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Abstract

In this paper we consider Anderson model with a large number

of sites with zero interaction. For such models we study the spectral

statistics in the region of complete localization near the bottom of the

spectrum. We show that Poisson statistics holds for such energies, by

proving the Minami estimate.

1 Introduction

We consider random Schrödinger operators on ℓ2(Zd) of the form

Hω = H0 + λ Vω (1)

for λ > 0 and with

H0u(n) = (−∆u)(n) = −
∑

i:|i−n|=1

(u(i)− u(n)) (2)
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Let Ṽω(n), n ∈ Zd be independent and identically distributed random
variables with common distribution µ. We restrict the potential Ṽω(n) to a
proper subset Γ of Zd setting:

Vω(n) :=

{
Ṽω(n), for n ∈ Γ;
0, otherwise.

(3)

So, compared to the (normal) Anderson model (with potential Ṽω) the
sites in Γc := Zd \ Γ are ‘missing’ for the potential Vω.

In this paper, the set Γ is periodic with respect to a sublattice L of Zd. For
the ease of exposition we take L =MZd, but the proofs work for more general
lattices. We assume that the common distribution µ of the Vω(n); n ∈ Γ has
a bounded density of compact support suppµ with inf suppµ ≤ 0. See
Assumption 2.1 amd 2.2 for the precise assumptions.

We prove that for strong disorder (λ large) and small energies E < E1

for some E1 > 0 the level statics around E is given by a Poisson process
whenever the density of states n(E) is positive.

Our proof follows the main ideas of Minami theory [15]. In a first step we
prove an exponential fractional moment bound for the resolvent of Hω. Such
bounds go back to the paper [1] (see [2] for a comprehensive treatment of
the Aizenman-Molchanov theory). This allows us to show not only Anderson
localization but also that the eigenvalue counting process is infinitely divisible
in the limit. Then we prove a Minami estimate, i. e. we show that this process
has no double points. In a last step we have to prove that the intensity of the
limiting process is positive and, as a matter of fact, is given by the density
of states n(E).

To our knowledge, the first treatment of operators as in (1) – (3) is the
PhD-thesis of Jörg Obermeit [16] which is based on ideas from [12]. In
[16] Obermeit proves spectral localization for small energies via multiscale
analysis.

In [18] Constanza Rojas-Molina treats operators as above but with a
rather general set of missing sites, in fact, Γ is merely supposed to be a
Delone set. One of the main technical result in [18] is a Wegner estimate for
such potentials, which in turn uses methods from [4].

Independently, Elgart and Klein [7] prove a similar result, they even allow
a (deterministic) background potential.

The proof in Obermeit’s paper [16] works if one can make sure that the
energy E under consideration is outside the spectrum of a certain reference
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operator. Such a reference operators may be given by H0,Γc := χΓc H0 χΓc

which is obviously non negative. This observation can be used if there is
some negative spectrum of Hω which is the case if inf supp µ < 0. It is less
obvious but true that H0,Γc ≥ E1 > 0, so that the proof even works for
small positive energies and inf supp µ = 0. The estimate H0,Γc ≥ E1 > 0 is
proved by Elgart and Klein in [7] in great generality. In the appendix of this
paper we give an alternative proof of such a result, but with more restrictive
assumptions.

In the recent work [8] Elgart and Sodin prove localization for operators
as in (1) – (3) with periodic set Γ. In this paper the authors use the method
of fractional moments (see [1] or [2]). We also use a fractional moments
estimate to prove the Poisson statistics. Under our special assumptions the
fractional moments estimate has a quite simple proof which we give below,
although we could use the result from [8].

2 Results

We consider Schrödinger operators of the form (1)–(3) with independent
random variables Vω(n), n ∈ Γ with a common distribution µ.

For the distribution µ of the random variables we suppose:

Assumption 2.1.

1. The distribution µ has a bounded density and the support supp µ of µ
is compact.

2. We have vmin := inf supp µ = 0.

A straightforward modification of our proof works also for the case vmin <

0. To simplify notation we restrict ourselves to the case vmin < 0. The set Γ
satisfies:

Assumption 2.2.

