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STRONG CONVEXITY OF SANDWICHED ENTROPIES AND

RELATED OPTIMIZATION PROBLEMS

RAJENDRA BHATIA, TANVI JAIN, AND YONGDO LIM

Abstract. We present several theorems on strict and strong convexity,
and higher order differential formulae for sandwiched quasi-relative entropy
(a parametrised version of the classical fidelity). These are crucial for es-
tablishing global linear convergence of the gradient projection algorithm for
optimisation problems for these functions. The case of the classical fidelity
is of special interest for the multimarginal optimal transport problem (the
n -coupling problem) for Gaussian measures.

1. Introduction

Let P be the space of n × n complex positive definite matrices. An
element A of P with trA = 1 is called a density matrix or a state. Many of
the statements in this paper are of special interest for density matrices though
we do not make that restriction. The fidelity between two elements A and B
of P is defined by

F (A,B) = tr
(

A
1

2BA
1

2

)
1

2

. (1)

Fidelity plays an important role in quantum information theory and quantum
computation, and it has deep connections with quantum entanglement, quan-
tum chaos, and quantum phase transitions. See [34, 35]. Although fidelity by
itself is not a metric, it has played a role as a measure of the closeness of two
states. It occurs also in another context. There is a metric on P defined as

d(A,B) =

[

tr(A +B)

2
− tr

(

A
1

2BA
1

2

)
1

2

]
1

2

(2)

which is called the Bures distance in the literature on quantum information
and the Wasserstein metric in statistics and the theory of optimal transport.
See [15, 18, 22, 25, 30].

The multimarginal optimal transport problem (alternatively, the coupling
problem) involves solving the minimization problem: given A1, . . . , Am in P

and weights w1, . . . , wm, find

min
X∈P

m
∑

j=1

wjd
2(X,Aj). (3)
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This minimization problem coincides with the least squares problem of Gauss-
ian measures for the Wasserstein distance between probability measures with
finite second moment on R

n. See [1, 20, 22, 25, 30, 32]. The concavity and
strict concavity of the function

f(X) = tr
(

A
1

2XA
1

2

)
1

2

(4)

on P play a very crucial role in the proofs of existence and uniqueness of the
solution to (3). See [12].

In some recent works a parameterized version of fidelity defined as

Ft(A,B) = tr
(

A
1−t
2t BA

1−t
2t

)t

, t ∈ (0,∞) (5)

has been studied. See [19, 37]. The usual fidelity (1) is the special case t = 1/2.
In [37] Ft(A,B) is called the sandwiched quasi-relative entropy. Using this the
sandwiched Rényi relative entropy is defined as

Dt(B ‖ A) =
1

t− 1
logFt(A,B), t ∈ (0,∞) \ {1}. (6)

This is a variant of the traditional relative Rényi entropy defined as

D′
t(B ‖ A) =

1

t− 1
log tr

(

A1−tBt
)

. (7)

Among other things, it is known [28] that

lim
t→∞

Dt(B ‖ A) = ‖ logA− 1

2BA− 1

2‖ (8)

and

lim
t→1

Dt(B ‖ A) =
1

trB
tr [B(logB − logA)] , (9)

where || · || is the operator norm

‖A‖ = sup
‖x‖=1

‖Ax‖,

which for a positive semidefinite matrix A is equal to λ1(A), the largest
eigenvalue of A. It turns out [4] that the expression in (8) coincides with

dT (A,B) := max{log λ1(AB
−1), log λ1(BA−1)}

and is closely related to the max-relative entropy Dmax(A‖B) := log λ1(AB
−1)

in the context of quantum information theory [17]. We note that dT is known
as the Thompson metric on P and is a complete metric invariant under inver-
sion and congruence transformations [33, 29], and the expression in (9) is the
relative entropy, first introduced by Umegaki.

