Performance evaluation is an integral part of computer architecture research. Rigorous performance evaluation is crucial in order to evaluate novel architectures and is often carried out using benchmark suites. Each suite has a number of workloads with varying behavior and characteristics. Most analysis is done by analyzing the novel architecture across all workloads of a single benchmark suite. However, computer architects studying optimizations of specific microarchitectural components, require evaluation of their proposals on workloads that stress the component being optimized across multiple benchmark suites. In this paper, we present the design and implementation of FAB - a framework built with Pin and Python based workflow. FAB allows user-driven analysis of benchmarks across multiple axes like instruction distributions, types of instructions etc. through an interactive Python interface to check for desired characteristics, across multiple benchmark suites. FAB aims to provide a toolkit that would allow computer architects to 1) select workloads with desired, user-specified behavior and 2) create synthetic workloads with desired behavior that have a grounding in real benchmarks.