1. Γ = Γ0 + MZd .

2. Γ0 ⊂ Λ1 := {i ∈ Zd | −
M
2
< iν ≤ M

2
, ν = 1, . . . , d}

3. ∅ 6= Γ0 6= Λ1
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We may take Ω = RΓ as the underlying probability space with probability
measure P =

∏
i∈Γ µ. Correspondingly, there is an action T of Γ on Ω by

shifts and with respect to this action P is invariant and ergodic. If we take the
unitaries Ui implemented by translation on ℓ2(Zd), then we have a covariance
relation for the operators Hω, namely,

HTiω = UiHωU
∗
i . (4)

It follows that the spectrum σ(Hω) is almost surely constant and the same is
true for its various measure theoretic parts (continuous spectrum, pure point
spectrum etc.), see e. g. [9] or [13].

It is well known that σ(H0) = [0, 4d]. It follows from the above assump-
tions that

E0 := inf σ(Hω) = 0 if vmin = inf supp µ = 0 (5)

and E0 < 0 if vmin < 0 . (6)

If vmin < 0 then E0 depends on the parameter λ from (1), E0 tends to
−∞ as λ goes to ∞ (see [11] for details).

For a subset Λ of Zd we consider the operators

Hω,Λ = χΛHωχΛ, (7)

where χΛ denotes multiplication with the characteristic function of the set
Λ. Analogously we define H0,Λ. Note, that we consider Hω,Λ as an operator
on ℓ2(Λ).

We denote by ΛL(n) the cube of side length LM centered at the origin,
more precisely

ΛL(n) := {i ∈ Z
d | −

M

2
L < (iν − nν) ≤

M

2
L, for ν = 1, . . . d} (8)

and set for short ΛL := ΛL(0). Note that Λ1 is ‘the’ unit cell of the lattice
MZ

d and each ΛL(n) is a disjoint union of cells Λ1(i) with i ∈ MZ
d. The

cube ΛL(i) contains exactly |ΛL(i)| := (ML)d points.
We denote the projection-valued spectral measures of self-adjoint opera-

tors B by EB(·).
The measures νL with

νL(I) :=
1

|ΛL|
tr
(
EHω,ΛL

(I)
)

(9)
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converge weakly as L → ∞ to the density of states measure ν of Hω (see
e. g.[11]).

We remark that trA is always taken in the space appropriate for the
operator A, so in (9) the trace is taken in ℓ2(ΛL) ∼= C|ΛL|.

The density of states measure ν for an interval I can also be defined by

ν(I) = E

( 1

|Λ1|
tr
(
χΛ1 EHω(I)

))
(10)

It is a standard result that (10) is indeed the limit of (9) (see [11]).
The following result is essential to treat not only negative energies:

Proposition 2.3. Under Assumption 2.2 with Γc = Zd \ Γ

Ẽ0(Γ
c) := inf σ(H0,Γc) > 0 and (11)

Ẽ0(Γ) := inf σ(H0,Γ) > 0 (12)

This result is proved in [7] under weaker assumptions. For the reader’s
convenience we give a different proof (under our assumptions) in section 5.

We set

Ẽ0 := min{Ẽ0(Γ), Ẽ0(Γ
c)} (13)

Corollary 2.4. If Λ is a nonempty subset of either Γ or Γc then

inf σ(H0,Λ) ≥ Ẽ0 > 0 (14)

In section 3 we prove

Proposition 2.5 (Wegner Estimate). Under the assumptions 2.1 and 2.2

and for given E1 < Ẽ0(Γ
c) there is a constant C such that for intervals

I = [a, b] ⊂ [−∞, E1]

E
(
tr

(
EHω,Λ

(I)
))

≤ C |Λ| |I|. (15)

Moreover, for energies E < Ẽ0(Γ
c) the density of states measure ν of the

operator Hω has a bounded density n(E), i. e. for all E ′ < Ẽ0:

ν
(
(−∞, E ′)

)
=

∫ E′

−∞

n(E) dE (16)
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By the Lebesgue differentiation theorem (see e. g. [19], Theorem 7.7) for