The entity (6) was introduced by Müller-Lennert et al in [28] and by Wilde
et al in [37]. Several of its properties were established in these papers and some
others conjectured. Since then these have been established in various papers.
In particular, we draw attention to the paper [19] by Frank and Lieb. In [37]
Wilde, Winter and Yang have employed Dt(A ‖ B) to prove theorems on the
capacity of entanglement-breaking channels. Differentiability, monotonicity
and convexity properties of Ft and Dt are a major theme in all these papers.
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In this paper we study some related, though slightly different, convexity
problems. Let f : P → R be a smooth function. Let ∇f(X) and ∇2f(X)
denote the gradient and the Hessian of f. See [13] for gradient and Hessian of
scalar valued functions. Suppose f is strictly convex. The Bregman distance

associated with f is the function Df : P× P → R defined as

Df (Y,X) = f(Y )− f(X)− 〈∇f(X), Y −X〉, (10)

where 〈X, Y 〉 = tr(XY ) on H, the space of n × n complex Hermitian ma-
trices. The convexity of f ensures that Df(Y,X) ≥ 0, and strict convexity
ensures that it is zero if and only if X = Y. Let K be a compact convex
subset of P . We say that f is k -strongly convex on K (with k > 0 ) if for
all X, Y ∈ K

Df(Y,X) ≥
k

2
‖X − Y ‖22. (11)

Here ‖A‖2 = (trA∗A)
1

2 is the Hilbert-Schmidt norm. The condition (11) says

f(Y ) ≥ f(X) + 〈∇f(X), Y −X〉+
k

2
‖X − Y ‖22. (12)

So f is k -strongly convex on K if and only if

∇2f(X) ≥ kI, (13)

for all X ∈ K. On the other hand, we say that f is k -smooth on K if ∇f
is k -Lipschitz; i.e.,

‖∇f(X)−∇f(Y )‖2 ≤ k‖X − Y ‖2, (14)

for all X, Y ∈ K. This condition is equivalent to

∇2f(X) ≤ k I, (15)

for all X ∈ K.
The two constants k in (13) and (15) play a fundamental role in the design

and convergence analysis of optimisation algorithms. We refer the reader to
Chapter 9 of the standard text [13]. Here it is also pointed out that these
constants “ are known only in rare cases”. The main new result in this paper
is the following.

Theorem 1. Let f : P → R+ be the function

f(X) = tr
(

A
1−t
2t XA

1−t
2t

)t

(16)

where A ∈ P and 0 < t < 1. Let K be a compact convex subset of P. Let

α, β be positive numbers such that αI ≤ Y ≤ βI for all Y ∈ K∪ {A}. Then

for all X ∈ K

t(1− t)α1−tβt−2 ≤ −∇2f(X) ≤ t(1− t)β1−tαt−2. (17)

In other words, the function −f is k1 -strongly convex and k2 -smooth on
K with k1, k2 given by the two extreme sides of (17). The condition number
of an operator A is defined as

cond(A) = ‖A‖‖A−1‖.
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As a corollary to Theorem 1 we have:

Corollary 2. Let f be the function defined in ( 16 ). Then for all X ∈ K

cond
(

∇2f(X)
)

≤

(

β

α

)3−2t

.

Now suppose Aj , 1 ≤ j ≤ m are positive definite matrices, and let αI ≤
Aj ≤ βI for all j. It is known [1] that the minimization problem (3) has a
unique solution X and αI ≤ X ≤ βI. The objective function in (3) is

ϕ(X) =

m
∑

j=1

wj

[

tr(Aj +X)

2
− tr

(

Aj

1

2XAj

1

2

)
1

2

]

.

The first term in the square brackets above is linear in X, and its second
derivative is zero. Our theorem shows that

1

4

α1/2

β3/2
≤ ∇2ϕ(X) ≤

1

4

β1/2

α3/2
.

The condition number of ∇2ϕ(X) is bounded by
(

β
α

)2
. We generalize this

result into the setting of sandwiched quasi-relative entropy Ft(A,B), 0 < t < 1.
Let

ϕt(X) =

m
∑

j=1

wj

[

tr((1− t)Aj + tX)− tr
(

Aj

1−t
2t XAj

1−t
2t

)t
]

.

Corollary 3. The function ϕt : P → R+ is strictly convex and has a unique

minimizer. Moreover, it is t(1 − t)β1−tαt−2 -smooth and t(1 − t)βt−2α1−t -

strongly convex.

Theorem 1 is about second order derivatives of the fidelity function. The
classical fidelity case is t = 1/2, and the results are new even for that case. Our
methods lead to several interesting observations for the first and higher order
derivatives as well. These are of independent interest and are given in Section
2 of the paper. Section 3 includes a proof of Theorem 1. A proof of Corollary
3 and the standard gradient projection method where this can be put to use
are obtained in Section 4.

