Extensions of the Schur majorisation inequalities

Rajendra Bhatia
Ashoka University, Sonepat, Haryana, 131029, India
Rajesh Sharma
Department of Mathematics and Statistics, H.P. University, Shimla-5, India

Abstract

Let λ_{j} and $a_{j j}, 1 \leq j \leq n$, be the eigenvalues and the diagonal entries of a Hermitian matrix A, both enumerated in the increasing order. We prove some inequalities that are stronger than the Schur majorisation inequalities $\sum_{j=1}^{r} \lambda_{j} \leq \sum_{j=1}^{r} a_{j j}, 1 \leq r \leq n$.

Keywords: Hermitian matrix, Spectrum, Majorisation, Positive linear functionals. 2020 MSC: 15A18, 15A42, 15B57.

1. Introduction

Let A be an $n \times n$ complex Hermitian matrix. Let the eigenvalues and the diagonal entries of A both be enumerated in increasing order as

$$
\begin{equation*}
\lambda_{1}(A) \leq \lambda_{2}(A) \leq \cdots \leq \lambda_{n}(A), \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{11} \leq a_{22} \leq \cdots \leq a_{n n}, \tag{1.2}
\end{equation*}
$$

respectively. We then have

$$
\begin{equation*}
\lambda_{1}(A) \leq a_{11} \quad \text { and } \quad \lambda_{n}(A) \geq a_{n n} . \tag{1.3}
\end{equation*}
$$

These inequalities are included in the Schur majorisation inequalities that say: for every $1 \leq r \leq n$

$$
\begin{equation*}
\sum_{j=1}^{r} \lambda_{j}(A) \leq \sum_{j=1}^{r} a_{j j}, \tag{1.4}
\end{equation*}
$$

with equality in the case $r=n$. These inequalities are of fundamental importance in matrix analysis and have been the subject of intensive work. See, e.g. Bhatia [1], Horn and Johnson [4] and Marshal and Olkin [5].

In this note we obtain some inequalities that are stronger than (1.3) and (1.4). These give estimates of eigenvalues in terms of quantities easily computable from the entries of A.

Given the $n \times n$ Hermitian matrix $A=\left[a_{i j}\right]$, let

$$
\begin{equation*}
r_{i}=\sum_{j \neq i}\left|a_{i j}\right|, \quad 1 \leq i \leq n \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{i}=\sum_{j \neq i}\left|a_{i j}\right|^{2}, \quad 1 \leq i \leq n . \tag{1.6}
\end{equation*}
$$

A permutation similarity does not change either the eigenvalues or the diagonal entries of A. Nor does it change the quantities r_{i} and q_{i}. We assume that such a permutation similarity has been performed and the ordering (1.2) for diagonal entries has been achieved. To rule out trivial cases, we assume that A is not a diagonal matrix.

Our first theorem is a strengthening of the inequalities (1.3).

Theorem 1 For every $n \times n$ Hermitian matrix A, we have

$$
\begin{align*}
& \lambda_{1}(A) \leq a_{11}-\frac{q_{1}}{\max _{i}\left(a_{i i}+r_{i}\right)-a_{11}}, \tag{1.7}\\
& \lambda_{n}(A) \geq a_{n n}+\frac{q_{n}}{a_{n n}-\min _{i}\left(a_{i i}-r_{i}\right)} . \tag{1.8}
\end{align*}
$$

The next two theorems give inequalities stronger than (1.4).

Theorem 2 Let A be an $n \times n$ Hermitian matrix. Then for $1 \leq r \leq n-1$ and $r<t \leq n$, we have

$$
\begin{equation*}
\sum_{i=1}^{r} \lambda_{i}(A) \leq \sum_{i=1}^{r} a_{i i}-\frac{\sum_{s=1}^{r}\left|a_{t s}\right|^{2}}{a_{t t}-\min _{i=1, \ldots, r, t}\left(a_{i i}-\sum_{\substack{s=1 \\ s \neq i}}^{r+1}\left|a_{i s}\right|\right)} \tag{1.9}
\end{equation*}
$$

