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ABSTRACT Model approaches to nuclear architecture have traditionally ignored the biophysical consequences of ATP-fueled

active processes acting on chromatin. However, transcription-coupled activity is a source of stochastic forces that are substan-

tially larger than the Brownian forces present at physiological temperatures. Here, we describe an approach to large-scale nu-

clear architecture in metazoans that incorporates cell-type-specific active processes. The model predicts the statistics of

positional distributions, shapes, and overlaps of each chromosome. Simulations of the model reproduce common organizing

principles underlying large-scale nuclear architecture across human cell nuclei in interphase. These include the differential posi-

tioning of euchromatin and heterochromatin, the territorial organization of chromosomes (including both gene-density-based and

size-based chromosome radial positioning schemes), the nonrandom locations of chromosome territories, and the shape sta-

tistics of individual chromosomes. We propose that the biophysical consequences of the distribution of transcriptional activity

across chromosomes should be central to any chromosome positioning code.

INTRODUCTION

Chromosomes are not distributed at random within the inter-

phase nucleus, an observation that is central to our current

understanding of large-scale nuclear architecture in the

interphase nuclei of metazoans (1–3). Gene-rich, more

open, early-replicating euchromatin regions are typically

distributed more centrally than gene-poor, relatively more

compact, late-replicating heterochromatin (2). Chromo-

somes are organized territorially, with each being

segmented into relatively more (A) and less (B) active com-

partments that are then further subdivided into topologically

associated domains (4–6). In humans, gene-rich chromo-

some 19, containing a large number of housekeeping genes,

is distributed more centrally across several cell types than

the similarly sized but gene-poor chromosome 18 (7,8).

This observation generalizes to a gene-density-based radial

positioning schema for all chromosomes (9).

Gene-rich regions within chromosomes tend to orient to-

ward the nuclear center, with expressed alleles often found

further from the nuclear envelope than ones that are not ex-

pressed (9,10). In some human cell types, chromosomes

appear to be positioned by size, with the centers of mass of

smaller chromosomes disposed more centrally than those

of larger ones (11–13). In female cells, the two X chromo-

somes are differentially positioned, with the more compact,

inactive X chromosome found somewhat closer to the nu-

clear envelope than the active one (14,15). Actively tran-

scribed chromosomes tend to have rougher, more elliptical

Submitted September 9, 2019, and accepted for publication November 11,

2019.

*Correspondence: menon@imsc.res.in

Editor: Anatoly Kolomeisky.

SIGNIFICANCE Biophysical models of nuclear architecture should be capable of predicting distribution functions for the

gene density and center of mass of individual chromosomes obtained in chromosome painting experiments. However,

models thus far have failed in this respect, also yielding little intuition for the fundamental biophysical principles responsible

for large-scale chromatin organization. We describe a first-principles approach to large-scale nuclear architecture in

metazoans that incorporates energy-consuming ‘‘active’’ processes acting on chromatin. Our computer simulations

reproduce, within a combined framework, a number of common organizing principles underlying large-scale nuclear

architecture across human cell nuclei in interphase that have so far resisted explanation.
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territories than less active ones (15–19). The probability with

which two loci along individual chromosomes are found in

proximity to each other in ligation assays follows a power

law P(s)�ð1 =saÞwith ax1 over an�1–8Mb range, consis-

tent with a fractal globule picture of chromosome structure

(4,20). Currently, experiments suggest that such organization

is cell type dependent and that a (1% a %1.5) also varies

across chromosomes over a comparable range (21,22).

Most model approaches to nuclear architecture assume a

priori that chromosomes are structured polymers in thermal

equilibrium (23–28). Some models ignore thermal fluctua-

tions altogether in favor of incorporating loop structure as

derived from the Hi-C data while also requiring compati-

bility with physical restrictions on the overlaps of chromo-

somes (28–30). Others account for the domain structure of

individual chromosomes (31–40). As summarized above,

large-scale nuclear architecture exhibits generic features

that are largely common across cell types. These should

severely constrain potential models (41).

However, set against this stringent requirement, virtually

all prior models for such architecture are incomplete: 1)

these models fail to predict gene-density-based or size-

based positioning schemes; 2) no simulations reproduce

the chromosome-specific distribution functions for gene

density or chromosome center of mass that FISH-based ex-

periments provide; 3) the differential positioning of the

active and inactive X chromosomes cannot be obtained us-

ing any model proposed so far; and 4) the spatial separation

of heterochromatin and euchromatin, seen in interphase cell

nuclei across multiple cell types, has not been reproduced in

model calculations in which this information is not incorpo-

rated a priori. Understanding these discrepancies remains an

outstanding problem.

All molecular machinery associated with chromatin re-

modeling, transcription, and DNA repair is energy

consuming, relying on the hydrolysis of NTP molecules

(42). Recently, we pointed out that this leads to the local-

ized, irreversible consumption of energy at the molecular

scale (43). This energy is transduced through chemome-

chanical ‘‘active’’ processes into mechanical work (44–

46). Such processes can be modeled via recently developed

biophysical theories of ‘‘active matter’’ (47–50). We argued

that a description in terms of inhomogeneous, stochastic

forces acting on chromatin, equivalent to an effective tem-

perature reflecting local levels of activity, provided the right

biophysical setting (51,52). If we describe each chromo-

some as a polymer composed of consecutive monomers,

each representing a suitably averaged section of chromatin,

different monomers can then be expected to experience

different effective temperatures correlating to local active

processes (43,53,54).

Here, extending these ideas, we propose a biophysical

approach to predicting both cell-type-specific and cell-type-

independent features of large-scale nuclear architecture, us-

ing data from RNA-seq experiments as a proxy for activity

and a Hi-C-derived description of chromosome contacts in

each cell type. The model attempts to provide a unified un-

derstanding of a number of common features of large-scale

nuclear architecture observed across diverse cell types.

METHODS

Interactions of model chromosomes

Our model chromosomes (diploid, XX) occupy the interior of a spherical

shell of radius R0. The interaction between neighboring monomers is of

the finitely extensible nonlinear elastic form. These monomers further

interact with (non-neighboring) monomers via a Gaussian interaction, the

Gaussian core potential used to model polymer brushes (55). Further details

of these interactions and their benchmarking is discussed in the Supporting

Materials and Methods, which also includes a section describing the bio-

physical intuition that informs our model.

Simulation methodology

We adapt the widely used LAMMPS code, implementing Brownian dy-

namics (56) for polymers of different lengths, with a local monomer-depen-

dent effective temperature, and confined to the interior of a spherical

domain; for more details, see Supporting Materials and Methods. For

each monomer, LAMPPS applies a Langevin thermostat via an overdamped

equation of motion, with a different ‘‘effective’’ temperature Ti associated

with each monomer, reflecting its local level of activity. In thermal equilib-

rium, we have Ti ¼ Teq for all monomers.