2. Derivative Computations

Let f be a smooth map from P into the positive half-line R+ = [0,∞).
We denote by Df(X) the (Fréchet) derivative of f at X, and by ∇f(X)
the gradient of f at X. Df(X) is a linear map from the space H of n× n
Hermitian matrices into R, and its action is given by

Df(X)(Y ) =
d

dt

∣

∣

∣

t=0
f(X + tY ).

∇f(X) is an element of H and is related to Df(X) by the equation

Df(X)(Y ) = 〈∇f(X), Y 〉 = tr(∇f(X)Y ).

Of interest here are special kinds of functions. Let f be a smooth map
from R+ into itself and let f also denote the map this induces from P
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into itself. Let f̂(A) = trf(A). As expected, convexity properties of f are

inherited by f̂ . In some situations it may be useful to consider functions other
than the trace. Let Φ be a symmetric gauge function on R

n, i.e., a norm on
R

n which is invariant under sign changes and permutations of the components,
and let ‖·‖Φ be the corresponding unitarily invariant norm on the space M(n)
of n× n matrices. See Chapter IV of [8]. If s(A) = (s1(A), . . . , sn(A)) is the
n -tuple of singular values of A, then

‖A‖Φ = Φ(s(A)) = Φ(s1(A), . . . , sn(A)).

Every symmetric gauge function is monotone; i.e., if x and y are two
vectors with 0 ≤ x ≤ y for all j, then Φ(x) ≤ Φ(y). We say that Φ is
strictly monotone if Φ(x) < Φ(y) whenever 0 ≤ xj ≤ yj for all j and
xj < yj for at least one j. For example, the symmetric gauge functions Φ(x) =
(

∑n
j=1 |xj|

p
)1/p

are strictly monotone for 1 ≤ p < ∞.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two n -tuples of nonneg-

ative numbers. Let x↓
1 ≥ x↓

2 ≥ . . . ≥ x↓
n be the decreasing rearrangement of

x1, . . . , xn. If for all 1 ≤ k ≤ n

k
∑

j=1

x↓
j ≤

k
∑

j=1

y↓j ,

we say that x is weakly majorised by y. If, in addition to (2) we also have

n
∑

j=1

x↓
j =

n
∑

j=1

y↓j ,

we say x is majorised by y, and write this as x ≺ y. See Chapter II of [8]
for facts on majorization need here.

Lemma 4. Let x, y be two vectors with nonnegative coordinates that are not

permutations of each other. Suppose x ≺ y . Then for every strictly convex

function f on nonnegative reals and every strictly monotone symmetric gauge

function Φ, we have

Φ(f(x1), . . . , f(xn)) < Φ(f(y1), . . . , f(yn)).

Proof. If x ≺ y , then x can be expressed as a convex combination

x =
∑

aσyσ,

where σ varies over all permutations on n symbols, and yσ denotes the
vector (yσ(1), . . . , yσ(n)). If x and y are not permutations of each other, there
are at least two distinct terms in this convex combination. Since f is convex,

f(xj) ≤
∑

aσf(yσ(j))

for all j. If f is strictly convex, then this inequality is strict for some j. The
statement of the lemma then follows from the properties of Φ.
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Theorem 5. Let f be a function from R+ into itself, and let ‖ · ‖Φ be

a unitarily invariant norm on M(n). Let f̂Φ be the map from P into R+

defined by

f̂Φ(A) = ‖f(A)‖Φ.

If f is convex, then so is f̂Φ. Further, if f is strictly convex and Φ is

strictly monotone, then f̂Φ is strictly convex.

Proof. Let A,B ∈ P, and let C = (1/2)(A + B). Let {λj(C)} denote the
decreasingly ordered eigenvalues of C, and let {uj} be the corresponding
orthonormal set of eigenvectors. Then

‖f(C)‖Φ = Φ(λ1(f(C)), . . . , λn(f(C)))

= Φ (f(λ1(C)), . . . , f(λn(C)))

= Φ (f(〈u1, Cu1〉), . . . , f(〈un, Cun〉)) .

Since f is convex,

f (〈uj, Cuj〉) = f

(

〈uj, Auj〉+ 〈uj, Buj〉

2

)

≤
1

2
[f(〈uj, Auj〉) + f(〈uj, Buj〉)] . (18)

Every symmetric gauge function is monotone and convex. So, the relations
above give

‖f(C)‖Φ ≤
1

2
Φ (f(〈u1, Au1〉), . . . , f(〈un, Aun〉))

+
1

2
Φ (f(〈u1, Bu1〉), . . . , f(〈un, Bun〉)) . (19)

Since f is convex, by Problem IX. 8. 14 in [8] we see that

f (〈uj, Auj〉) ≤ 〈uj, f(A)uj〉.

