〈G|σ 2

1 σ 2
3 |G〉 cos(α2) cos(γ 2)

+ H
(22)
21 〈G|σ 2

2 σ 2
1 |G〉 cos(β2) cos(α2)

+ H
(22)
22 〈G|σ 2

2 σ 2
2 |G〉 cos2(β2)

+ H
(22)
23 〈G|σ 2

2 σ 2
3 |G〉 cos(β2) cos(γ 2)

+ H
(22)
31 〈G|σ 2

3 σ 2
1 |G〉 cos(γ 2) cos(α2)

+ H
(22)
32 〈G|σ 2

3 σ 2
2 |G〉 cos(γ 2) cos(β2)

+ H
(22)
33 〈G|σ 2

3 σ 2
3 |G〉 cos2(γ 2)]

= − i

2
[H22

11 cos2α2

+ H22
22 cos2β2 + H22

33 cos2γ 2

+ i(−H22
12 + H22

13 + H22
21 − H22

23

− H22
31 + H22

32 ) cos α2 cos β2 cos γ 2]

After that, summing over all the possible contributions

obtained for the ground state of two entangled atoms (|G〉)
the expectation value of the Lamd Shift Hamiltonian can be

expressed as:

δEG =
2
∑

i=1

2
∑

j=1

δE
(i j)
G =

2
∑

i=1

2
∑

j=1

〈G|H (i j)
L S |G〉

= − i

2
[H11

11 cos2α1 + H11
22 cos2β1 + H11

33 cos2γ 1

+ i(−H11
12 + H11

13 + H11
21 − H11

23 − H11
31 + H11

32 )

× cos α1 cos β1 cos γ 1]

− i

2
[H12

11 cos2 α1 cos2 α2 + H12
12 (−i) cos2 α1 cos2 β2

+ H12
13 cos2 α1 cos2 γ 2

+ H12
21 (−i) cos2 β1 cos2 α2 + H12

22 cos2 β1 cos2 β2

+ H12
23 cos2 β1 cos2 γ 2

+ H12
31 cos2 γ 1 cos2 α2 + H12

32 cos2 γ 1 cos2 β2

+ H12
33 cos2 γ 1 cos2 γ 2]

− i

2
[H21

11 cos2 α2 cos2 α1 + H21
12 (−i) cos2 α2 cos2 β1

+ H21
13 cos2 α2 cos2 γ 1

+ H21
21 (−i) cos2 β2 cos2 α1 + H21

22 cos2 β2 cos2 β1

+ H21
23 cos2 β2 cos2 γ 1

+ H21
31 cos2 γ 2 cos2 α1 + H21

32 cos2 γ 2 cos2 β1

+ H21
33 cos2 γ 2 cos2 γ 1]

− i

2
[H22

11 cos2 α2

+ H22
22 cos2 β2 + H22

33 cos2 γ 2

+ i(−H22
12 + H22

13 + H22
21 − H22

23 − H22
31 + H22

32 )

× cos α2 cos β2 cos γ 2]

Substituting the particular values of these Hamiltonian coef-

ficients from Eq. 3.37

δEG = − i

2
[A1cos2α1 + A1cos2β1 − 2B1 cos α1 cos β1 cos γ 1]

− i

2
[A2 cos2 α1 cos2 α2 − B2 cos2 α1 cos2 β2

+ B2 cos2 β1 cos2 α2 + A2 cos2 β1 cos2 β2]

− i

2
[A2 cos2 α2 cos2 α1 − B2 cos2 α2 cos2 β1]

+ B2 cos2 β2 cos2 α1 + A2 cos2 β2 cos2 β1]

− i

2
[A1 cos2 α2 + A1 cos2 β2 − 2B1 cos α2 cos β2 cos γ 2]

Using the Eq. A.9

δEG = −μ2 P

8π2

∫ ∞

−∞
dω

ω
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

×
[

−2ω0

{

cos(α1) cos(β1) cos(γ 1) + cos(α2) cos(β2) cos(γ 2)
}

+ ω
{

cos[2](α1) + cos[2](β1) + cos[2](α2) + cos[2](β2)
}

+2ω f (ω, L/2)
{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)
}]

123
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In abbreviated notation

δEG = −μ2 P

8π2
[−
{

cos(α1) cos(β1) cos(γ 1) + cos(α2) cos(β2) cos(γ 2)

}


1

+
{

cos[2](α1) + cos[2](β1) + cos[2](α2) + cos[2](β2)

}


2

+
{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)

}


3] (C.2)

C.2: For excited state

For the excited state of two entangled atoms (|E〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(11)
L S ) are given by:

〈E |σ 1
1 σ 1

1 |E〉 = 1 〈G|σ 1
1 σ 1

2 |E〉 = i cos γ 1

〈E |σ 1
1 σ 1

3 |E〉 = −i cos β1

〈E |σ 1
2 σ 1

1 |E〉 = −i cos γ 1 〈G|σ 1
2 σ 1

2 |E〉 = 1

〈E |σ 1
2 σ 1

3 |E〉 = i cos α1

〈E |σ 1
3 σ 1

1 |E〉 = i cos β1 〈G|σ 1
3 σ 1

2 |E〉 = −i cos α1

〈E |σ 1
3 σ 1

3 |E〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(11)
L S ) with respect to the excited state

can be written as:

δE
(11)
E

= 〈E |H (11)
L S

|E〉

= − i

2
[H

(11)
11 〈E |σ 1

1 σ 1
1 |E〉 cos2(α1)

+ H
(11)
12 〈E |σ 1

1 σ 1
2 |E〉 cos(α1) cos(β1)

+ H
(11)
13 〈E |σ 1

1 σ 1
3 |E〉 cos(α1) cos(γ 1)

+ H
(11)
21 〈E |σ 1

2 σ 1
1 |E〉 cos(β1) cos(α1)

+ H
(11)
22 〈E |σ 1

2 σ 1
2 |E〉 cos2(β1)

+ H
(11)
23 〈E |σ 1

2 σ 1
3 |E〉 cos(β1) cos(γ 1)

+ H
(11)
31 〈E |σ 1

3 σ 1
1 |E〉 cos(γ 1) cos(α1)