Units and normalization

We work in dedimensionalized units, discussed in the Supporting Materials

and Methods.

Deriving effective temperatures

In the gene density model, the gene content of each 1 Mb region is obtained

from the GENCODE database (57). Monomers containing a number of

genes that fall below a preset cutoff are termed as ‘‘inactive’’ or ‘‘passive’’

and are characterized by an effective temperature T ¼ Tph ¼ 310 K. Mono-

mers with a larger number of associated genes are termed as ‘‘active’’ and

assigned an effective temperature Ta > Tph. For the gene expression model,

we infer activities from transcriptome data using FPKM values from pro-

cessed RNA-seq output (58). For the combined model, we use the same

temperature assignments as for the gene expression model but, in addition,

take the top 5% of monomers by gene density as inferred from GENCODE,

promoting them to a temperature of T ¼ 12.

Models for the looping of individual

chromosomes

We use Hi-C data on GM12878, NHEK, IMR90, HUVEC, and HMEC

cells, obtained from data made publicly available by the authors of (59),

to represent the effects of strong long-range contacts within a chromosome.

We represent the effects of such long-range strong contacts in terms of per-

manent connections between the contacting monomers, referring to them as

‘‘loops’’ for this reason. We ignore loops smaller than the 1 Mb scale

because these are folded into our description of a single monomer. Across

these cell types, we have 236 (GM12878), 50 (NHEK), 116 (IMR90), 51

(HUVEC), and 13 (HMEC) loops that are larger than the 1 Mb scale and

that our model accounts for. These loops are represented by permanent
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finitely extensible nonlinear elastic bonds, with an effective interaction

strength that is the same as those of the springs that link consecutively con-

nected monomers. For the GM12878 cell type, we incorporate 27 super-

loops only for the inactive chromosome (Xi), taking these from data in (59).

Summary of analysis

We calculate Si(R)¼ 4pR2Pi(R), where Pi(R)dR is proportional to the prob-

ability of finding a monomer of chromosome i at a radial vector R from the

origin. For a uniform distribution, Si(R) ¼ 4pR2. We compute Si(R) for

every model chromosome indexed by i. We measure activity in successive

radial shells by performing a configurational average over the effective tem-

perature of every monomer in that shell. From these, we extract a quantity

similar to S(R) but normalize by 4pR2 so that the quantity plotted in the

cutaway sphere representation simply represents the activity at radial dis-

tance R. The quantity S(R) measures the DNA density associated with a spe-

cific chromosome across a radial shell at distance R from the nuclear center,

averaged over a large number of nuclei. The quantity SCM(R) measures a

similar distribution, but of the chromosome center of mass. We calculate

the distribution of centers of mass of each individual chromosome similarly.

To visually examine configurations, we color-coded monomers belonging

to individual chromosomes.

Calculation of 3D shape of chromosome

territories

For each chromosome in our simulation, we draw a three-dimensional (3D)

grid across the nucleus with a grid spacing of 0.2–0.6. We represent mono-

mers as spheres about which the density decays as a Gaussian with defined

width. Separating these monomers are cylindrical regions. The density

about the axis of each cylinder is assumed to also fall off as a Gaussian

with specified width. The density at any given grid point associated with

a single chromosome can then be computed by adding up the contributions

from all spherical and cylindrical regions as defined above. Once such a

density field is obtained, we can find the surfaces on which it attains a fixed

value, the ‘‘implicit surface.’’ We adjust the scales governing the decay of

the density distribution associated with the monomers and the cylindrical

regions separating them, as well as the associated constant specifying the

implicit surface to optimize geometrical quantities associated with chromo-

some territories vis-à-vis experiments. Once fixed, these parameters remain

the same for all chromosomes.

Geometric properties of chromosome territories

To calculate the two-dimensional (2D) properties of chromosome terri-

tories, we use the algorithm of (19). To compare our simulation data with

data from 2D FISH, we project 3D chromosome territories into the xy plane.

We use the ellipticity calculations of (60). In the 3D case, once we associate

an implicit surface to a chromosome, that surface can further be triangu-

lated using standard methods, such as the ISOSURFACE command in

MATLAB (The MathWorks, Natick, MA). The total surface area of the

chromosomes is obtained by adding the area of these triangles. To calculate

the volume of the chromosome, we count the number of grid points whose

grid density values are more than the given isovalue density c. The aspher-

icity D and shape (or prolateness) S parameters of a particular chromosome

are calculated from the semiaxis lengths a, b, and c of the smallest ellipsoid

that encloses all the monomers (61,62). The Khachiyan algorithm is used to

find the smallest ellipsoid that encloses all the data points (63).

Contact probability

The contact probability is computed using numerical calculations of the

contact frequency of monomers of a given chromosome, averaged over a

large number of configurational snapshots. When two monomers i and j

of the same chromosome are separated in 3D space by 2.5 units in terms

of our scaled unit distance, we assume that they are in contact.

RESULTS AND DISCUSSION

We model human chromosomes in diploid female (XX)

cells within interphase, describing each as a polymer

made up of monomers linked along a chain. These polymers

are confined within a spherical shell that models the nuclear

envelope. Each monomer represents a 1 Mb section of chro-

matin (13,64). Our model chromosomes are dynamic and

explore different configurations based on the forces they

experience. Such forces arise from the dense, nonequilib-

rium, and fluctuating environment of the cell nucleoplasm;

the interactions of chromosomes; and chromosome-nuclear

envelope interactions. A final input to our model is a repre-

sentation of contacts between sections of chromosomes, as

derived from Hi-C experiments. We count Hi-C-derived

contacts averaged over 1 Mb regions, connecting the appro-

priate monomers if the strength of these contacts exceeds a

threshold; we call such permanent connections loops. A

number of simulation snapshots of both homologs of

chromosomes 18 and 19 against a background of all other

chromosomes represented in grayscale are shown in Fig. 1

A. From such snapshots, we compute a variety of statistical

properties of chromosomes accessed in experiments (Fig. 1,

B–G).

We describe three models that associate local levels of

nonequilibrium transcriptional activity to an effective

temperature. In the gene density model proposed in our

earlier work, we chose the top 5% of monomers by gene

density, assigning them an active temperature in excess

of the physiological temperature Tph (43). The gene density

model yields fairly accurate representations of the

measured distribution function of DNA density S(R) in

GM12878 cells, leading to very different distributions for

the chromosome pairs 18 and 19 vis-à-vis chromosomes

12 and 20, as seen experimentally (43). However, such a

model is insensitive to cell-type-dependent features of nu-

clear architecture (41).