By the Schur majorisation theorem (Exercise II. 1.2 in [8]) the n -tuple {〈uj, f(A)uj〉}
is majorised by the eigenvalue n -tuple {λj(f(A))}. Every symmetric gauge
function is monotone with respect to majorisation ( “ isotone” in the terminol-
ogy used on page 41 of [8]). Combining these observations we see that

Φ (f(〈u1, Au1〉), . . . , f(〈un, Aun〉) ≤ Φ (λ1(f(A)), . . . , λn(f(A)))

= ‖f(A)‖Φ.

The same argument applies to B in place of A . Hence

‖f(C)‖Φ ≤
1

2
‖f(A)‖Φ +

1

2
‖f(B)‖Φ. (20)

This shows that f̂Φ is convex if f is convex. Now, suppose f is strictly
convex and Φ is strictly monotone. Let A 6= B. There are two possibilities:
(i) There exists a j such that 〈uj, Auj〉 6= 〈uj, Buj〉. Then for this j, the in-
equality (18) is strict and hence the inequality (19) is also strict. The argument
above then shows the inequality (20) is strict. (ii) If 〈uj, Auj〉 = 〈uj, Buj〉 for
all j, then in the orthonormal basis {u1, . . . , un}, C is diagonal, and the diag-
onals of A and B are equal. This means that diag(C) = diag(A) = diag(B).
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Since A 6= B, neither A nor B is diagonal. By Schur’s majorization theorem
(See (II. 14) of [8])

diag(A) ≺ λ(A),

where λ(A) is the vector whose components are the eigenvalues of A . Since
A is not diagonal, diag(A) is not a permutation of λ(A) (because ||A||2 =
||λ(A)||2 ). It follows from Lemma 4 that

‖f (diag(A)) ‖Φ < ‖f(A)‖Φ.

The same argument applies to B. Since C = diag(A), this shows the inequal-
ity (20) is strict. This proves the last statement of the theorem.

The sum of singular values is a strictly monotone unitarily invariant norm.
So, the function

f̂(A) = trf(A)

is (strictly) convex if f is (strictly) convex. In addition, using the linearity of

the trace function we can see that f̂(A) is (strictly) concave if f is (strictly)
concave. This is a well-known fact. See [16].

Corollary 6. The function f(X) = trX t on positive definite matrices is

strictly concave if 0 < t < 1 and strictly convex if 1 < t < ∞, or if t < 0.

Lemma 7. Let f be a smooth function on R+ and let f̂ be the function on

P defined as f̂(X) = trf(X). Then for all X ∈ P and Y ∈ H,

Df̂(X)(Y ) = tr (f ′(X)Y ) .

Proof. Let λ1, . . . , λn be the eigenvalues of X and let Lf (X) be the Loewner
matrix

Lf (X) =

[

f(λi)− f(λj)

λi − λj

]

.

The difference quotient in this expression is the ij th entry of Lf (X), and it
is understood that this is equal to f ′(λi) if λi = λj . By the Daleckii-Krein
formula (Theorem V. 3.3 in [8]) the derivative Df(X) is given by

Df(X)(Y ) = Lf (X) ◦ Y,

where ◦ stands for the Hadamard product (entrywise product) of two matrices
taken in an orthonormal basis in which X is diagonal. Combining this with
the linear functional tr, we get

Df̂(X)(Y ) = tr (Lf (X) ◦ Y ) = tr (f ′(X)Y ) .

To state the next proposition we need the notion of the weighted geometric
mean of two positive definite matrices. This is defined as

A#tB = A
1

2 (A− 1

2BA− 1

2 )tA
1

2 , 0 ≤ t ≤ 1. (21)

This is a smooth curve joining A and B, and is a geodesic with respect to
the Riemannian distance

δ(A,B) = ‖ logA− 1

2BA− 1

2‖2,
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on P. See Chapter 6 of [9]. The right hand side of (21) is meaningful for all
t ∈ R, and we continue to use the notation A#tB for it.