+ H
(11)
32 〈E |σ 1

3 σ 1
2 |E〉 cos(γ 1) cos(β1)

+ H
(11)
33 〈E |σ 1

3 σ 1
3 |E〉 cos2(γ 1)]

= − i

2
[H

(11)
11 cos2(α1) + H

(11)
22 cos2(β1)

+ H
(11)
33 cos2(γ 1)

+ i(H
(11)
12 − H

(11)
13 − H

(11)
21 + H

(11)
23 + H

(11)
31 − H

(11)
32 )

× cos(α1) cos(β1) cos(γ 1)]

For the excited state of two entangled atoms (|E〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(12)
L S ) are given by:

〈E |σ 1
1 σ 2

1 |E〉 = cos α1 cos α2 〈E |σ 1
1 σ 2

2 |E〉 = cos α1 cos β2

〈E |σ 1
1 σ 2

3 |E〉 = cos α1 cos γ 2

〈E |σ 1
2 σ 2

1 |E〉 = cos β1 cos α2 〈E |σ 1
2 σ 2

2 |E〉 = cos β1 cos β2

〈E |σ 1
2 σ 2

3 |E〉 = cos β1 cos γ 2

〈E |σ 1
3 σ 2

1 |E〉 = cos γ 1 cos α2 〈E |σ 1
3 σ 2

2 |E〉 = cos γ 1 cos β2

〈E |σ 1
3 σ 2

3 |E〉 = cos γ 1 cos γ 2

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(12)
L S ) with respect to the excited state

can be written as:

δE
(12)
E

= 〈E |H (12)
L S

|E〉

= − i

2
[H

(12)
11 〈E |σ 1

1 σ 2
1 |E〉 cos(α1) cos(α2)

+ H
(12)
12 〈E |σ 1

1 σ 2
2 |E〉 cos(α1) cos(β2)

+ H
(12)
13 〈E |σ 1

1 σ 2
3 |E〉 cos(α1) cos(γ 2)

+ H
(12)
21 〈E |σ 1

2 σ 2
1 |E〉 cos(β1) cos(α2)

+ H
(12)
22 〈E |σ 1

2 σ 2
2 |E〉 cos(β1) cos(β2)

+ H
(12)
23 〈E |σ 1

2 σ 2
3 |E〉 cos(β1) cos(γ 2)

+ H
(12)
31 〈E |σ 1

3 σ 2
1 |E〉 cos(γ 1) cos(α2)

+ H
(12)
32 〈E |σ 1

3 σ 2
2 |E〉 cos(γ 1) cos(β2)

+ H
(12)
33 〈E |σ 1

3 σ 2
3 |E〉 cos(γ 1) cos(γ 2)]

= − i

2
[H

(12)
11 cos2(α1) cos2(α2) + H

(12)
12 cos2(α1) cos2(β2)

+ +H
(12)
13 cos2(α1) cos2(γ 2)

+ H
(12)
21 cos2(β1) cos2(α2) + H

(12)
22 cos2(β1) cos2(β2)

+ H
(12)
23 cos2(β1) cos2(γ 2)

+ H
(12)
31 cos2(γ 1) cos2(α2) + H

(12)
32 cos2(γ 1)

× cos2(β2) + H
(12)
33 cos2(γ 1) cos2(γ 2)]

For the excited state of two entangled atoms (|E〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(21)
L S ) are given by:

〈E |σ 2
1 σ 1

1 |E〉 = cos α1 cos α2 〈E |σ 2
1 σ 1

2 |E〉 = cos β1 cos α2

〈E |σ 2
1 σ 1

3 |E〉 = cos γ 1 cos α2

〈E |σ 2
2 σ 1

1 |E〉 = cos α1 cos β2 〈E |σ 2
2 σ 1

2 |E〉 = cos β1 cos β2

〈E |σ 2
2 σ 1

3 |E〉 = cos γ 1 cos β2

〈E |σ 2
3 σ 1

1 |E〉 = cos α1 cos γ 2 〈E |σ 2
3 σ 1

2 |E〉 = cos β1 cos γ 2

〈E |σ 2
3 σ 1

3 |E〉 = cos γ 1 cos γ 2

123
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Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(21)
L S ) with respect to the excited state

can be written as:

δE
(21)
E

= 〈E |H (21)
L S

|E〉

= − i

2
[H

(21)
11 〈E |σ 2

1 σ 1
1 |E〉 cos(α2) cos(α1)

+ H
(21)
12 〈E |σ 2

1 σ 1
2 |E〉 cos(α2) cos(β1)

+ H
(21)
13 〈E |σ 2

1 σ 1
3 |E〉 cos(α2) cos(γ 1)

+ H
(21)
21 〈E |σ 2

2 σ 1
1 |E〉 cos(β2) cos(α1)

+ H
(21)
22 〈E |σ 2

2 σ 1
2 |E〉 cos(β2) cos(β1)

+ H
(21)
23 〈E |σ 2

2 σ 1
3 |E〉 cos(β2) cos(γ 1)

+ H
(21)
31 〈E |σ 2

3 σ 1
1 |E〉 cos(γ 2) cos(α1)

+ H
(21)
32 〈E |σ 2

3 σ 1
2 |E〉 cos(γ 2) cos(β1)

+ H
(21)
33 〈E |σ 2

3 σ 1
3 |E〉 cos(γ 2) cos(γ 1)]

= − i

2
[H

(21)
11 cos2(α2) cos2(α1) + H

(21)
12 cos2(α2) cos2(β1)

+ +H
(21)
13 cos2(α2) cos2(γ 1)

+ H
(21)
21 cos2(β2) cos2(α1) + H

(21)
22 cos2(β2) cos2(β1)

+ H
(21)
23 cos2(β2) cos2(γ 1)

+ H
(21)
31 cos2(γ 2) cos2(α1) + H

(21)
32 cos2(γ 2)

× cos2(β1) + H
(21)
33 cos2(γ 2) cos2(γ 1)]

For the excited state of two entangled atoms (|E〉) the expec-

tation values of all the possible Pauli tensor operators, which

are explicitly contributing in the part of the Lamb shift Hamil-

tonian (H
(22)
L S ) are given by:

〈E |σ 2
1 σ 2

1 |E〉 = 1 〈E |σ 2
1 σ 2

2 |E〉 = i cos γ 2

〈E |σ 2
1 σ 2

3 |E〉 = −i cos β2

〈E |σ 2
2 σ 2

1 |E〉 = −i cos γ 2 〈E |σ 2
2 σ 2

2 |E〉 = 1

〈E |σ 2
2 σ 2

3 |E〉 = i cos α2

〈E |σ 2
3 σ 2

1 |E〉 = i cos β2 〈E |σ 2
3 σ 2

2 |E〉 = −i cos α2

〈E |σ 2
3 σ 2

3 |E〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(22
L S ) with respect to the excited state can

be written as:

δE
(22)
E

= 〈E |H (22)
L S

|E〉

= − i

2
[H

(22)
11 〈E |σ 2

1 σ 2
1 |E〉 cos2(α2)

+ H
(22)
12 〈E |σ 2

1 σ 2
2 |E〉 cos(α2) cos(β2)

+ H
(22)
13 〈E |σ 2

1 σ 2
3 |E〉 cos(α2) cos(γ 2)

+ H
(22)
21 〈E |σ 2

2 σ 2
1 |G〉 cos(β2) cos(α2)

+ H
(22)
22 〈E |σ 2

2 σ 2
2 |E〉 cos2(β2)

+ H
(22)
23 〈E |σ 2

2 σ 2
3 |E〉 cos(β2) cos(γ 2)

+ H
(22)
31 〈E |σ 2

3 σ 2
1 |E〉 cos(γ 2) cos(α2)

+ H
(22)
32 〈E |σ 2

3 σ 2
2 |E〉 cos(γ 2) cos(β2)

+ H
(22)
33 〈E |σ 2

3 σ 2
3 |E〉 cos2(γ 2)]

= − i

2
[H

(22)
11 cos2(α2) + H

(22)
22 cos2(β2)

+ H
(22)
33 cos2(γ 2)

+ i(H
(22)
12 − H

(22)
13 − H

(22)
21 + H

(22)
23 + H

(22)
31 − H

(22)
32 )

× cos(α2) cos(β2) cos(γ 2)]

After that, summing over all the possible contributions

obtained for the excited state of two entangled atoms (|E〉)
the expectation value of the Lamd Shift Hamiltonian can be

expressed as:

δEE =
2
∑

i=1

2
∑

j=1

δE
(i j)
E

=
2
∑

i=1

2
∑

j=1

〈E |H (i j)
L S

|E〉

= − i

2
[H

(11)
11 cos2(α1) + H

(11)
22 cos2(β1)

+ H
(11)
33 cos2(γ 1)

+ i(H
(11)
12 − H

(11)
13 − H

(11)
21 + H

(11)
23 + H

(11)
31

− H
(11)
32 ) cos(α1) cos(β1) cos(γ 1)]

− i

2
[H

(12)
11 cos2(α1) cos2(α2) + H

(12)
12 cos2(α1) cos2(β2)

+ +H
(12)
13 cos2(α1) cos2(γ 2)

+ H
(12)
21 cos2(β1) cos2(α2) + H

(12)
22 cos2(β1) cos2(β2)

+ H
(12)
23 cos2(β1) cos2(γ 2)

+ H
(12)
31 cos2(γ 1) cos2(α2) + H

(12)
32 cos2(γ 1) cos2(β2)

+ H
(12)
33 cos2(γ 1) cos2(γ 2)]

− i

2
[H

(21)
11 cos2(α2) cos2(α1) + H

(21)
12 cos2(α2) cos2(β1)

+ +H
(21)
13 cos2(α2) cos2(γ 1)

+ H
(21)
21 cos2(β2) cos2(α1) + H

(21)
22 cos2(β2) cos2(β1)

+ H
(21)
23 cos2(β2) cos2(γ 1)

+ H
(21)
31 cos2(γ 2) cos2(α1) + H

(21)
32 cos2(γ 2) cos2(β1)

+ H
(21)
33 cos2(γ 2) cos2(γ 1)]

− i

2
[H

(22)
11 cos2(α2) + H

(22)
22 cos2(β2) + H

(22)
33 cos2(γ 2)

+ i(H
(22)
12 − H

(22)
13 − H

(22)
21 + H

(22)
23 + H

(22)
31 − H

(22)
32 )

× cos(α2) cos(β2) cos(γ 2)]

123
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Substituting the particular values of these Hamiltonian

coefficients from Eq. 3.37

δEE = − i

2
[A1 cos2(α1) + A1 cos2(β1) + 2B1 cos(α1) cos(β1) cos(γ 1)]

− i

2
[A2 cos2(α1) cos2(α2) − iB2 cos2(α1) cos2(β2)

+ iB2 cos2(β1) cos2(α2) + A2 cos2(β1) cos2(β2)]

− i

2
[A2 cos2(α2) cos2(α1) − iB2 cos2(α2) cos2(β1)

+ iB2 cos2(β2) cos2(α1) + A2 cos2(β2) cos2(β1)]

− i

2
[A1 cos2(α2) + A1 cos2(β2) + 2B1 cos(α2) cos(β2) cos(γ 2)]

Using the Eq. A.9

δEE = − μ2 P

8π2

∫ ∞

−∞
dω

ω
(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

[2ω0

{

cos(α1) cos(β1) cos(γ 1) + cos(α2) cos(β2) cos(γ 2)

}

+ ω

{

cos[2](α1) + cos[2](β1) + cos[2](α2) + cos[2](β2)

}

+ 2ω f (ω, L/2)
{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)
}

]

In abbreviated notation

δEE = − μ2 P

8π2
[
{

cos(α1) cos(β1) cos(γ 1) + cos(α2) cos(β2) cos(γ 2)
}


1

+
{

cos[2](α1) + cos[2](β1) + cos[2](α2) + cos[2](β2)
}


2

+
{

cos[2](α1) cos[2](α2) + cos[2](β1) cos[2](β2)
}


3] (C.3)

C.3: For symmetric state

For the symmetric state of two entangled atoms (|S〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(11)
L S ) are given by:

〈S|σ 1
1 σ 1

1 |S〉 = 1 〈S|σ 1
1 σ 1

2 |S〉 = 0 〈S|σ 1
1 σ 1

3 |S〉 = 0

〈S|σ 1
2 σ 1

1 |S〉 = 0 〈S|σ 1
2 σ 1

2 |S〉 = 1 〈S|σ 1
2 σ 1

3 |S〉 = 0

〈S|σ 1
3 σ 1

1 |S〉 = 0 〈S|σ 1
3 σ 1

2 |S〉 = 0 〈S|σ 1
3 σ 1

3 |S〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(11)
L S ) with respect to the symmetric state

can be written as:

δE
(11)
S = 〈S|H (11)

L S |S〉

= − i

2
[H

(11)
11 〈S|σ 1

1 σ 1
1 |S〉 cos2(α1)

+ H
(11)
12 〈S|σ 1

1 σ 1
2 |S〉 cos(α1) cos(β1)

+ H
(11)
13 〈S|σ 1

1 σ 1
3 |S〉 cos(α1) cos(γ 1)

+ H
(11)
21 〈S|σ 1

2 σ 1
1 |S〉 cos(β1) cos(α1)

+ H
(11)
22 〈S|σ 1

2 σ 1
2 |S〉 cos2(β1)

+ H
(11)
23 〈S|σ 1

2 σ 1
3 |S〉 cos(β1) cos(γ 1)

+ H
(11)
31 〈S|σ 1

3 σ 1
1 |S〉 cos(γ 1) cos(α1)

+ H
(11)
32 〈S|σ 1

3 σ 1
2 |S〉 cos(γ 1) cos(β1)

+ H
(11)
33 〈E |σ 1

3 σ 1
3 |E〉 cos2(γ 1)]

= − i

2
[H

(11)
11 cos2(α1) + H

(11)
22 cos2(β1)

+ H
(11)
33 cos2(γ 1)]

Now keeping in mind the equation 4.3, we define few

quantities important for rest of the calculation:

A =
[

cos α1 − i cos β1

1 + cos γ1
+ cos α2 − i cos β2

1 + cos γ2

]

B =
[

1 − cos α1 − i cos β1

1 + cos γ1
.
cos α2 + i cos β2

1 + cos γ2

]

C =
[

1 − cos α1 + i cos β1

1 + cos γ1
.
cos α2 − i cos β2

1 + cos γ2

]

D =
[

cos α1 + i cos β1

1 + cos γ1
+ cos α2 + i cos β2

1 + cos γ2

]

� = 1

2
√

2

√

(1 + cos γ1)(1 + cos γ2)

For the symmetric state of two entangled atoms (|S〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(12)
L S ) are given by:

〈S|σ 1
1 σ 2

1 |S〉 = �[B2 + C2 − A2 − D2]
〈S|σ 1

1 σ 2
2 |S〉 = i�[D2 + C2 − B2 − A2]

〈S|σ 1
1 σ 2

3 |S〉 = 2�[AB − C D]
〈S|σ 1

2 σ 2
1 |S〉 = i�[D2 − A2 − (C2 − B2)]

〈S|σ 1
2 σ 2

2 |S〉 = �[D2 + C2 + B2 + A2]
〈S|σ 1

2 σ 2
3 |S〉 = 2i�[AB + C D]

〈S|σ 1
3 σ 2

1 |S〉 = 2�[AC − B D]
〈S|σ 1

3 σ 2
2 |S〉 = 2i�(AC + B D)

〈S|σ 1
3 σ 2

3 |S〉 = −2�(BC + AD)

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(12)
L S ) with respect to the symmetric state

can be written as:

δE
(12)
S = 〈S|H (12)

L S |S〉

= − i

2
{H

(12)
11 〈S|σ 1

1 σ 2
1 |S〉 cos(α1) cos(α2)

+ H
(12)
12 〈S|σ 1

1 σ 2
2 |S〉 cos(α1) cos(β2)

+ H
(12)
13 〈S|σ 1

1 σ 2
3 |S〉 cos(α1) cos(γ 2)

123
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+ H
(12)
21 〈S|σ 1

2 σ 2
1 |S〉 cos(β1) cos(α2)

+ H
(12)
22 〈S|σ 1

2 σ 2
2 |S〉 cos(β1) cos(β2)

+ H
(12)
23 〈S|σ 1

2 σ 2
3 |S〉 cos(β1) cos(γ 2)

+ H
(12)
31 〈S|σ 1

3 σ 2
1 |S〉 cos(γ 1) cos(α2)

+ H
(12)
32 〈S|σ 1

3 σ 2
2 |S〉 cos(γ 1) cos(β2)

+ H
(12)
33 〈S|σ 1

3 σ 2
3 |S〉 cos(γ 1) cos(γ 2)}

= − i

2
�{H

(12)
11 [B2 + C2 − A2 − D2] cos(α1) cos(α2)

+ H
(12)
12 i[D2 + C2 − B2 − A2] cos(α1) cos(β2)

+ H
(12)
13 2[AB − C D] cos(α1) cos(γ 2)

+ H
(12)
21 i[D2 − A2 − (C2 − B2)] cos(β1) cos(α2)

+ H
(12)
22 [D2 + C2 + B2 + A2] cos(β1) cos(β2)

+ H
(12)
23 2i[AB + C D] cos(β1) cos(γ 2)

+ H
(12)
31 2[AC − B D] cos(γ 1) cos(α2)

+ H
(12)
32 2i[AC + B D] cos(γ 1) cos(β2)

+ H
(12)
33 (−2)[BC + AD] cos(γ 1) cos(γ 2)}

For the symmetric state of two entangled atoms (|E〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(21)
L S ) are given by:

〈S|σ 2
1 σ 1

1 |S〉 = �[B2 + C2 − A2 − D2]
〈S|σ 2

1 σ 1
2 |S〉 = i�[D2 − A2 − (C2 − B2)]

〈S|σ 2
1 σ 1

3 |S〉 = 2�[AC − B D]
〈S|σ 2

2 σ 1
1 |S〉 = i�[D2 + C2 − B2 − A2]

〈S|σ 2
2 σ 1

2 |S〉 = �[D2 + C2 + B2 + A2]
〈S|σ 2

2 σ 1
3 |S〉 = 2i�(AC + B D)