Accordingly, in the gene expression model, we focused

on transcriptomes across a number of model systems,

exploring varied ways of associating transcript levels to

effective temperatures. Fig. 1 H shows RNA-seq-derived

FPKM values summed over 1 Mb intervals, indexing tran-

script levels, across GM12878, HMEC, HUVEC, IMR90,

and NHEK cell types. Their distribution follows a Gumbel

form (Fig. S1). The values in Fig. 1 H are plotted in

increasing order of expression on a logarithmic scale. We

chose structured effective temperature assignments that

reflect the overall shape of this curve. The gene expression

models provide more accurate predictions for S(R) and

SCM(R) in comparison to experiments than the gene density

model.

Large-Scale Nuclear Architecture
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Our final model attempts to account for the observation

that transcript levels need not directly correlate to activity

because RNA-seq methods account only for steady-

state RNA production and because our description

averages over the typical timescales associated with tran-

scriptional ‘‘bursts’’ (65,66). We felt that a model that

included features of both gene density and gene expres-

sion models should provide a more accurate representa-

tion of inhomogeneous cell-type-dependent activity (67).

Accordingly, we decided to combine features of both

the gene density and the gene expression model into

what we call a combined model. In the combined model,

we assign active temperatures based on activity as ob-

tained from the gene expression model as well as by

including the most active monomers indicated by the

gene density model.

All the results presented in this work are for the combined

model. Fig. 1 I shows temperature assignments within the

combined model for five cell types. Such inhomogeneous

(effective) temperature assignments, correlating both to

gene density and transcription levels averaged over consec-

utive 1 Mb sections of each chromosome, lie at the core of

our work.

Inhomogeneous activity underlies large-scale

nuclear architecture

Fig. 2 A shows simulation-derived chromosome territories

for the GM12878 cell type, with each chromosome colored

a different color. Simulations recover such territorial organi-

zation robustly, illustrating how territoriality is an emergent

consequence of our model. Fig. 2 B shows a cutaway profile
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FIGURE 1 Model schematics and active tem-

perature assignments. (A) Several simulated con-

figurations of 23 pairs of chromosomes within a

spherical nucleus, with pairs of chromosomes 18

and 19 highlighted in the background of other

chromosomes, are shown in grayscale. Each bead

represents a 1 Mb section on each chromosome.

We average all calculated quantities, such as distri-

bution functions, over a large number of such con-

figurations in steady state. (B) A schematic of the

DNA distribution S(R) of each chromosome,

plotted against the radial coordinate R and aver-

aged over many nuclei in our simulations, is given.

(C) A schematic of the center-of-mass distribution

of each chromosome, SCM(R), plotted against the

radial coordinate R and computed from an average

over many simulated nuclei, is given. (D) A sche-

matic of the contact probability P(s) between beads

of chromosomes, for two monomers separated by

an internal (genomic) distance s along the polymer,

is given. (E) The shapes of individual chromosome

territories extracted from simulation configurations

are shown. Such shapes are used to compute a

number of geometrical properties of chromosome

territories, e.g., their volume, surface area, aspher-

icity, and other shape parameters. (F) A typical

image of chromosome territories computed in our

simulations is given, with each chromosome

colored a different color, illustrating the emergence

of territoriality. (G) A schematic illustrating a 2D

projection of a 3D chromosome territory, projected

along the xy, yz, and xz planes, is shown. The ellip-

ticity and regularity parameters can be computed

from such 2D projections and compared to 2D

FISH data. (H) The logarithm of gene expression

values for each 1 Mb monomer, plotted in order

of increasing gene expression, is given. These are

computed from transcriptome data. Data are shown

for five cell types, as indicated in the title to each

panel. The horizontal lines drawn motivate our

assignment of effective temperatures as discussed in the text and correspond to our assignment of activity in proportion to gene expression. The last panel

plots these data together, illustrating that the shape of the activity profile is largely similar, even though individual monomers in different cell types can be

classified differently on the basis of their activity. (I) Assignment of effective temperature to each monomer for the combined model is hsown. The red mono-

mers are simulated at T¼ 1, yellow at T¼ 6, yellow-green at T¼ 7, green at T¼ 8, cyan at T¼ 9, blue at T¼ 10, indigo at T¼ 11, and violet at T¼ 12 times

the physiological temperature Tph. To see this figure in color, go online.
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showing the averaged spatial distribution of active (white,

T/Tph > 1) and inactive (black, T/Tph ¼ 1) monomers in

the GM12878 cell type, extracted from snapshots of a

typical configuration. Low-gene-density monomers, shown

in black and representing heterochromatin, are enriched to-

ward the boundaries of the nucleus, whereas high-gene-den-

sity euchromatin regions, shown in white, preferentially

occupy the bulk. In Fig. 2 C, we show a cutaway profile

of the time-averaged effective temperature within our simu-

lated nucleus, an indicator of local activity in each spherical

shell centered around the origin. In Fig. 2 D, we show the

time-averaged gene density across spherical shells in a

similar visualization. Gene densities, as well as activity, in-

crease toward the nuclear center.

Our ab initio biophysical description of chromosomes and

their structuring reproduces the different spatial distribu-

tions of euchromatin and heterochromatin, a feature seen

across multiple cell types. A central consequence of our

model is that gene expression should correlate to a larger

strength of mechanical fluctuations, i.e., activity, and that

the distribution of both these quantities should be attenuated

toward the boundaries of the nucleus. This is an emergent

property, arising from the combination of differential activ-

ity and confinement, that could not have been inferred from

how the model was constructed.

The model predicts positional distributions of

individual chromosomes

Chromosome-specific distribution functions S(R) are ob-

tained experimentally using confocal slices of FISH im-

ages from an ensemble of fixed nuclei. Our computed

S(R) for chromosomes 18 and 19 in the five cell types

we study are shown in Fig. 3 A. All data are averaged

over the two autosomal homologs because their positioning

was found to be equivalent. For the GM12878 cell type, we

compare our results with experimental results extracted

from (68). S(R) for chromosomes 18 and 19 exhibits

well-separated peaks, a feature that holds across cell types.

For comparison, the R2 rise of S(R) toward the nuclear en-

velope, expected for uniformly distributed chromosomes,

is shown in magenta, specified as ‘‘Random’’ in the legend

of the panel.

Fig. S2 shows our calculated S(R) for all chromosomes in

the five cell types. Fig. S3 shows S(R) for the GM12878 cell

type in which we compare the predictions of the gene

expression model and the combined model. In Fig. S4, we

show how S(R) for the GM12878 cell type varies when

we include or exclude looping and when we include or

exclude activity. The predictions of the different models

differ substantially for both the gene-rich chromosomes as

well as the smallest chromosomes. In general, both looping

and differential activity are needed to best represent avail-

able experimental data.