Proposition 8. Let A be any element of P and let t ∈ R. Let h : P → R+

be the map h(X) = tr
(

A
1

2XA
1

2

)t

. Then

Dh(X)(Y ) = t tr
(

A#1−tX
−1
)

Y ; (22)

i.e.,

∇h(X) = t
(

A#1−tX
−1
)

. (23)

Proof. Let k(X) = trX t. Then by Lemma 7, Dk(X)(Y ) = ttrX t−1Y. By the
chain rule

Dh(X)(Y ) = Dk(A
1

2XA
1

2 )(A
1

2Y A
1

2 )

= t tr(A
1

2XA
1

2 )t−1A
1

2Y A
1

2

= t trA
1

2

(

A− 1

2X−1A− 1

2

)1−t

A
1

2Y

= t tr
(

A#1−tX
−1
)

Y.

Extremal representations for the fidelity F (A,B) are useful in deriving
various relations. See [30, 12]. Our next theorem gives such representations
for Ft(A,B). Some of these have been derived in [19] and [7].

Theorem 9. Let A,B be any two elements of P and let 0 < t < 1. Then

(i) Ft(A,B) = min
X∈P

tr

[

(1− t)
(

A
t−1

2t XA
t−1

2t

)
t

t−1

+ tXB

]

.

(ii) Ft(A,B) = min
X∈P

[

tr(A
t−1

2t XA
t−1

2t )
t

t−1

]1−t

[trXB]t .

(iii) Ft(A,B) = min
X∈P

tr

[

tA
1−t
t X + (1− t)

(

B− 1

2XB− 1

2

)
t

t−1

]

.

(iv) Ft(A,B) = min
X∈P

[

trA
1−t
t X

]t [

tr(B− 1

2XB− 1

2 )
t

t−1

]1−t

.

Proof. The representations (i) and (ii) have been derived and used in [19]. We
will give here proofs of (iii) and (iv). The same ideas can be used to give proofs
of (i) and (ii), which are different from the ones given in [19].

(iii) By Corollary 6, the function

f(X) = tr

[

tA
1−t
t X + (1− t)

(

B− 1

2XB− 1

2

)
t

t−1

]

is strictly convex for 0 < t < 1. Using Proposition 8 we see that

∇f(X) = t
(

A
1−t
t −B−1# 1

1−t
X−1

)

.

So ∇f(X0) = 0 if and only if

A
1−t
t = B−1# 1

1−t
X−1

0 . (24)
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Now, if C = Y −1#αX
−1, then from the definition (21) one can see that

X = Y# 1

α
C−1. So, from (24) we see that ∇f(X0) = 0 if and only if

X0 = B#1−tA
t−1

t = A
t−1

t #tB.

A little calculation shows that

trA
1−t
t X0 = tr

(

B− 1

2X0B
− 1

2

)
t

t−1

= tr
(

B
1

2A
1−t
t B

1

2

)t

.

For any two positive matrices P and Q,

tr
(

P
1

2QP
1

2

)t

= trQ
1

2P
1

2

(

P
1

2QP
1

2

)t

P− 1

2Q− 1

2 = tr
(

Q
1

2PQ
1

2

)t

.

Hence

trA
1−t
t X0 = tr

(

B− 1

2X0B
− 1

2

)
t

t−1

= tr
(

A
1−t
2t BA

1−t
2t

)t

= Ft(A,B).

We have shown that X0 is the unique minimizer for the problem (iii) and the
minimum value is equal to Ft(A,B).

(iv) For an n× n matrix X , let |X| be the absolute value of X defined

as |X| = (X∗X)
1

2 . Let p, q, r be positive numbers with 1
p
+ 1

q
= 1

r
. By the

matrix version of Hölder’s inequality (Exercise IV. 2.7 in [8])

tr|ST |r ≤ (tr|S|p)
r
p (tr|T |q)

r
q ,

Note that

Ft(A,B) = tr
(

A
1−t
2t BA

1−t
2t

)t

= tr
(

B
1

2A
1−t
t B

1

2

)t

= tr
(

B
1

2X− 1

2X
1

2A
1−t
2t A

1−t
2t X

1

2X− 1

2B
1

2

)t

.

Taking S = A
1−t
2t X

1

2 , T = X− 1

2B
1

2 , p = 1 and q = t
1−t

in Hölder’s inequal-
ity we get

Ft(A,B) ≤
[

tr
(

X
1

2A
1−t
t X

1

2

)]t
[

tr
(

B
1

2X−1B
1

2

)
t

1−t

]1−t

=
[

trA
1−t
t X

]t
[

tr
(

B− 1

2XB− 1

2

)
t

t−1

]1−t

.