(Lebesgue-) almost all E < Ẽ0 we have

n(E) = lim
ε→0

ν
(
(E − ε, E + ε)

)

ε
, (17)

in particular n(E) > 0 for ν-almost all E ∈ [E0, Ẽ0].
We set

Dν = {E < Ẽ0 | lim
ε→0

ν
(
(E − ε, E + ε)

)

2ε
exists and is positive} (18)

For E ∈ Dν we set n(E) = limε→0
ν

(
(E−ε,E+ε)

)

2ε
. Recall that by (16) n is

defined only almost everywhere.
To formulate our main result we define

ξωL,E(I) = Tr
(
EHω,ΛL

(E + |ΛL|
−1 I)

)
. (19)

The point process ξωL,E gives the local (rescaled) level statistics near energy
E.

We prove:

Theorem 2.6. Suppose that the operators Hω as in (1)–(3) satisfy Assump-

tions 2.1 and 2.2. Then for any E1 < Ẽ0 there is a λ (as in (1)) such
that:

For all E < E1 with E ∈ Dν the limits

Ξω
E(·) = lim

L→∞
ξωL,E(·) (20)

exist in the sense of weak convergence and give a Poisson Process with in-
tensity measure λE([a, b]) = n(E)(b− a).

The proof of Theorem 2.6 relies on three main ingredients which we state
below and prove in the rest of this note. Once these ingredients are given
one may follow Minami’s original proof [15], see also [2], Chapter 17.

The first ingredient is a fractional moment bound, namely:

Theorem 2.7. Consider operators Hω as in equation (1)–(3) satisfying As-

sumption 2.1 and 2.2. Then for each E1 < Ẽ0 there exist s ∈ (0, 1
2
) and λ0

such that for all λ ≥ λ0 and all E ≤ E1 there is a δ > 0 with

sup
ǫ>0

sup
x∈Zd

∑

y∈Zd

E
(
|(Hω − E − iǫ)−1(x, y)|s

)
esδ|x−y| <∞. (21)
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Fractional moment bounds were first proved in the celebrated paper [1]
by M. Aizenman and S. Molchanov. They imply spectral and dynamical
localization in the corresponding part of the spectrum. We refer to the book
[2] by Aizenman and Warzel for a comprehensive treatment of this area.

The above Theorem implies localization for small energies and high disor-
der for our model. Moreover, following N. Minami [15], Theorem 2.6 allows
us to prove that the processes Ξ is an infinitely devisable process by approxi-
mating the ξL by sums of processes ηωℓ,E,p(I) = tr

(
EHω,ℓ,p

(E + IL−d)
)
which

are based on cubes Λℓ on a small scale ℓ of the order La with a < 1.
The second ingredient is a kind of extended Wegner-type estimate first

proved by Minami [15].

Theorem 2.8 (Minami estimate). Under the assumptions 2.1 and 2.2 and

for any given E1 < Ẽ0 there is a constant C such that for intervals I =
[a, b] ⊂ [−∞, E1]

E

(
tr

(
EHω,Λ

(I)
(
tr

(
EHω,Λ

(I)− 1
) )))

≤ C|Λ|2|I|2 . (22)

This estimate enables us to exclude double points for the limit process Ξ.
The final ingredient identifies the intensity measure of Ξ.

Proposition 2.9. For each E ∈ Dν and any interval I

lim
L→∞

E

(
tr

(
χΛL

EHω

(
E +

1

|ΛL|
I
)))

= n(E) |I| . (23)

We prove Proposition 2.5, Proposition 2.9 and Theorem 2.8 in section 3.
Section 4 is devoted to the proof of Theorem 2.7 and the appendix contains
a proof of Proposition 2.3.

3 Wegner and Minami Estimates

We start this section with a lemma that allows us to reduce estimates over
a cube Λ to estimates over the ‘active’ sites in Λ, i. e. on the set Λ ∩ Γ.