Fig. 3 B shows S(R) for chromosomes 12 and 20. For the

GM12878 cell type, we compare our results with results

from (68). Note that simulation data for the different cell

types all yield similar plots for S(R), with the exception of

the GM12878 cell type. Here, although the simulation and

experimental data peak at different locations, the overall

shape of the curve is rendered accurately, including the rela-

tive shift in peak positions.

Fig. 3 C shows the distribution of centers of mass

of specified chromosomes, SCM(R), for chromosomes 18

and 19. For GM12878 cells, we compare our results

with experimental data from (69). The center-of-mass

distributions are captured well, especially for chromo-

some 19. The broader distribution of SCM(R) for chromo-

some 18 is also in agreement with the left tail of

the experimental data, although the experiments show a

weaker and more outward-shifted peak than the simula-

tion prediction. Differences in positioning of chromo-

somes across cell types are more apparent in SCM(R)

compared to S(R).

Fig. S5 shows SCM(R) for all cell types across all chromo-

somes. We compare the predictions for SCM(R) in the gene

expression and combined models in Fig. S6. Results for

SCM(R) with different combinations of activity and loops

are shown in Fig. S7. Overall, apart from the gene-rich

chromosomes, the predictions of the gene expression and

FIGURE 2 Model predictions for large-scale

features of nuclear architecture. (A) Chromosome

territories computed in our simulations are shown,

with each chromosome colored a different color.

Note the tendency of each chromosome to overlap

relatively little, visually representing territoriality.

(B) A cutaway sphere representation of the average

spatial distribution of euchromatin (or active

white) and heterochromatin (or inactive black)

monomers as computed for the GM12878 cell type is given. Here, the active monomers are defined as those having an effective temperature in excess of

the physiological one. Heterochromatin is found more peripherally compared to euchromatin, which is located toward the nuclear interior. (C) A cutaway

sphere representation of average effective temperatures within the simulated nucleus, as computed for the GM12878 cell type, is shown. This illustrates the

larger effective temperatures, indicating enhanced activity, obtained toward the center of the nucleus, in comparison to a lower effective temperature in the

nuclear periphery. (D) A cutaway sphere representation of the average gene density within the simulated nucleus, computed for the GM12878 cell type, is

shown. This illustrates the excess in gene density seen toward the center of the nucleus in comparison to the gene density in the nuclear periphery. This

separation of gene-dense and gene-poor 1 Mb segments of chromatin correlates to the distinction in the spatial positioning of euchromatin and heterochro-

matin. To see this figure in color, go online.

Large-Scale Nuclear Architecture
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FIGURE 3 Predicted radial distribution functions S(R) compared to experimental data. (A) Distribution of monomer density S(R), reflecting the local den-

sity of DNA, is shown for chromosomes 18 and 19 (red (dashed) and blue (smooth) lines, respectively) across five cell types as indicated in the titles of each

panel. Experimental data obtained from (68) for the GM12878 cell type are plotted together with the simulation predictions (red ovals: Chr 18, blue crosses:

Chr 19). If chromosomes are distributed randomly across the nucleus, S(R) � R2 is expected, as shown with magenta (dotted) lines. (B) Distribution of the

density of monomers, reflecting the local density of DNA, is shown for Chr 12 and 20 (blue (dashed) and red (smooth) lines, respectively) across five cell

types as indicated in the titles of each panel. Experimental data obtained from (68) for the GM12878 cell type are plotted (red ovals: Chr 18, blue crosses: Chr

19), together with the simulation prediction. (C) Distribution of chromosome centers of mass for Chr 18 and 19 (red (dashed) and blue (smooth) lines, respec-

tively) is shown for five cell types, as indicated in the titles of each panel. Experimental data obtained from (69) for the GM12878 cell type are plotted (red

ovals: Chr 18, blue crosses: Chr 19) together with the simulation prediction. (D) Density distribution S(R) of overall numbers of active (red, dashed) and

inactive (blue, smooth) monomers is shown for the GM12878 cell type. These are plotted for four chromosomes: the largest, Chr1; the smallest, Chr 21; gene-

poor Chr 13; and gene-rich Chr 19. The distribution of active monomers is more interior with respect to inactive monomers. Here, inactive monomers refer to

those monomers assigned a temperature of T ¼ 1; all other monomers are active. (E) Density distribution SM(R) of specific monomers as indicated, on chro-

mosomes 1, 2, 7, 15, and 6, is plotted for five cell types studied here. These monomer-specific distributions can differ depending on cell type, suggesting that

loci associated to these monomers can be positioned differently depending on their levels of activity but also on the levels of inhomogeneous activity of the

chromosome they belong to. To see this figure in color, go online.
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combined models are comparable. The largest variability

across cell types is seen for chromosomes 1, 4, 7, 11, 12,

16, 21, and 22. SCM(R) for gene-poor chromosomes are

sharply peaked, whereas gene-rich chromosomes have

broader distributions across all cell types.

Fig. 3 D shows the partial distribution functions S(R) for

inactive and active monomers in the GM12878 cell type for

chromosomes 1, 13, 19, and 21. The distribution for active

monomers is shifted toward the nuclear center, whereas

for the inactive monomers, it is seen to be shifted toward

the nuclear periphery. These results relate to the experi-

mental observation that active alleles are positioned more

toward the interior of the nucleus, an effect strong enough

to be apparent in our simulations (10,70). In Fig. 3 E, we

show monomer-specific distribution functions SM(R) for

six monomers across chromosomes 1, 2, 6, 7, and 15 across

all cell types; these monomers contain multiple genetic loci

and typically show differential activity across the cell types

shown. We note that such monomer distributions are not

identical but depend on both their active temperature as

well as the overall activity and loop content of the chromo-

somes that contain them.

These results indicate that cell-type-dependent signatures

of activity can be especially prominent at the level of indi-

vidual monomers and thus loci. They are overall less prom-

inent in chromosome-specific DNA density distributions

and the distributions of their centers of mass but display sub-

tle differences nevertheless. These differences originate

both in differences in activity profiles across different cell

types as well as variations in their contact structure (loop

content in our model), suggesting that these should be essen-

tial components of any biophysical description of large-

scale nuclear architecture.

Model predictions for size- and gene-density-

dependent chromosome positioning

Fig. 4 shows our computation of the mean center of mass of

each chromosome within the combined model. The data

shown here are for the GM12878 cell type; data for other

cell types are provided in the Supporting Materials and

Methods. Our results are shown for each chromosome as

a function of chromosome size in the upper row (Fig. 4,

A and B) and as a function of chromosome gene density

in the lower row (Fig. 4, C and D). These predictions are

compared to experimental data on the average radial posi-

tion of the center of mass of each chromosome, as obtained

from (69). Our fits of the data to straight lines are shown in

blue for the experimental data and in red for the simula-

tions. The filled colors, in blue and red, represent the stan-

dard deviation for experimental and simulation data,

respectively. The fitting parameters, slope, and intercept

are mentioned in each panel. The relative radial positions

0 and 1 represent the center and periphery of the nucleus.