We have seen in the proof of (iii) that when X = X0 = A
t−1

t #tB, then each
of the expressions inside the square brackets on the right hand side is equal to
Ft(A,B). This proves (iv).

For given A,B ∈ P let

γ(t) =
(

A
1−t
2t BA

1−t
2t

)t

0 ≤ t ≤ 1. (25)

The value γ(0) is given by the following proposition, first established in [5].
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Proposition 10. For all A,B ∈ P we have

lim
t→0+

(

A
1−t
2t BA

1−t
2t

)t

= A.

Proof. Let α, β be positive numbers such that αI ≤ B ≤ βI. Then

αA
1−t
t ≤ A

1−t
2t BA

1−t
2t ≤ βA

1−t
t ,

and hence for 0 < t < 1,

αtA1−t ≤
(

A
1−t
2t BA

1−t
2t

)t

≤ βtA1−t.

Taking the limit as t → 0, we see that

A ≤ lim
t→0+

(

A
1−t
2t BA

1−t
2t

)t

≤ A.

This proves the proposition.

Thus γ(t), 0 ≤ t ≤ 1, is a differentiable curve joining A and B. It is of
interest to compare this with two other curves: the Riemannian geodesic (21)
and the straight line segment. In this direction we have

Theorem 11. For 0 < t < 1

trA#tB ≤ trA1−tBt ≤ tr
(

A
1−t
2t BA

1−t
2t

)t

≤ tr [(1− t)A + tB] . (26)

The first inequality in (26) is known; see e.g., [11]. The second inequality
follows from the Lieb-Thirring inequality [27], and this has been recorded in
the papers [19, 28, 37]. The last inequality follows from Theorem 9 (i) upon
choosing X = I.

Our next proposition gives a formula for the derivative, with respect to t,
of Ft(A,B). This result has been obtained earlier as Proposition 15 in [28]
and as the main ingredient in the proof of Proposition 11 in [37]. Our proof is
different.

Proposition 12. Let A,B be positive definite matrices and let ϕ : R → P

be the function

ϕ(t) = A
1−t
2t BA

1−t
2t .

Let F : R+ → R+ be the function

F (t) = trϕ(t)t = Ft(A,B).

Then

F ′(t) = tr

[

ϕ(t)t
(

logϕ(t)−
1

t
logA

)]

. (27)

In particular,

F ′(1) = tr [B(logB − logA)] . (28)
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Proof. We have

ϕ(t) = A
1

2t

(

A− 1

2BA− 1

2

)

A
1

2t .

Differentiation gives

ϕ′(t) = −
1

2t2
((logA)ϕ(t) + ϕ(t) logA) .

Let h : R+ → H be the map h(t) = t logϕ(t). Then

h′(t) = logϕ(t) + tϕ(t)−1ϕ′(t)

= logϕ(t)−
1

2t
ϕ(t)−1 [(logA)ϕ(t) + ϕ(t) logA] .

Our function F (t) = treh(t). Hence

F ′(t) = tr
(

eh(t)h′(t)
)

= tr (ϕ(t) logϕ(t))−
1

2t
tr
[

ϕ(t)t−1 ((logA)ϕ(t) + ϕ(t) logA)
]

= tr
(

ϕ(t)t logϕ(t)
)

−
1

t
tr
(

ϕ(t)t logA
)

.

This proves (27).

Using L’Hopital’s rule and (28) we obtain the relation (9).

3. Higher derivatives and strong convexity

We now turn to the proof of Theorem 1. For 0 < t < 1, let µ be the
measure on (0,∞) defined by

dµ(λ) =
sin tπ

π
λt−1dλ.

Then for all x > 0 we have

xt−1 =

∫ ∞

0

1

λ+ x
dµ(λ). (29)

See (V.4) in [8]. Differentiating both sides with respect to x, we obtain

(1− t)xt−2 =

∫ ∞

0

1

(λ+ x)2
dµ(λ). (30)

Let h : P → R be the function

h(X) = −
1

t
trX t.