Theorem 3 Let A be an $n \times n$ Hermitian matrix. Then for $1 \leq r \leq n-1,1 \leq k \leq r$, and $r<t \leq n$, we have

$$
\begin{equation*}
\sum_{i=1}^{r} \lambda_{i}(A) \leq \sum_{i=1}^{r} a_{i i}-\frac{\sqrt{\left(a_{t t}-a_{k k}\right)^{2}+4\left|a_{t k}\right|^{2}}-\left(a_{t t}-a_{k k}\right)}{2} . \tag{1.10}
\end{equation*}
$$

2. Proofs

Our proofs rely upon two basic theorems of matrix analysis. Let $\mathbb{M}(n)$ be the algebra of all $n \times n$ complex matrices and let $\Phi: \mathbb{M}(n) \rightarrow \mathbb{M}(k)$ be a positive unital linear map, [3]. Then the Bhatia-Davis inequality [2] says that for every Hermitian matrix A whose spectrum is contained in the interval $[m, M]$, we have

$$
\begin{equation*}
\Phi\left(A^{2}\right)-\Phi(A)^{2} \leq(M I-\Phi(A))(\Phi(A)-m I) \leq\left(\frac{M-m}{2}\right)^{2} I . \tag{2.1}
\end{equation*}
$$

Cauchy's interlacing principle says that if A_{r} is an $r \times r$ principal submatrix of A, then

$$
\begin{equation*}
\lambda_{j}(A) \leq \lambda_{j}\left(A_{r}\right), \quad 1 \leq j \leq r \tag{2.2}
\end{equation*}
$$

See Chapter III of [1] for this and other facts used here.

2.1. Proof of Theorem 1

Let $\varphi: \mathbb{M}(n) \rightarrow \mathbb{C}$ be a positive unital linear functional and let the eigenvalues of Hermitian element $A \in \mathbb{M}(n)$ be arranged as in (1.1). From the first inequality (2.1), we have

$$
\begin{equation*}
\varphi\left(A^{2}\right)-\varphi(A)^{2} \leq\left(\lambda_{n}(A)-\varphi(A)\right)\left(\varphi(A)-\lambda_{1}(A)\right) \tag{2.3}
\end{equation*}
$$

Suppose $\lambda_{n}(A) \neq \varphi(A)$. Then, from (2.3), we have

$$
\begin{equation*}
\lambda_{1}(A) \leq \varphi(A)-\frac{\varphi\left(A^{2}\right)-\varphi(A)^{2}}{\lambda_{n}(A)-\varphi(A)} \tag{2.4}
\end{equation*}
$$

Further, by the Gersgorin disk theorem, we have

$$
\begin{equation*}
\lambda_{n}(A) \leq \max _{i}\left(a_{i i}+r_{i}\right) . \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5), we get

$$
\begin{equation*}
\lambda_{1}(A) \leq \varphi(A)-\frac{\varphi\left(A^{2}\right)-\varphi(A)^{2}}{\max _{i}\left(a_{i i}+r_{i}\right)-\varphi(A)} \tag{2.6}
\end{equation*}
$$

Choose $\varphi(A)=a_{11}$. Then, φ is a positive unital linear functional and $\varphi\left(A^{2}\right)-\varphi(A)^{2}=$ q_{1}. So, (2.6) yields (1.7).
Suppose $\lambda_{n}(A)=\varphi(A)=a_{11}$. Then, from (1.2) and (1.3), we have $a_{11}=a_{22}=\cdots=a_{n n}$ and from (2.3), $\varphi\left(A^{2}\right)-\varphi(A)^{2}=0$. Therefore, $q_{i}=0$ for all $i=1,2, \ldots, n$. But then A is a scalar matrix.

The inequality (1.8) follows on using similar arguments. The derivation requires lower bound of $\lambda_{n}(A)$ from (2.3) which is analogous to (2.4), $\lambda_{1}(A) \geq \min _{i}\left(a_{i i}-r_{i}\right)$ and $\varphi(A)=a_{n n}$.