Chromosome numbers are provided above or below each

error bar.

The simulations reproduce most of the experimental sys-

tematics. The positions in the experimental and simulation

data coincide for some chromosomes or lie well within error

bars. The positions of chromosomes 14, 16, 18, 19, 20, and

X are very close to the experimental data, reproducing the

unusual nonmonotonicity in their positions. The slight over-

all shift between the positions between experiment and

simulation arises from the fact that our simulations are per-

formed for spherical nuclei, whereas the experiments are

performed on more flattened, ellipsoidal nuclei as well as

averaged over an ensemble of such shapes.
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FIGURE 4 Predicted chromosome center-of-

mass locations compared to experimental data.

Predictions from simulations for the mean center-

of-mass location for each chromosome, for the

GM12878 cell type, as a function of chromosome

size in the upper row (A and B), and as a function

of chromosome gene density per Mb in the lower

row (C and D) are shown. These predictions are

compared to experimental data on the average

radial position of the center of mass of each chro-

mosome as obtained from (69). Simulation and

experimental points are shown using red squares

and blue circles respectively, together with error

bars indicating one standard deviation from the

mean with filled colors. The relative radial position

0 and 1 represent the center and periphery of the

nucleus. Chromosome numbers are indicated

above or below each error bar. The simulation

and experimental points fitted to a straight line

including all chromosomes are shown in panels

(A) and (C); fits excluding the two smallest chro-

mosomes 21 and 22 are shown in panel (B). The

smaller and larger size chromosomes in panel (B)

are fitted with two separate fits. The slope and intercept value with error for experimental and simulation fitted lines are provided in each panel. The c2 error

associated to the fitted lines is provided in each panel. To see this figure in color, go online.
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The fits to the data are weakly consistent with an approx-

imate size dependence of chromosome positions relative to

the nuclear center, although the correlation between such

positioning and chromosome gene density is stronger (see

below). The activity associated with each individual chro-

mosome also plays a role in determining its position. The

mean center-of-mass locations for chromosomes in different

cell types are similar but not identical. Chromosomes 18 and

19, although similarly sized, have very different positions

relative to the nuclear center, as also seen in the data of

Fig. 3, A and C. Note that chromosomes 21 and 22 in

Fig. 4 A are positioned more toward the exterior of the nu-

cleus in the simulations than in the experimental data.

We experimented with excluding a small set of chromo-

somes to see if the fits might be improved, examining

whether fitting the smaller and larger chromosomes inde-

pendently might improve the overall agreement. We present

two sets of fits. In the first, shown in Fig. 4, A and C, we fit a

straight line to the center-of-mass positions of all chromo-

somes. The fits shown in Fig. 4 B exclude the two smallest

chromosomes, 21 and 22; we fit the centers of mass of the

smaller and larger chromosomes, excluding these, to two

independent straight lines as a function of chromosome

size. We show a similar plot in Fig. 4 D, in which we fit

the center-of-mass positions for low- and high-gene-density

chromosomes separately. The slope and intercept value,

with associated error bars, for experimental and simulation

fitted lines are provided in each panel. For completeness,

the c
2 error for the fit lines is also provided in each panel.

These fits are further quantified in Table S1. When the po-

sitions of all chromosomes are fitted to their size (Fig. 4 A),

the fit is definitely inferior. The best p-value for fits are ob-

tained when chromosomes 21 and 22 are dropped from the

fit (Fig. 4 B) and the smaller and larger chromosomes are

fitted separately. For fits of the positions of all chromo-

somes to the gene density, a single straight line fits well,

as shown in Fig. 4 C, and would appear to best model the

data overall.

Fig. S8 show similar plots for simulation calculations of

chromosome centers of mass plotted for HMEC, HUVEC,

IMR90, and NHEK cell types. When chromosome centers

of mass are plotted against individual gene densities, the

slope of the straight line is negative in all cell types. Thus,

depending on the region that is fitted, one can have fits to

both size dependence and gene density dependence of chro-

mosome centers of mass relative to the nuclear center; our

methods predict that the gene density dependence is the

stronger one. The fact that the smallest chromosomes, 21

and 22, lie outside of the fit to chromosome size may reflect

aspects of their activity that our method does not resolve, as

well as variations in loop assignments.

Fig. S9 shows the mean center-of-mass position as

computed for the GM12878 cell type across a variety of

simulation conditions, including for the gene density model

as well as for the combined model with various choices for

the incorporation of loops and activity. Fig. S9 A shows re-

sults for the gene expression model. In Fig. S9 B, we show

results for the case in which we allow differential activity

but ignore looping. In Fig. S9 C, we show results for the

case in which differential activity is absent but looping, as

prescribed by the Hi-C data, is retained. All monomers

then experience the same effective temperature, which we

take to be the thermodynamic temperature. Finally, in

Fig. S9 D, we show results for the case in which looping

is absent as well, so that this case corresponds to the case

of chromosomes without loops at thermal equilibrium.

From these, we conclude that in the absence of both activ-

ity and looping, chromosome positioning is only weakly

structured. Our simulations indicate that chromosome posi-

tioning is very weakly size dependent or even independent

of size in all conditions in which activity is switched off. Al-

lowing for loops induces some changes in positioning, but

these results do not match with experiment. Allowing for ac-

tivity but ignoring loops leads to a differential positioning of

chromosomes, but, if anything, the size dependence of chro-

mosome positions is opposite to that seen in the data. Only

models that incorporate both activity and looping are suc-

cessful in both reproducing the approximate size depen-

dence of radial positioning while also accounting for those

specific cases that fall outside this general trend, such as

chromosome 19.

We also checked to see which model gave the best fit to

relative center-of-mass positions data. We did a relative cen-

ter-of-mass position fit for all chromosomes against gene

density and size dependence and computed the c
2 error

and p-value. These values are mentioned in Table S1 for

different models. It is clear that the combined model gives

the best fit to such data as are available for the relative cen-

ter-of-mass positions.

Thus, our model predicts the center-of-mass positions of

almost all chromosomes, with the exception of the smallest

chromosomes 21 and 22, with reasonable accuracy. Our

simulation predictions are well within error bars on the mea-

surements in almost all cases. Finally, the fact that a number

of broad features of the experiments are reproduced in the

model suggests that the large-scale structure and positioning

of individual chromosomes are principally determined by

inhomogeneous activity across chromosomes, the presence

of loops, and confinement, as we have suggested.