By Lemma 7, the derivative of h is given by

Dh(X)(Y ) = −trX t−1Y. (31)

Let g(X) = X t−1. Then the second derivative D2h(X) is the symmetric
bilinear function

D2h(X)(Y, Z) = −tr (Dg(X)(Z))Y.
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Using the integral representation (29) we see that

Dg(X)(Z) = −

∫ ∞

0

(λ+X)−1Z(λ+X)−1dµ(λ),

and hence

D2h(X)(Y, Z) = tr

∫ ∞

0

(λ+X)−1Z(λ+X)−1Y dµ(λ). (32)

In the notation of gradients

D2h(X)(Y, Z) = 〈∇2h(X)(Y ), Z〉.

So, we can write (32) also as

∇2h(X)(Y ) =

∫ ∞

0

(λ+X)−1Y (λ+X)−1 dµ(λ). (33)

In passing, we note that this shows ∇2h(X) is a completely positive linear
map on the space H of Hermitian matrices.

Now let A be any positive matrix and let

h̃(X) = h(A
1

2XA
1

2 ) = −
1

t
tr
(

A
1

2XA
1

2

)t

. (34)

Then
Dh̃(X)(Y ) = Dh(A

1

2XA
1

2 )(A
1

2Y A
1

2 )

and
D2h̃(X)(Y, Z) = D2h(A

1

2XA
1

2 )(A
1

2Y A
1

2 , A
1

2ZA
1

2 ).

Hence, from (32)

D2h̃(X)(Y, Z) = tr

∫ ∞

0

(

λ+ A
1

2XA
1

2

)−1

A
1

2ZA
1

2

(

λ+ A
1

2XA
1

2

)−1

A
1

2Y A
1

2dµ(λ).

Using the identity
(

λ+ A
1

2XA
1

2

)−1

=
(

A1/2(λA−1 +X)A1/2
)−1

= A− 1

2

(

λA−1 +X
)−1

A− 1

2 ,

we obtain

D2h̃(X)(Y, Z) = tr

∫ ∞

0

(

λA−1 +X
)−1

Y
(

λA−1 +X
)−1

Z dµ(λ).

In other words

∇2h̃(X)(Y ) =

∫ ∞

0

(

λA−1 +X
)−1

Y
(

λA−1 +X
)−1

dµ(λ). (35)

Let Cλ = (λA−1 +X)
−1

and let ΓCλ
be the map on the space of matrices

defined as ΓCλ
(Y ) = CλY Cλ. The eigenvalues of ΓCλ

are the products of the
eigenvalues of Cλ. The expression (35) can be rewritten as

∇2h̃(X)(Y ) =

∫ ∞

0

ΓCλ
(Y )dµ(λ).

By the extremal principle for eigenvalues

〈ΓCλ
(Y ), Y 〉

〈Y, Y 〉
≥ λmin(ΓCλ

) = λmin(Cλ)
2.
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Now let α and β be positive reals with α ≤ β and suppose that αI ≤ X ≤
βI. Then for all A ∈ P

(

λ

λmin(A)
+ β

)−1

≤ Cλ ≤

(

λ

λmax(A)
+ α

)−1

.

Using the last three relations above, we get

〈∇2h̃(X)(Y ), Y 〉

〈Y, Y 〉
≥

∫ ∞

0

(

λ

λmin(A)
+ β

)−2

dµ(λ)

= λmin(A)
2

∫ ∞

0

1

(λ+ βλmin(A))2
dµ(λ)

= (1− t)βt−2λmin(A)
t,

the last equality being a consequence of (30). This shows that

∇2h̃(X) ≥ (1− t)βt−2λmin(A)
t, (36)

for all A ∈ P and αI ≤ X ≤ βI.
Finally, let f be the function defined by (16). Then −f is the function

obtained from h̃ by multiplying it by t and replacing A by A
1−t
t . Hence,

(36) leads to the inequality

−∇2f(X) ≥ t(1− t)βt−2λmin(A)
1−t, (37)

for all αI ≤ X ≤ βI. So, if we assume λmin(A) ≥ α, then we obtain the first
inequality in (17).

The second inequality in (17) has an analogous proof.

Our method can be used to calculate higher derivatives of any order, and
to estimate their norms. For example, we can show that

‖∇3f(X)‖ ≤ t(1− t)(2− t)β1−tαt−3,

from which it follows that

‖∇2f(X)−∇2f(Y )‖2 ≤ t(1− t)(2− t)β1−tαt−3‖X − Y ‖2.