2.2. Proof of Theorem 2

The trace of A is the sum of the eigenvalues of A. Therefore,

$$
\begin{equation*}
\lambda_{n}(A)=\operatorname{tr} A-\sum_{i=1}^{n-1} \lambda_{i}(A) . \tag{2.7}
\end{equation*}
$$

Combining (1.8) and (2.7), we find that

$$
\begin{equation*}
\sum_{i=1}^{n-1} \lambda_{i}(A) \leq \sum_{i=1}^{n-1} a_{i i}-\frac{q_{n}}{a_{n n}-\min _{i}\left(a_{i i}-r\right)} . \tag{2.8}
\end{equation*}
$$

Apply (2.8) to the principal submatrix P of A containing diagonal entries $a_{11}, a_{22}, \ldots, a_{r r}, a_{t t}$, we get that

$$
\begin{equation*}
\sum_{i=1}^{r} \lambda_{i}(P) \leq \sum_{i=1}^{r} a_{i i}-\frac{\sum_{s=1}^{r}\left|a_{t s}\right|^{2}}{a_{t t}-\min _{i=1, \ldots, r, t}\left(a_{i i}-\sum_{\substack{s=1 \\ s \neq i}}^{r+1}\left|a_{i s}\right|\right)} \tag{2.9}
\end{equation*}
$$

By the interlacing inequalities (2.2), $\sum_{i=1}^{r} \lambda_{i}(A) \leq \sum_{i=1}^{r} \lambda_{i}(P)$. So, (2.9) gives (1.9).

2.3. Proof of Theorem 3

By the Cauchy interlacing principle $\sqrt{2.2}$, the largest eigenvalue of A is greater than or equal to the largest eigenvalue of any 2×2 principal submatrix of A. Further, the eigenvalues of $\left[\begin{array}{ll}a_{r r} & a_{r s} \\ \overline{a_{r s}} & a_{s s}\end{array}\right]$ are $\frac{1}{2}\left(a_{r r}+a_{s s} \pm \sqrt{\left(a_{r r}-a_{s s}\right)^{2}+4\left|a_{r s}\right|^{2}}\right)$. On using these two facts, we see that

$$
\begin{equation*}
\lambda_{n}(A) \geq a_{n n}+\frac{\sqrt{\left(a_{n n}-a_{k k}\right)^{2}+4\left|a_{k n}\right|^{2}}-\left(a_{n n}-a_{k k}\right)}{2} \tag{2.10}
\end{equation*}
$$

for all $k=1,2, \ldots, n-1$. Combining (2.7) and (2.10), we find that

$$
\begin{equation*}
\sum_{i=1}^{n-1} \lambda_{i}(A) \leq \sum_{i=1}^{n-1} a_{i i}-\frac{\sqrt{\left(a_{n n}-a_{k k}\right)^{2}+4\left|a_{k n}\right|^{2}}-\left(a_{n n}-a_{k k}\right)}{2} . \tag{2.11}
\end{equation*}
$$

Apply (2.11) to the principal submatrix Q of A containing $a_{11}, a_{22}, \ldots, a_{r r}, a_{t t}$, we find that for $k=1,2, \ldots, r$, we have

$$
\begin{equation*}
\sum_{i=1}^{r} \lambda_{i}(Q) \leq \sum_{i=1}^{r} a_{i i}-\frac{\sqrt{\left(a_{t t}-a_{k k}\right)^{2}+4\left|a_{t k}\right|^{2}}-\left(a_{t t}-a_{k k}\right)}{2} \tag{2.12}
\end{equation*}
$$

The inequality (2.12) yields (1.10), on using the interlacing inequalities (2.2).
We show by means of an example that (1.9) and (1.10) are independent.

Example 1 Let

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 4 \\
3 & 4 & 1
\end{array}\right]
$$

Then (1.9) gives the estimate $\lambda_{1}(A)+\lambda_{2}(A)<\frac{10}{3}$, while (1.10) gives the weaker estimate $\frac{9-\sqrt{5}}{2}$ for the same quantity. On the other hand from (1.9) we get that $\lambda_{1}(B)+\lambda_{2}(B)<$ $-\frac{11}{7}$, while from (1.10) we see that the same quantity is not bigger than -2 .

References

[1] Bhatia R., Matrix Analysis, Springer, New York, (1997).
[2] Bhatia R., Davis C., A better bound on the variance, Amer. Math. Monthly, 107, (2000), 353-357.
[3] Bhatia R., Positive Definite Matrices, Princeton University Press, (2007).
[4] Horn R.A., Johnson C.R., Matrix Analysis, Cambridge University Press, (2013).
[5] Marshal A.W., Olkin I., Inequalities: Theory of Majorisation and its applications, Academic Press, (1979).