Shapes and statistical features of individual

chromosome territories compare well to

experiments

Fig. 5, A and B show territories for the two autosomes cor-

responding to chromosomes 12, 20, 18, and 19. In Fig. 5 C,

we show comparisons between 2D FISH data for chromo-

some regularity and ellipticity on WI38 cells, for which

data are available (19), to predictions from our simulations

for the GM12878 and IMR90 cell types. Both IMR90 and
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WI38 are lung fibroblast cell lines. Chromosomes are in-

dexed along the x axis in order of their gene density.

The simulations and experimental data track each other,

with the simulations finding the same dip and subsequent

rise of both ellipticity and regularity around chromosome

22. Both ellipticity and regularity peak for chromosome

11, a feature of both the simulations and the experiments.

The ellipticity and regularity also appear to decrease weakly

with increasing gene density, although individual chromo-

somes may deviate from this general trend (Fig. 5 C). Our

computation of c2-values indicates a closer connection be-

tween simulation and experimental data for the IMR90

cell type (c2 ¼ 0.042) than for the GM12878 cell type

(c2 ¼ 0.156) as regards ellipticity. This correlation is also

strong for the regularity data, in which c
2 ¼ 0.032

(IMR90) against a c
2 ¼ 0.077 (GM12878). Because WI38

and IMR90 are both fibroblast cell lines, this gives us

some confidence that our methods might be able to predict

cell-type-based variations of CT shape.

Fig. 5, D and E show the summed volume overlap, some-

times referred to as the intermingling and used to understand

chromosome-chromosome interactions in trans, of different

chromosomes in our model. The ordering of chromosomes

according to their gene density per chromosome as shown

on the x axis is the same as the ordering used for the 2D pro-

jected data in Fig. 5 C. The largest overlap is for the most

gene-rich chromosome. There are perceptible differences

in the overlaps of chromosomes in the GM12878 and the

IMR90 cell types.

In summary, the simulations reproduce broad features of

individual chromosome territories. More active chromo-

somes deviate more from a spherical shape and have

rougher territories (17). The summed volume overlap in-

creases approximately linearly with chromosome gene den-

sity, with the Xi being an exception to this trend. Activity

and looping have countervailing trends because activity ex-

pands chromosome territories, whereas looping contracts

them.

Simulations reproduce the differential

positioning of the active and inactive X

chromosomes

Experiments investigating the positioning of the active and

inactive homologs of the X chromosomes within interphase

have consistently found that they are differentially posi-

tioned. The inactive X chromosome (the heterochromatic

Barr body) is located most often toward the periphery of

the nucleus (15). This contrasts to the more central disposi-

tion of the active X chromosome Xa, which is larger and

more extensively transcribed than the more compact Xi.

We thus specifically investigated the positioning and

other structure properties of the Xa and Xi chromosomes

because we expected that they would provide an example

of when our methods, which emphasize the role and impor-

tance of activity, would yield predictions that other models

could not.

Fig. 6 A shows a simulation snapshot of active and inac-

tive X chromosome territories. Fig. 6 B shows our predic-

tions for how these chromosomes are differentially

positioned across all the cell types we study through S(R).

For the GM12878 cell type, we calculate S(R) for the Xi

in two ways from simulations: in the first, shown with a

red dashed line, we ignore the presence of ‘‘superloops.’’

These are recently studied large-scale loops that provide

additional compaction in inactive X chromosome. In the
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FIGURE 5 Structural properties of individual

simulated chromosomes in our model. (A) A snap-

shot of simulated configurations of both homologs

of chromosomes 12 and 20 is given. Each chromo-

some is colored differently so that they can be

separately visualized. (B) A snapshot of simulated

configurations of both homologs of chromosomes

18 and 19 is shown. Each chromosome is colored

differently so that they can be separately visual-

ized. (C) Ellipticity and regularity for each chro-

mosome as predicted by the model and obtained

from simulations representing the GM12878

(blue) and IMR90 (green) cell types are shown.

These are compared to experimental data (red

ovals) from 2D FISH experiments (19) for a cell

type closely related to the IMR90 cell type. Ellip-

ticity values of 1 represent a perfect elliptical

chromosome, and regularity values of 1 refer to a

perfectly regular chromosome, without roughness.

The x axis is plotted in order of increasing gene

density. The c2-value and its p-value are mentioned for the GM12878 and IMR90 cell types, respectively, in blue (dark) and green (light) colors. (D and

E) Summed volume overlap of chromosomes in GM12878 and IMR90 cell types is shown with the x axis, plotted in order of increasing gene density

per chromosome. There is a weak increase with gene density in both cell types, shown as the solid line, representing the best linear fit to the data. The

IMR90 cell shares more volume overlaps with other chromosomes compared to the GM12878 cell type. The (self-) volume overlap for the same chromosome

is taken to be 0. To see this figure in color, go online.
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second, shown with a red solid line, our simulations account

for such superloops. The inactive X chromosome (Xi) has an

S(R) that is sharply peaked close to the nuclear periphery.

Accounting for superloops leads to a narrower S(R) distri-

bution. Although the active X chromosome has a peak at a

comparable location, its distribution has a long tail toward

the nuclear center. Fig. 6 C shows the calculated distribution

of the center of mass SCM(R) for these multiple cell types,

verifying this essential distinction. Here again, for the

GM12878 cell type, the red dashed line is the case without

superloops, whereas the red solid line is for the simulations

that include them. This distinction between the distribution

of Xa (blue dashed line) and Xi (red solid line) in Fig. 6, B

and C suggests that differential positioning should be more

readily seen in SCM(R) than in S(R).

We can compute the contact probabilities P(s) by

applying a cutoff to the monomer-monomer distance distri-

butions obtained in our simulation, averaging across a large

number of simulation configurations. Fig. 6 D shows our

computation of the contact probability P(s) for both Xa

and Xi, across the five cell types we study. The cell type

is listed at the top of each panel. The active X chromosome

shows more prominent power-law scaling of the contact

probability than the inactive X chromosome, for which

any fit to a power law can only be obtained over a far shorter

genomic scale. Exponents for the power-law scaling of P(s)

range from 1.11 to 1.24, with the smallest values obtained

for the GM12878 cell type. For the Xi chromosome, ac-

counting for superloops leads to a comparable scaling. How-

ever, in other cell types, such superloop information is

unavailable. Accounting for loops as obtained through con-

ventional Hi-C leads to a power-law exponent varying from

1.52 to 1.72 in those cell types. The variation in the scaling

of P(s) between Xa and Xi should be accessible experimen-

tally, but the presence of superloops in other cell types as

well might lead to a smaller divergence between these cases.

Finally, the volume/surface area ratio between Xa and Xi

chromosomes from our calculation is consistent with results
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FIGURE 6 Predicted distributions and structural

features of the inactive and active X chromosomes.