〈S|σ 2
3 σ 1

1 |S〉 = 2�[AB − C D]
〈S|σ 2

3 σ 1
2 |S〉 = 2i�[AB + C D]

〈S|σ 2
3 σ 1

3 |S〉 = −2�[BC + AD]

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(21)
L S ) with respect to the symmetric state

can be written as:

δE
(21)
S

= 〈S|H (21)
L S

|S〉

= − i

2
{H

(21)
11 〈S|σ 2

1 σ 1
1 |S〉 cos(α2) cos(α1)

+ H
(21)
12 〈S|σ 2

1 σ 1
2 |S〉 cos(α2) cos(β1)

+ H
(21)
13 〈S|σ 2

1 σ 1
3 |S〉 cos(α2) cos(γ 1)

+ H
(21)
21 〈S|σ 2

2 σ 1
1 |S〉 cos(β2) cos(α1)

+ H
(21)
22 〈S|σ 2

2 σ 1
2 |S〉 cos(β2) cos(β1)

+ H
(21)
23 〈S|σ 2

2 σ 1
3 |S〉 cos(β2) cos(γ 1)

+ H
(21)
31 〈S|σ 2

3 σ 1
1 |S〉 cos(γ 2) cos(α1)

+ H
(21)
32 〈S|σ 2

3 σ 1
2 |S〉 cos(γ 2) cos(β1)

+ H
(21)
33 〈S|σ 2

3 σ 1
3 |S〉 cos(γ 2) cos(γ 1)}

= − i

2
�{H

(21)
11 [B2 + C2 − A2 − D2] cos(α2) cos(α1)

+ H
(21)
12 i[D2 − A2 − (C2 − B2)] cos(α2) cos(β1)

+ H
(21)
13 2[AC − B D] cos(α2) cos(γ 1)

+ H
(21)
21 i[D2 + C2 − B2 − A2] cos(β2) cos(α1)

+ H
(21)
22 [D2 + C2 + B2 + A2] cos(β2) cos(β1)

+ H
(21)
23 2i[AC + B D] cos(β2) cos(γ 1)

+ H
(21)
31 2[AB − C D] cos(γ 2) cos(α1)

+ H
(21)
32 2i[AB + C D] cos(γ 2) cos(β1)

+ H
(21)
33 (−2)[BC + AD] cos(γ 2) cos(γ 1)}

For the symmetric state of two entangled atoms (|E〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(22)
L S ) are given by:

〈S|σ 2
1 σ 2

1 |S〉 = 1 〈S|σ 2
1 σ 2

2 |S〉 = 0 〈S|σ 2
1 σ 2

3 |S〉 = 0

〈S|σ 2
2 σ 2

1 |S〉 = 0 〈S|σ 2
2 σ 2

2 |S〉 = 1 〈S|σ 2
2 σ 2

3 |S〉 = 0

〈S|σ 2
3 σ 2

1 |S〉 = 0 〈S|σ 2
3 σ 2

2 |S〉 = 0 〈S|σ 2
3 σ 2

3 |S〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(22
L S ) with respect to the symmetric state

can be written as:

δE
(22)
S = 〈S|H (22)

L S |S〉

= − i

2
{H

(22)
11 〈S|σ 2

1 σ 2
1 |S〉 cos2(α2)

+ H
(22)
12 〈S|σ 2

1 σ 2
2 |S〉 cos(α2) cos(β2)

+ H
(22)
13 〈S|σ 2

1 σ 2
3 |S〉 cos(α2) cos(γ 2)

+ H
(22)
21 〈S|σ 2

2 σ 2
1 |S〉 cos(β2) cos(α2)

+ H
(22)
22 〈S|σ 2

2 σ 2
2 |S〉 cos2(β2)

+ H
(22)
23 〈S|σ 2

2 σ 2
3 |S〉 cos(β2) cos(γ 2)

+ H
(22)
31 〈S|σ 2

3 σ 2
1 |S〉 cos(γ 2) cos(α2)

+ H
(22)
32 〈S|σ 2

3 σ 2
2 |S〉 cos(γ 2) cos(β2)

+ H
(22)
33 〈S|σ 2

3 σ 2
3 |S〉 cos2(γ 2)}

= − i

2
[H

(22)
11 cos2(α2) + H

(22)
22 cos2(β2)

+ H
(22)
33 cos2(γ 2)]

123
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After that, summing over all the possible contributions

obtained for the symmetric state of two entangled atoms (|S〉)
the expectation value of the Lamd Shift Hamiltonian can be

expressed as:

δES =
2
∑

i=1

2
∑

j=1

δE
(i j)
S

=
2
∑

i=1

2
∑

j=1

〈S|H (i j)
L S

|S〉

= − i

2
[H

(11)
11 cos2(α1) + H

(22)
11 cos2(α2) + H

(11)
22 cos2(β1)

+ H
(22)
22 cos2(β2) + H

(11)
33 cos2(γ 1) + H

(22)
33 cos2(γ 2)]

− i

2
�[H

(12)
11 [B2 + C2 − A2 − D2] cos(α1) cos(α2)

+ H
(12)
12 i[D2 + C2 − B2 − A2] cos(α1) cos(β2)

+ H
(12)
13 2[AB − C D] cos(α1) cos(γ 2)

+ H
(12)
21 i[D2 − A2 − (C2 − B2)] cos(β1) cos(α2)

+ H
(12)
22 [D2 + C2 + B2 + A2] cos(β1) cos(β2)

+ H
(12)
23 2i[AB + C D] cos(β1) cos(γ 2)

+ H
(12)
31 2[AC − B D] cos(γ 1) cos(α2)

+ H
(12)
32 2i[AC + B D] cos(γ 1) cos(β2)

+ H
(12)
33 (−2)[BC + AD] cos(γ 1) cos(γ 2)]

− i

2
�[H

(21)
11 [B2 + C2 − A2 − D2] cos(α2) cos(α1)

+ H
(21)
12 i[D2 − A2 − (C2 − B2)] cos(α2) cos(β1)

+ H
(21)
13 2[AC − B D] cos(α2) cos(γ 1)

+ H
(21)
21 i[D2 + C2 − B2 − A2] cos(β2) cos(α1)