Lemma 3.1. Suppose E1 < Ẽ0(Γ
c) and consider an eigenvalue E ≤ E1

of Hω,Λ with ψ the corresponding eigenfunction. Then we have for some C
(allowed to depend on E1 but not on Λ)

‖ψ‖ = ‖χΛψ‖ ≤ C ‖χΛ∩Γ ψ‖ . (24)
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Proof : We have (
H0,Λ − E

)
ψ = −λVωψ,

so, since H0,Λ ≥ Ẽ0(Γ
c) > E we may write

ψ = −(H0,Λ − E)−1λVωψ.

This combined with the fact that λVω is bounded and supported on Γ gives
the bound

‖ψ‖2 ≤ ‖(H0,Λ − E)−1‖‖λVωψ‖2

≤ ‖(H0,Λ − E1)
−1‖‖λVωψ‖2

≤ C ‖χΓ∩Λψ‖.

Lemma 3.1 allows us to bound the trace of spectral projections by the
trace over a restriction to Γ.

Proposition 3.2. Let I ⊂ (−∞, E1], E1 < Ẽ0(Γ
c), be an interval. Then

tr
(
EHω,Λ

(I)
)
≤ C tr

(
χΓ∩ΛEHω,Λ

(I)
)
.

Proof : We expand the trace and use Lemma 3.1 in the second inequality,
where we write the normalized eigenfunction corresponding to an eigenvalue
λ by ψλ:

tr
(
EHω,Λ

(I)
)

≤
∑

λ∈I

tr
(
EHω,Λ

({λ})
)
=

∑

λ∈I

‖χΛψλ‖
2 (25)

≤
∑

λ∈I

C ‖χΛ∩Γψλ‖
2 (26)

= C tr
(
χΛ∩ΓEHω,Λ

(I)
)
. (27)

For a given j ∈ Γ we define (ω⊥
j , τ) ∈ RΓ by

(ω⊥
j , τ)(n) =

{
ωn, for n 6= j;
τ, for n = j.

(28)

We also denote by Eω⊥ expectation over all random variable Vω(n) except
Vω(j), so that due to independence

E

(
F (ω)

)
=

∫
Eω⊥

(
F
(
(ω⊥

j , τ)
))

dµ(τ) (29)
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Lemma 3.3. Let I ⊂ (−∞, E1], E1 < Ẽ0(Γ
c), be an interval. Then for

j ∈ Γ ∩ Λ,

∫
〈δj, EH

(ω⊥
j

,τ),Λ
(I) δj〉 dµ(τ) ≤ C ′ |I|. (30)

Remark 3.4. In (30) we may replace µ by any probability measure on R

with a bounded density.

Proof : This lemma follows by a standard spectral averaging result (see
[10], Theorem 3.1.4) of rank one perturbations, based on the assumptions on
µ.
Proof (Proposition 2.5) : We use Lemmas 3.2 and 3.3 to obtain the following
series of inequalities giving (15).

E
(
tr

(
EHω,Λ

(I)
))

≤ C E
(
tr

(
χΓ∩ΛEHω,Λ

(I)
))

(31)

≤ C
∑

j∈Γ∩Λ

E(ω⊥
j ,τ)

(∫
d µ(τ)〈δj, EH

(ω⊥
j

,τ),Λ
(I)δj〉

)
(32)

≤ C ′′ |Γ ∩ Λ| |I|. (33)

(16) follows by an application of the Radon-Nikodym Theorem.
We turn to the proof of Minami’s estimate (Theorem 2.8).

Proof (Minami estimate) : We first use Lemma 3.2 to get the bound

E

(
tr
(
EHω,Λ

(I)
) (

tr
(
EHω,Λ

(I)
)
− 1

) )

≤ C
∑

j∈Λ∩Γ

E

(
〈δj , EHω,Λ

(I)δj〉
(
tr
(
EHω,Λ

(I)
)
− 1

) )

≤ C
∑

j∈Λ∩Γ

E

(
〈δj, EHω,Λ

(I)δj〉 tr
(
EH

(ω⊥
j

,τ),Λ
(I)

))

For the last inequality we used the fact that changing one parameter Vω(j)
is a rank one perturbation. Due to eigenvalue interlacing (see e. g. [11]
Lemma 5.25) the trace of EHω,Λ

(I) is changed at most by one. Since τ is
a free parameter independent of anything else in the above inequalities we
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integrate the inequalities over τ with respect to µ to get