(A) A snapshot of a typical configuration of the

active Xa and inactive Xi chromosomes obtained

from simulations is given. (B) Monomer density

distribution S(R) vs. R for the Xi and Xa chromo-

somes is shown, as obtained from simulations

across five cell types, named in the header to

each panel. The inactive X chromosome, Xi, is

shown in red (solid or dotted line), and the active

X chromosome, Xa, is shown with a blue dashed

line. Loops on the Xi in the GM12878 cell type

can include (red solid line) or exclude (red dotted

line) ‘‘superloops’’ as seen in recent experiments

(59,76). (C) Distribution of the location of the cen-

ter of mass of the Xi and Xa chromosomes is

shown as obtained from simulations across five

cell types, named in the header to each panel.

The inactive X chromosome, Xi, is shown in red,

and the active X chromosome, Xa, is shown in

blue (dashed line). Superloops on the Xi in the

GM12878 cell type can include (red solid line)

or exclude (red dotted line). (D) Contact probabil-

ity P(s) vs. s is shown for the active (top row) and

inactive (bottom row) X chromosomes, computed

for five cell types within our simulations. The Xa

chromosome exhibits a reasonable power-law

decay of P(s) with an exponent a between 1.1

and 1.25. The Xi chromosome shows a reduced re-

gion of power-law scaling, with an exponent across

this reduced range that is between 1.5 and 1.7. Red

lines show the power-law fit in both cases, with the

fit parameters indicated within each panel. Error

bars indicate one standard deviation about the

mean. In the absence of superloops on the Xi

(GM12878), ax1:5 (fitted line not shown),

whereas the fit in the presence of superloops re-

duces a to ax1:18. Note the base of the log is

10. To see this figure in color, go online.
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from (16). The ratio of the roundness factor between Xi and

Xa is consistent with observations in (16,19).

The fact that our model consistently predicts that Xa

should occupy a more interior location compared to Xi, re-

producing results from a large number of experiments over

the past several decades, is a point we stress.

Large-scale structural features of individual

chromosomes are obtained

Fig. 7 A exhibits our results for the contact probability P(s)

for chromosome 1, across the five different cell types we

study here. The data for small s show a power law P(s) �
1/sa behavior over approximately a decade. The exponent

is smallest for the GM12878 cell type, for which our fits

yield a z 1.06. This value is very close to that obtained

experimentally across the same region of genomic separa-

tion (4,21). Values of a for all other cell types are consis-

tently larger, with the exception of the IMR90 cell type.

A behavior P(s) � 1/sa with ax1 is predicted by the

fractal globule model. Our simulations display such scaling

even though our model lacks virtually all the requisite ingre-

dients for the fractal globule model to be applicable. Our

model requires that activity is differentially distributed

along the chromosome, that we account for looping as

drawn from the Hi-C data, and that we account for crowding

by other chromosomes, all features that previous work,

including the fractal globule model, elides. Figs. S10 and

S11 show plots of P(s) for all chromosomes computed for

the GM12878 and IMR90 cell types. This P(s), for each

chromosome, is best described in terms of a range of expo-

nents between 0.97% a% 1.40 across the 1–10 Mb range.

The fact that best-fit values for a span such a scale is now

increasingly recognized in analyses of experimental Hi-C

data.

Our model specification can be relaxed in several ways so

that we can examine and quantify independent contributions

to this behavior. For the specific case of chromosome 1, we

have also investigated the predictions of the gene expression

model, as shown in Fig. S12, as well as the effects of varying

both activity and looping in the combined model. Both the

gene expression and combined models exhibit values of a

that lie close to the experimental data, for which ax 1. In

Fig. S12, we also show results for the combined model

with varying combinations of activity and looping. In the

absence of both activity and loops, the exponent is close

to the a ¼ 1.5 expected for simple polymers. Adding loops

or activity reduces this exponent. However, only the com-

bined model, which includes both activity and looping, ob-

tains a-values closest to those in experiments.

In Fig. 7 B, we show the spread of the asphericity param-

eterD and the shape parameter S across chromosomes in the

GM12878 cell type. (We exclude Xi because its behavior

appears to depend sensitively on whether superloops are

included.) The simulations yield a linear relationship be-

tween D and S. Larger chromosomes have smaller values

of D and S. Thus, an outcome of our model is that larger

chromosomes are more spherical. The regularity and ellip-

ticity indices calculated for the 2-d projections are in reason-

able agreement with experimental trends (Fig. 5 C). We find

that the data appear to fall into two classes: one a more

compact set corresponding to all chromosomes, with the

exception of 1 and 21 contained within an elliptical domain,

as shown in Fig. 7 B. Values of D and S for these special

three chromosomes appear to be somewhat displaced from

the locations for the other chromosomes, falling approxi-

mately onto the periphery of a larger ellipse. We show

similar plots for other cell types in Fig. S13. In the absence

of activity, both whether loops are present or absent, the D-

and S-values for these chromosomes falls within the inner

elliptical region across the five cell types we consider

(Fig. S14).

Fig. 7 C shows a heat map of monomer distances of chro-

mosomes, indexed in increasing order of gene density for

the GM12878 cell type. A similar plot is shown for the

IMR90 cell type in Fig. 7 D. One feature of the data is

that the more active chromosomes show smaller values of

interchromosomal distance, likely reflecting the fact that

more active regions are enriched toward the nuclear center.

In Fig. 7, E and F, we show the enlarged distance maps for

chromosome 1. Applying a cutoff to such data, we can

derive the likelihood of contacts arising from intrachromo-

somal interactions, yielding P(s). Solid lines outside the

figure body indicate those permanent attachments between

different monomers that the Hi-C data provide. Note that re-

gions connected by such loops exhibit a larger overlap.

Fig. 7, G and H show the contact maps inferred after

applying a cutoff to the corresponding distance map. The

borders of the axes show, in black and green, the active tem-

peratures associated to specific monomers belonging to

those chromosomes. The black color refers to the most

active monomers, with an effective temperature of 12 in

units of the physiological temperatures, whereas the green

color shows monomers with an effective temperature in

the range 6–11. Monomers with a lower effective tempera-

ture are not shown. Regions with the same high effective

temperature appear to contact each other more, but these

are further modulated by the presence of internal loops.

Note the presence of a dark banded region toward the center

of chromosome 1, associated with a large inactive region on

this chromosome. This is a prominent feature of the exper-

imental data, also seen in other cell types (59).