+ H
(21)
22 [D2 + C2 + B2 + A2] cos(β2) cos(β1)

+ H
(21)
23 2i[AC + B D] cos(β2) cos(γ 1)

+ H
(21)
31 2[AB − C D] cos(γ 2) cos(α1)

+ H
(21)
32 2i[AB + C D] cos(γ 2) cos(β1)

+ H
(21)
33 (−2)[BC + AD] cos(γ 2) cos(γ 1)]

Substituting the particular values of these Hamiltonian

coefficients from Eq. 3.37

δES = − i

2
A1[cos2(α1)+cos2(α2)+cos2(β1) + cos2(β2)]

− i

2
�[A2[B2 + C2 − A2 − D2] cos(α1) cos(α2)

+ B2[D2 + C2 − B2 − A2] cos(α1) cos(β2)

− B2[D2 − A2 − (C2 − B2)] cos(β1) cos(α2)

+ A2[D2 + C2 + B2 + A2] cos(β1) cos(β2)

− i

2
�[A2[B2 + C2 − A2 − D2] cos(α2) cos(α1)

+ B2[D2 − A2 − (C2 − B2)] cos(α2) cos(β1)

− B2[D2 + C2 − B2 − A2] cos(β2) cos(α1)

+ A2[D2 + C2 + B2 + A2] cos(β2) cos(β1)]

Using the equation A.9

δES = −μ2 P

8π2

∫ ∞

−∞
dω

ω2

(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

× [2�(B2 + C2 − A2 − D2) f (ω, L/2) cos(α1) cos(α2)

+ 2�(A2 + B2 + C2 + D2) f (ω, L/2) cos(β1) cos(β2)

+ {cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)}]

In abbreviated notation

δES = −μ2 P

8π2
[�(B2 + C2 − A2 − D2) cos(α1) cos(α2)
3

+ �(A2 + B2 + C2 + D2) cos(β1) cos(β2)
3

+ {cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)}
2]
(C.4)

C.4: For antisymmetric state

Here, keeping in mind Eq. 4.4, we again define few quantities

to ease our presentation:

� = 1

2
√

2

√

(1 + cos γ1)(1 + cos γ2)

Ã =
[

cos α1 − i cos β1

1 + cos γ1
− cos α2 − i cos β2

1 + cos γ2

]

B̃ =
[

1 + cos α1 − i cos β1

1 + cos γ1

cos α2 − i cos β2

1 + cos γ2

]

C̃ =
[

−1 − cos α1 + i cos β1

1 + cos γ1
− cos α2 − i cos β2

1 + cos γ2

]

D̃ =
[

cos α1 − i cos β1

1 + cos γ1
− cos α2 + i cos β2

1 + cos γ2

]

For the antisymmetric state of two entangled atoms (|A〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(11)
L S ) are given by:

〈A|σ 1
1 σ 1

1 |A〉 = 1 〈A|σ 1
1 σ 1

2 |A〉 = 0 〈A|σ 1
1 σ 1

3 |A〉 = 0

〈A|σ 1
2 σ 1

1 |A〉 = 0 〈A|σ 1
2 σ 1

2 |A〉 = 1 〈A|σ 1
2 σ 1

3 |A〉 = 0

〈A|σ 1
3 σ 1

1 |A〉 = 0 〈A|σ 1
3 σ 1

2 |A〉 = 0 〈A|σ 1
3 σ 1

3 |A〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(11)
L S ) with respect to the antisymmetric

state can be written as:

δE
(11)
A = 〈A|H (11)

L S |A〉

= − i

2
[H

(11)
11 〈A|σ 1

1 σ 1
1 |A〉 cos2(α1)

123
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+ H
(11)
12 〈A|σ 1

1 σ 1
2 |A〉 cos(α1) cos(β1)

+ H
(11)
13 〈A|σ 1

1 σ 1
3 |A〉 cos(α1) cos(γ 1)

+ H
(11)
21 〈A|σ 1

2 σ 1
1 |A〉 cos(β1) cos(α1)

+ H
(11)
22 〈A|σ 1

2 σ 1
2 |A〉 cos2(β1)

+ H
(11)
23 〈A|σ 1

2 σ 1
3 |A〉 cos(β1) cos(γ 1)

+ H
(11)
31 〈A|σ 1

3 σ 1
1 |A〉 cos(γ 1) cos(α1)

+ H
(11)
32 〈A|σ 1

3 σ 1
2 |A〉 cos(γ 1) cos(β1)

+ H
(11)
33 〈A|σ 1

3 σ 1
3 |A〉 cos2(γ 1)]

= − i

2
[H

(11)
11 cos2(α1) + H

(11)
22 cos2(β1)

+ H
(11)
33 cos2(γ 1)]

For the antisymmetric state of two entangled atoms (|A〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(12)
L S ) are given by:

〈A|σ 1
1 σ 2

1 |A〉 = �[D̃2 + Ã2 − (B̃2 + C̃2)]
〈A|σ 1

1 σ 2
2 |A〉 = i�[ Ã2 − D̃2 + B̃2 − C̃2]

〈A|σ 1
1 σ 2

3 |A〉 = 2�(C̃ D̃ − Ã B̃)

〈A|σ 1
2 σ 2

1 |A〉 = −i�[D̃2 − Ã2 + B̃2 − C̃2]
〈A|σ 1

2 σ 2
2 |A〉 = −�[ Ã2 + D̃2 + B̃2 + C̃2]

〈A|σ 1
2 σ 2

3 |A〉 = −2i�[ Ã B̃ + C̃ D̃]
〈A|σ 1

3 σ 2
1 |A〉 = 2�(B̃ D̃ − ÃC̃)

〈A|σ 1
3 σ 2

2 |A〉 = −2i�( ÃC̃ + B̃ D̃)

〈A|σ 1
3 σ 2

3 |A〉 = 2�[ ÃD̃ + B̃C̃]

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(12)
L S ) with respect to the symmetric state

can be written as:

δE
(12)
A

= 〈A|H (12)
L S

|A〉

= − i

2
{H

(12)
11 〈A|σ 1

1 σ 2
1 |A〉 cos(α1) cos(α2)

+ H
(12)
12 〈A|σ 1

1 σ 2
2 |A〉 cos(α1) cos(β2)