E
(
tr
(
EHω,Λ

(I)
) (

tr
(
EHω,Λ

(I)
)
− 1

))

≤ C
∑

j∈Λ∩Γ

Eω⊥
j

(∫
d µ(v)〈δj, EH

(ω⊥
j

,v),Λ
(I)δj〉

∫
d µ0(τ) tr

(
EH

(ω⊥
j

,τ),Λ
(I)

))

≤ C ′′ |I|
∑

j∈Γ∩Λ

Eω⊥
j

(∫
d µ0(τ) tr

(
EH

(ω⊥
j

,τ),Λ
(I)

))

≤ C ′′ |I| |Λ| E
(
tr
(
EH

(ω⊥
j

,τ),Λ
(I)

))

≤ C ′′′ |Γ ∩ Λ|2 |I|2,

where we get first the bound for the τ integral using the spectral averaging
bound and then the remaining integral again using Wegner estimate.
Now, we prove Proposition 2.9.

Proof (Proposition 2.9) :

E

(
tr

(
χΛL

EHω−E(
1

|ΛL|
I)
))

= E

∑

n∈ΛL∩MZd

(
tr

(
χΛ1(n)EHω−E(

1
|ΛL|

I)
))

=
∑

n∈ΛL∩MZd

E

(
tr

(
χΛ1(n)EHω−E(

1
|ΛL|

I)
))

= Ld
E

(
tr

(
χΛ1EHω−E(

1
|ΛL|

I)
))

= Ld ν(E + 1
|ΛL|

I) ,

where we used the invariance of the expectation under translations by points
in MZd, coming from the covariance equation (4) and the independence of
the meausure P under such translations of points in Ω by MZd. Taking the
limits of above we obtain the limit for E ∈ Dν

lim
L→∞

E
(
tr

(
χΛL(0)EHω−E(IL

−d)
))

= n(E) |I| .

4 Localization

We now turn to the proof of Theorem 2.7, that is the proof of exponential
decay of the fractional moments of the resolvent kernels of Hω.
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We start with a decoupling result.

Proposition 4.1. Suppose Λ ⊂ Λ′ ⊂ Zd, x, y ∈ Λ and 0 < s < 1
2
. Let

V : Λ → R, V ′ : Λ′ → R with V (x) = V ′(x) = 0 and set

HΛ(v) := H0,Λ + V + λ v δx; HΛ′(v) := H0,Λ′ + V ′ + λ v δx ,

then
∫ (

|(HΛ(v)− z)−1(x, y)|s |(HΛ′(v)− z)−1(x′, y′)|s
)
dµ(v)

≤ C

∫
|(HΛ(v)− z)−1(x, y)|s dµ(v)

∫
|(HΛ′(v)− z)−1(x′, y′)|s dµ(v) (34)

for a constant C which depends only on s and the measure µ.

Proof : The Proposition is a slight extension of Corollary 8.11 of [2], the
proof given there extends to our case.

Proposition 4.1 can be iterated to give the following Corollary.

Corollary 4.2. Under the assumptions of Proposition 4.1, if y 6= x and
V (x) = V ′(x) = V (y) = V ′(y) = 0 then with

HΛ(v, u) := H0,Λ + V + λ v δx + λ u δy

HΛ′(v, u) := H0,Λ′ + V ′ + λ v δx + λ u δy ,

we have
∫ ∫ (

|(HΛ(v, u)− z)−1(x, y)|s |(HΛ′(v, u)− z)−1(x′, y′)|s
)
dµ(v) dµ(u)

≤ C ′

∫∫
|(HΛ(v, u)− z)−1(x, y)|s dµ(v) dµ(u)

∫∫
|(HΛ′ − z)(v, u)−1(x′, y′)|s dµ(v) dµ(u)

We need another result from [2] (Corollary 8.4):

Proposition 4.3. If HΛH = HΛ,0 + V and V (x) = λv, V (y) = λu then
there is a constant C depending only on s and on the measure µ such that

11



1.
∫

|(HΛ − z)−1(x, x)|s dµ(v) ≤
C

λs
(35)