To summarize, our model yields structural information

for chromosome structures and shapes that are broadly in

agreement with available data. Our simulated distance

maps lack the fine detail of distance maps computed in

Hi-C experiments, which provide data for contacts at the

smaller scales of 10–100 kB, but nevertheless are relevant

to experiments that probe large-scale structuring. Our

computed P(s) contains about a decade or so of power-law
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decays, with exponents that are comparable to those seen in

experiments. Our model-based predictions for trends in the

asphericity and prolateness of chromosomes with chromo-

some size and gene density are testable.

CONCLUSIONS

Model descriptions of chromosomes must bridge multiple

scales, ranging from microscopic length scales of a few

angstroms to scales of microns, on the order of the nuclear

size. For now, brute-force atomistic simulations of the 23

pairs of chromosomes in human nuclei contained within

the densely crowded, fluid, and confined environment of

the nucleoplasm are impossible. They are likely to remain

so, at least for the foreseeable future. Understanding how

microscopic descriptions connect to macroscopic ones

thus requires intuition for the processes that act to couple

these scales so that model building, which is as much about

what to leave out as it is about what to leave in, can

proceed.

The model described in this work stresses a specific bio-

physical effect, ignored in previous work, of relevance to the

modeling of chromosomes in living cells. We began by

emphasizing the relevance of nonequilibrium effects arising

from local transcriptional activity for descriptions of nuclear

architecture (46,71). We proposed that the intensity of

active processes should increase with increased transcrip-

tion levels. We mapped a reasonable measure of local

transcriptional activity, inferred from combining popula-

tion-level measures of local RNA output with estimates of

the local gene expression, into an effective temperature

seen by each monomeric unit in our polymer model of

chromosomes.

We then performed simulations of these confined poly-

mers with properties chosen to reflect generic biophysical

aspects of chromosomes. The monomers in our simulation

represented 1 Mb sections of chromosomes, although we

could have defined our model at the smaller scales of 0.1

or even 0.01 Mb. However, the averaging inherent in sum-

ming transcriptional output over a 1 Mb scale renders the

model relatively less sensitive to errors and noise in this

input. Further, the 1 Mb scale is believed to be an appro-

priate building block for chromosome territories. A more

detailed and explicit model for nonequilibrium activity

and its consequences for an active temperature description

would be useful, but the form such a model ought to take

is presently unclear and best left to more extensive investi-

gations. Irrespective of potential quantitative improvements

on the model front, the broad trends we describe here should

be largely robust.

We made a number of other modeling choices. First, we

ignored the important role of lamin proteins in anchoring

specific lamin-associated domains to the nuclear lamina,

as well as the interactions of specific gene loci with nuclear

pore complexes (72). Although these are important omis-

sions, they can at least be qualitatively justified by the

biophysical intuition that the activity-based physical segre-

gation of chromosomes is a bulk or ‘‘volume’’ effect that

should dominate, at the simplest level of description, over

‘‘surface’’ effects arising from interactions with the nuclear

envelope. Thus, modeling the effects of interactions of

lamin-associated domains with the nuclear lamina by intro-

ducing weak monomer-specific interactions with the inner

surface of the confining sphere in our simulations might

be expected to modify the results we present here for spe-

cific chromosomes, but hopefully in a controllable manner.

Second, we ignored nucleoli, formed around nucleolus orga-

nizer regions containing multiple copies of rRNA genes,

with such regions located on the short arms of the acrocen-

tric chromosomes 13, 14, 15, 21, and 22 (73). Third, we

simulated the nucleus as a spherical shell containing our

model chromosomes, although nuclear shapes exhibit

considerable variability and much of the experimental data

comes from experiments on the relatively flattened nuclei

of fibroblasts (12). Our model could be generalized to ac-

count for the effects of variable nuclear shapes. Fourth,

we ignored potential interactions in trans between chromo-

somes. Such interactions could potentially arise from the

looping out of loci on different chromosomes to interact at

transcription factories (74). We could account for this by

making designated monomers on different chromosomes

‘‘sticky’’ with respect to each other, thus coupling regions

of different chromosomes that are known to physically

localize together when co-transcribed. Fifth, in using

RNA-seq data as a proxy for activity, we ignored noncoding

transcription because RNA-seq largely provides steady-state

gene expression. Inferring activity from methods such as

GRO-seq, which also extracts nascent and rapidly degraded

transcripts, may help to provide a more accurate view of

transcription-coupled activity. Last, the role of nuclear actin

prolateness parameter (S) and the asphericity parameter (D) for the GM12878 cell type are shown. Larger (smaller) chromosomes have smaller (larger)

values of S and D, implying that larger chromosomes are more close to spherical, whereas smaller chromosomes prefer a more prolate, rod-like shape.

The data suggest that values of S and D for Chr 1 and 21 take more extremal values than for the other chromosomes, as shown by the ellipse drawn together

with the data. (C) A heat map of mean distances between monomers, the distance map, is given, in which chromosomes are ordered by their gene density,

shown for the GM12878 cell type. (D) A heat map of mean distances between monomers, the distance map, is given, in which chromosomes are ordered by

their gene density, shown for the IMR90 cell type. (E and F) A heat map of the distance matrix for chromosome 1, expanded out from (C) and (D), is shown.

The locations of the permanent loops inferred from the Hi-C data are plotted in black. Individual monomers at T¼ 6 and 7% T% 12 are shown in green and

black, adjacent to the x and y axes, respectively. (G and H) A contact map inferred from the distance matrix for chromosome 1, (C) and (D), is shown. The

locations of the permanent loops inferred from the Hi-C data are plotted in black. Individual monomers at T ¼ 6 and 7% T% 12 are shown in green and

black, adjacent to the x and y axes, respectively. To see this figure in color, go online.
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and associated motors remains unclear, although they could

potentially contribute additional source of nonequilibrium

noise (75). Indeed, all the possible improvements on our

model that we list above could be incorporated, but only

at the expense of more model detail and a number of further

assumptions. These modifications of our model would have

obscured the core argument of this work, that the primary

driver of many features of nuclear architecture is nonequi-

librium activity that is inhomogeneous across chromo-

somes, so we choose to leave these questions to future work.

If such biophysical approaches have any truth to them,

they indicate that a small set of initial model assumptions,

argued for on general grounds, must yield consistent expla-

nations and descriptions for all data, not just those the model

abstracts in its construction. The advantage of simple

models is that they enable us to concentrate on underlying

principles that are often obscured by the complexity of

real data, including intrinsic heterogeneities across cell pop-

ulations, varied experimental and analysis procedures, and

the lack of sufficient statistics in some cases. Prior models

for nuclear architecture in mammalian cells fail to repro-

duce many general attributes of nuclear architecture known

from experiments.

These properties—certainly their important trends—are

emergent in our calculations because they were not directly

encoded in our model specification. This suggests that our

methodologies provide hitherto unavailable biophysical in-

sights into the determinants of large-scale nuclear architec-

ture in metazoans.
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