+ H
(12)
13 〈A|σ 1

1 σ 2
3 |A〉 cos(α1) cos(γ 2)

+ H
(12)
21 〈A|σ 1

2 σ 2
1 |A〉 cos(β1) cos(α2)

+ H
(12)
22 〈A|σ 1

2 σ 2
2 |A〉 cos(β1) cos(β2)

+ H
(12)
23 〈A|σ 1

2 σ 2
3 |A〉 cos(β1) cos(γ 2)

+ H
(12)
31 〈A|σ 1

3 σ 2
1 |A〉 cos(γ 1) cos(α2)

+ H
(12)
32 〈A|σ 1

3 σ 2
2 |A〉 cos(γ 1) cos(β2)

+ H
(12)
33 〈A|σ 1

3 σ 2
3 |A〉 cos(γ 1) cos(γ 2)}

= − i

2
�{H

(12)
11 [D̃2 + Ã2 − (B̃2 + C̃2)] cos(α1) cos(α2)

+ H
(12)
12 i[ Ã2 − D̃2 + B̃2 − C̃2] cos(α1) cos(β2)

+ H
(12)
13 2(C̃ D̃ − Ã B̃) cos(α1) cos(γ 2)

+ H
(12)
21 (−i)[D̃2 − Ã2 + B̃2 − C̃2] cos(β1) cos(α2)

+ H
(12)
22 (−1)[ Ã2 + D̃2 + B̃2 + C̃2] cos(β1) cos(β2)

+ H
(12)
23 (−2i)[ Ã B̃ + C̃ D̃] cos(β1) cos(γ 2)

+ H
(12)
31 2(B̃ D̃ − ÃC̃) cos(γ 1) cos(α2)

+ H
(12)
32 (−2i)( ÃC̃ + B̃ D̃) cos(γ 1) cos(β2)

+ H
(12)
33 2[ ÃD̃ + B̃C̃] cos(γ 1) cos(γ 2)}

For the antisymmetric state of two entangled atoms (|A〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(21)
L S ) are given by:

〈A|σ 2
1 σ 1

1 |A〉 = �[D̃2 + Ã2 − (B̃2 + C̃2)]
〈A|σ 2

1 σ 1
2 |A〉 = −i�[D̃2 − Ã2 + B̃2 − C̃2]

〈A|σ 2
1 σ 1

3 |A〉 = 2�(B̃ D̃ − ÃC̃)

〈A|σ 2
2 σ 1

1 |A〉 = i�[ Ã2 − D̃2 + B̃2 − C̃2]
〈A|σ 2

2 σ 1
2 |A〉 = −�[ Ã2 + D̃2 + B̃2 + C̃2]

〈A|σ 2
2 σ 1

3 |A〉 = −2i�( ÃC̃ + B̃ D̃)

〈A|σ 2
3 σ 1

1 |A〉 = 2�(C̃ D̃ − Ã B̃)

〈A|σ 2
3 σ 1

2 |A〉 = −2i�[ Ã B̃ + C̃ D̃]
〈A|σ 2

3 σ 1
3 |A〉 = 2�[ ÃD̃ + B̃C̃]

Consequently, the expectation value of the part of the

Lamb shift Hamiltonian (H
(21)
L S ) with respect to the antisym-

metric state can be written as:

δE
(21)
A

= 〈A|H (21)
L S

|A〉

= − i

2
[H

(21)
11 〈A|σ 2

1 σ 1
1 |A〉 cos(α2) cos(α1)

+ H
(21)
12 〈A|σ 2

1 σ 1
2 |A〉 cos(α2) cos(β1)

+ H
(21)
13 〈A|σ 2

1 σ 1
3 |A〉 cos(α2) cos(γ 1)

+ H
(21)
21 〈A|σ 2

2 σ 1
1 |A〉 cos(β2) cos(α1)

+ H
(21)
22 〈A|σ 2

2 σ 1
2 |A〉 cos(β2) cos(β1)

+ H
(21)
23 〈A|σ 2

2 σ 1
3 |A〉 cos(β2) cos(γ 1)

+ H
(21)
31 〈A|σ 2

3 σ 1
1 |A〉 cos(γ 2) cos(α1)

+ H
(21)
32 〈A|σ 2

3 σ 1
2 |A〉 cos(γ 2) cos(β1)

+ H
(21)
33 〈A|σ 2

3 σ 1
3 |A〉 cos(γ 2) cos(γ 1)]

= − i

2
�[H

(21)
11 [D̃2 + Ã2 − (B̃2 + C̃2)] cos(α2) cos(α1)

+ H
(21)
12 (−i)[D̃2 − Ã2 + B̃2 − C̃2] cos(α2) cos(β1)

+ H
(21)
13 2(B̃ D̃ − ÃC̃) cos(α2) cos(γ 1)
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+ H
(21)
21 i[ Ã2 − D̃2 + B̃2 − C̃2] cos(β2) cos(α1)

+ H
(21)
22 (−1)[ Ã2 + D̃2 + B̃2 + C̃2] cos(β2) cos(β1)

+ H
(21)
23 (−2i)( ÃC̃ + B̃ D̃) cos(β2) cos(γ 1)

+ H
(21)
31 2(C̃ D̃ − Ã B̃) cos(γ 2) cos(α1)

+ H
(21)
32 (−2i)[ Ã B̃ + C̃ D̃] cos(γ 2) cos(β1)

+ H
(21)
33 2[ ÃD̃ + B̃C̃] cos(γ 2) cos(γ 1)]

For the antisymmetric state of two entangled atoms (|A〉) the

expectation values of all the possible Pauli tensor operators,

which are explicitly contributing in the part of the Lamb shift

Hamiltonian (H
(22)
L S ) are given by:

〈A|σ 2
1 σ 2

1 |A〉 = 1 〈A|σ 2
1 σ 2

2 |A〉 = 0 〈A|σ 2
1 σ 2

3 |A〉 = 0

〈A|σ 2
2 σ 2

1 |A〉 = 0 〈A|σ 2
2 σ 2

2 |A〉 = 1 〈A|σ 2
2 σ 2

3 |A〉 = 0

〈A|σ 2
3 σ 2

1 |A〉 = 0 〈A|σ 2
3 σ 2

2 |A〉 = 0 〈A|σ 2
3 σ 2

3 |A〉 = 1

Consequently, the expectation value of the part of the Lamb

shift Hamiltonian (H
(22
L S ) with respect to the antisymmetric

state can be written as:

δE
(22)
A = 〈A|H (22)

L S |A〉

= − i

2
[H

(22)
11 〈A|σ 2

1 σ 2
1 |A〉 cos2(α2)

+ H
(22)
12 〈A|σ 2

1 σ 2
2 |A〉 cos(α2) cos(β2)

+ H
(22)
13 〈A|σ 2

1 σ 2
3 |A〉 cos(α2) cos(γ 2)

+ H
(22)
21 〈A|σ 2

2 σ 2
1 |A〉 cos(β2) cos(α2)

+ H
(22)
22 〈A|σ 2

2 σ 2
2 |A〉 cos2(β2)

+ H
(22)
23 〈A|σ 2

2 σ 2
3 |A〉 cos(β2) cos(γ 2)

+ H
(22)
31 〈A|σ 2

3 σ 2
1 |A〉 cos(γ 2) cos(α2)

+ H
(22)
32 〈A|σ 2

3 σ 2
2 |A〉 cos(γ 2) cos(β2)

+ H
(22)
33 〈S|σ 2

3 σ 2
3 |S〉 cos2(γ 2)]

= − i

2
[H

(22)
11 cos2(α2) + H

(22)
22 cos2(β2)

+ H
(22)
33 cos2(γ 2)]

After that, summing over all the possible contributions

obtained for the antisymmetric state of two entangled atoms

(|A〉) the expectation value of the Lamd Shift Hamiltonian

can be expressed as:

δE A =
2
∑

i=1

2
∑

j=1

δE
(i j)
A =

2
∑

i=1

2
∑

j=1

〈A|H (i j)
L S |A〉

= − i

2
[H

(11)
11 cos2(α1) + H

(22)
11 cos2(α2) + H

(11)
22 cos2(β1)

+ H
(22)
22 cos2(β2) + H

(11)
33 cos2(γ 1) + H

(22)
33 cos2(γ 2)]

− i

2
�[H

(12)
11 [D̃2 + Ã2 − (B̃2 + C̃2)] cos(α1) cos(α2)

+ H
(12)
12 i[ Ã2 − D̃2 + B̃2 − C̃2] cos(α1) cos(β2)

+ H
(12)
13 2(C̃ D̃ − Ã B̃) cos(α1) cos(γ 2)

+ H
(12)
21 (−i)[D̃2 − Ã2 + B̃2 − C̃2] cos(β1) cos(α2)

+ H
(12)
22 (−1)[ Ã2 + D̃2 + B̃2 + C̃2] cos(β1) cos(β2)

+ H
(12)
23 (−2i)[ Ã B̃ + C̃ D̃] cos(β1) cos(γ 2)

+ H
(12)
31 2(B̃ D̃ − ÃC̃) cos(γ 1) cos(α2)

+ H
(12)
32 (−2i)( ÃC̃ + B̃ D̃) cos(γ 1) cos(β2)

+ H
(12)
33 2[ ÃD̃ + B̃C̃] cos(γ 1) cos(γ 2)]

− i

2
�[H

(21)
11 [D̃2 + Ã2 − (B̃2 + C̃2)] cos(α2) cos(α1)

+ H
(21)
12 (−i)[D̃2 − Ã2 + B̃2 − C̃2] cos(α2) cos(β1)

+ H
(21)
13 2(B̃ D̃ − ÃC̃) cos(α2) cos(γ 1)

+ H
(21)
21 i[ Ã2 − D̃2 + B̃2 − C̃2] cos(β2) cos(α1)

+ H
(21)
22 (−1)[ Ã2 + D̃2 + B̃2 + C̃2] cos(β2) cos(β1)

+ H
(21)
23 (−2i)( ÃC̃ + B̃ D̃) cos(β2) cos(γ 1)

+ H
(21)
31 2(C̃ D̃ − Ã B̃) cos(γ 2) cos(α1)

+ H
(21)
32 (−2i)[ Ã B̃ + C̃ D̃] cos(γ 2) cos(β1)

+ H
(21)
33 2[ ÃD̃ + B̃C̃] cos(γ 2) cos(γ 1)]

Substituting the particular values of these Hamiltonian

coefficients from Eq. 3.37

δE A = − i

2
A1[cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)]

− i

2
�[A2[D̃2 + Ã2 − (B̃2 + C̃2)] cos(α1) cos(α2)

+ B2[ Ã2 − D̃2 + B̃2 − C̃2] cos(α1) cos(β2)

+ B2[D̃2 − Ã2 + B̃2 − C̃2] cos(β1) cos(α2)

− A2[ Ã2 + D̃2 + B̃2 + C̃2] cos(β1) cos(β2)]

− i

2
�[A2[D̃2 + Ã2 − (B̃2 + C̃2)] cos(α2) cos(α1)

− B2[D̃2 − Ã2 + B̃2 − C̃2] cos(α2) cos(β1)

− B2[ Ã2 − D̃2 + B̃2 − C̃2] cos(β2) cos(α1)

− A2[ Ã2 + D̃2 + B̃2 + C̃2] cos(β2) cos(β1)]

Substituting the integral value of A1, A2, B1, B2 we get:

Using the Eq. A.9

δE A = −μ2 P

8π2

∫ ∞

−∞
dω

ω2

(

1 − e−2πkω
)

(ω + ω0) (ω − ω0)

× [2�(D̃2 + Ã2 − B̃2 − C̃2) f (ω, L/2) cos(α1) cos(α2)

− 2�( Ã2 + B̃2 + C̃2 + D̃2) f (ω, L/2) cos(β1) cos(β2)

+ {cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)}]
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In abbreviated notation

δE A = − μ2 P

8π2
[�(D̃2 + Ã2 − B̃2 − C̃2) cos(α1) cos(α2)
3

− �( Ã2 + B̃2 + C̃2 + D̃2) cos(β1) cos(β2)
3

+ {cos2(α1) + cos2(α2) + cos2(β1) + cos2(β2)}
2]
(C.5)
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