2. ∫ ∫
|(HΛ − z)−1(x, y)|s dµ(v) dµ(u) ≤

C

λs
(36)

For the proof of Theorem 2.7 we define the following quantities:

A(z) := sup
x∈Γ

∑

y∈Zd

E
(∣∣ (Hω − z)−1 (x, y)

∣∣s) esδ|x−y| (37)

B(z) := sup
x∈Γc

∑

y∈Zd

E
(∣∣ (Hω − z)−1 (x, y)

∣∣s) esδ|x−y| (38)

A′(z) := sup
x∈Γ

∑

y∈Zd

E
(∣∣ (Hω,Γ − z)−1 (x, y)

∣∣s) esδ|x−y| (39)

B′(z) := sup
x∈Γc

∑

y∈Zd

E
(∣∣ (Hω,Γc − z)−1 (x, y)

∣∣s) esδ|x−y| (40)

= sup
x∈Γc

∑

y∈Zd

∣∣ (H0,Γc − z)−1 (x, y)
∣∣sesδ|x−y|

We have to prove that for E ≤ E1 < Ẽ0 and λ large enough

sup
ε>0

A(E + iε) <∞ and sup
ε>0

B(E + iε) <∞ (41)

Since both

Hω,Γ ≥ H0,Γ ≥ Ẽ0 (42)

and Hω,Γc = H0,Γc ≥ Ẽ0 (43)

the Combes-Thomas estimate (see e. g. [2] or [11]) shows that the matrix
elements of the respective resolvents decay exponentially uniformly in ε, thus

sup
ε>0

A′(E + iε) <∞ and sup
ε>0

B′(E + iε) <∞ (44)

provided δ > 0 is small enough.
In the following formulae we use the abbreviations G(x, y) := (Hω −

z)−1(x, y), G0(x, y) := (H0 − z)−1(x, y), GΓ(x, y) := (Hω,Γ − z)−1(x, y),
G0,Γc(x, y) := (H0,Γc − z)−1(x, y) and so on.
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Now we estimate B(z) using the geometric resolvent equation

B(z) ≤ sup
x∈Γc

∑

y∈Zd

|G0,Γc(x, y)|s esδ|x−y|

+ sup
x∈Γc

∑

y∈Zd

∑

u∈Γc,w∈Γ
|u−w|=1

|G0,Γc(x, u)|s esδ|x−u|
E
(
|(G(w, y)|s

)
esδ|w−y| esδ

≤ B′(z) + 2B′(z)A(z) (45)

where we assumed, without loss of generality, that esδ ≤ 2.
In a similar way we estimate

A(z) ≤ A′(z) + sup
x∈Γ

∑

y∈Zd

∑

u∈Γc,w∈Γ
|u−w|=1

E
(
|GΓ(x, w)|

s |(G(u, y)|s
)
esδ|x−y| (46)

Using Proposition 4.1, Corollary 4.2 and Proposition 4.3 we estimate:

E
(
|GΓ(x, w)|

s |(G(u, y)|s
)

≤
C

λs
E
(
|(G(u, y)|s

)
. (47)

On the other hand, due to the Combes-Thomas estimate

E
(
|GΓ(x, w)|

s |(G(u, y)|s
)

≤ C0 e
−sγ|x−w|

E
(
|(G(u, y)|s

)
. (48)

Consequently, we may estimate

sup
x∈Γ

∑

w∈Zd

E
(
|GΓ(x, w)|

s |(G(u, y)|s esδ|x−y|
)

≤ κλ E
(
|(G(u, y)|s esδ|u−y|

)
(49)

for a constant κλ > 0 which can be made arbitrarily small by choosing λ big.
It follows that

A(z) ≤ A′(z) + κ′λB(z) . (50)

Together with (45) this implies

B(z) ≤ B∗(z) + κ′′λ B(z) (51)

where κ′′λ can be made smaller than 1 by choosing λ large, uniformly in
z = E + iε and B∗(z) is uniformly bounded in ε. The assertion of the
theorem now follows from (50) and (51).
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5 Appendix:(Positivity of Auxiliary Opera-

tors)

In this section we prove that H0,Γc = χZd\ΓH0 χZd\Γ as well as some other
auxiliary operators are strictly positive. For our proof we use operators on
ℓ2(Zd) with ‘Neumann boundary conditions’, in the following sense:

Definition 5.1. If Λ is a (nonempty) subset of Zd we define the Neumann
Laplacian H0

Λ on ℓ2(Λ) by

H0
Λ u(n) :=

∑

j∈Λ
‖n−j‖=1

(
u(n)− u(j)

)
. (52)

For any n ∈ Λ ⊂ Zd we define the coordination number κΛ(n) as the
number of neighbors of n within the set (graph) Λ, i. e.

κΛ(n) := #{i ∈ Λ | |i− n| = 1} (53)

and the boundary ∂−Λ of Λ by

∂−Λ := {i ∈ Λ | ∃j 6∈Λ |i− j| = 1} . (54)

With these notations we get

H0
Λ u(n) = κΛ(n) u(n) −

∑

|j−n|=1
j∈Λ

u(j) (55)

while

χΛH0χΛ u(n) = 2d u(n) −
∑

|j−n|=1
j∈Λ

u(j) (56)

consequently

χΛH0χΛ = H0
Λ + (2d− κΛ) (57)

We summarize some of the properties of the operatorsH0
Λ in the following

Proposition.
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Proposition 5.2. For any (nonempty) set Λ ⊂ Zd we have

1. inf σ(H0
Λ) = 0 ,

2. If Λ is finite, then inf σ(H0
Λ) is an eigenvalue and ϕ(n) = 1

|Λ|1/2
is a

normalized eigenfunction.

3. If Λ is finite and connected, then inf σ(H0
Λ) is a simple eigenvalue.

4. If Λ is the disjoint union of the (nonempty) sets Λi then

H0
Λ ≥

⊕
H0

Λi (58)

5. χΛH0χΛ ≥ H0
Λ

These properties of H0
Λ, in particular the superadditivity (58), resemble

characteristic properties of Neumann Laplacians on Rd. This is the reason
we call H0

Λ the Neumann Laplacian, following Simon [17].
It is tempting to think of H0,A as the Laplacian on A with ‘Dirichlet’

boundary conditions. However, as was explained by Barry Simon in [17],
the operators H0,A are not subadditive as one should expect for an analog
of Dirichlet conditions. Simon defines another type of boundary conditions
which satisfy this property (see [17] or [11] for details). We speak of simple
boundary conditions when talking about operators as in (56).

Below we will also combine Neumann and simple boundary conditions.
So, if Λ and A are subsets of Zd we consider the operator

χAH0
ΛχA (59)

as an operator on ℓ2(A ∩ Λ) and talk about Neumann conditions on Λ and
simple boundary conditions on A.

Proof (Proposition 2.3): Write Z
d as the disjoint union of cubes Λ1(i)

with i ∈MZd and set A := Γc. Then

H0,A = χAH0χA (60)

≥ χA

⊕

i∈MZd

H0
Λ1(i) χA (61)

=
⊕

i∈MZd

(
χAH0

Λ1(i) χA

)
(62)
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Thus

inf σ(H0,A) ≥ inf σ
(
χAH0

Λ1 χA

)
(63)

Consequently, it suffices to prove that the operator χAH0
Λ1 χA is strictly

positive.
From (57) we have

χAH0
Λ1 χA = H0

Λ1∩A + (2d− κΛ1∩A) (64)

By Assumption 2.2 Λ1 \A 6= ∅, hence q(n) := 2d−κΛ1∩A(n) ≥ 1 for some
n ∈ Λ1 ∩ A.

Setting B(t) = H0
Λ1∩A + t q and e(t) = inf σ(B(t)) we have e(0) = 0 and

by the Hellmann-Feynman-Theorem

e′(0) =
∑

n∈Λ1∩A

q(n) > 0 , (65)

thus

e(1) = inf σ
(
χAH0

Λ1 χA

)
> 0 (66)

The above proof does not use Assumption 2.2 in its full strength. All
what is needed is that Λ1 ∩ Γ 6= ∅, which is true for any Delone set.
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