4. Gradient Projection Algorithm

Let A1, . . . , Am ∈ P. For 0 < t < 1 define the function ϕt on P as

ϕt(X) =
m
∑

j=1

wj

[

tr((1− t)Aj + tX)− tr
(

A
1−t
2t

j XA
1−t
2t

j

)t
]

We consider the optimization problem

min
X∈P

ϕt(X) (38)

on the convex cone P. The multimarginal optimal transport problem of Gauss-
ian measures ([1, 20, 21]) is the special case t = 1/2. Let α and β be positive
numbers such that

αI ≤ Aj ≤ βI, j = 1, . . . , m.
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We note that the optimal values of α and β are

min
1≤j≤m

λmin(Aj) and max
1≤j≤m

λmax(Aj)

respectively. By the results obtained in the previous section, we see that ϕt

is t(1 − t)β1−tαt−2 -smooth and t(1 − t)βt−2α1−t -strongly convex, and the

condition number of ∇2ϕt(X) is bounded by
(

β
α

)3−2t
. By Proposition 8 ϕt

is strictly convex with

Dϕt(X)(Y ) = t

m
∑

j=1

wjtr
[

I − (A
1−t
t

j #1−tX
−1)

]

Y

= t tr

[

I −

m
∑

j=1

wj(A
1−t
t

j #1−tX
−1)

]

Y.

In terms of the gradient

∇ϕt(X) = t

[

I −
m
∑

j=1

wj(A
1−t
t

j #1−tX
−1)

]

.

To prove the existence and uniqueness of the minimization problem (38),
it is enough to show that the equation ∇ϕt(X) = 0 has a positive definite
solution. This is equivalent to the nonlinear matrix equation

X =

m
∑

j=1

wjX
1/2

(

X−1#tA
1−t
t

j

)

X1/2 =

m
∑

j=1

wj

(

X1/2A
1−t
t

j X1/2
)t

.

Let F : P → P be the map defined by

F (X) =
m
∑

j=1

wj

(

X1/2A
1−t
t

j X1/2
)t

.

If all Aj , 1 ≤ j ≤ m, and X are bounded from below by αI and from
above by βI, then

X1/2A
1−t
t

j X1/2 ≤ X1/2(β
1−t
t I)X1/2 ≤ β

1−t
t X ≤ β

1−t
t βI ≤ β1/tI

and hence F (X) ≤
∑m

j=1wjβI = βI. Similarly F (X) ≥ αI. This shows that

F is a self-map on the compact and convex interval [αI, βI] := {X > 0 : αI ≤
X ≤ β}. By Brouwer’s fixed point theorem, F has a fixed point. This settles
the problem of existence and uniqueness of the minimizer in (38).

Now we apply the classical gradient projection method for (constrained)
strongly convex functions. Let

Xk+1 = [Xk − η∇f(Xk)]+

=

[

Xk − tηI + tη
n

∑

j=1

wj

(

A
1−t
t

j #1−tX
−1
k

)

]

+

where X0 ∈ [αI, βI] and [·]+ denotes the projection to [αI, βI] and 0 < η <
2
β∗

. Since ϕt is β∗ := t(1 − t)β1−tαt−2 -smooth and α∗ := t(1 − t)βt−2α1−t -

strongly convex, the iteration converges to the unique minimizer X∗ with
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linear convergence rate

‖Xk+1 −X∗‖2 ≤ qk‖Xk −X∗‖2 (39)

where

q = max{|1− ηα∗|, |1− ηβ∗|}.

Or, with η = 1/β∗,

‖Xk+1 −X∗‖
2
2 ≤ e−

kα∗

β∗ ‖X1 −X∗‖2 = e−k(α/β)3−2t

‖X1 −X∗‖
2
2.

See (Theorem 3.10, [14]). A gradient-based optimization method with sublinear
convergence for t = 1/2 has recently appeared in [26].

5. Appendix

Some of the inequalities in (26) have much stronger versions, and these are
related to recurring themes in matrix analysis and mathematical physics. See
e.g., [3, 8, 9, 11, 16, 27].

Let x, y be two n -vectors with nonnegative components. Let x↓
1 ≥ · · · ≥

x↓
n be the components of x arranged in decreasing order. We say that x is

weakly log majorised by y, in symbols x ≺wlog y, if for 1 ≤ k ≤ n

k
∏

j=1

x↓
j ≤

k
∏

j=1

y↓j . (40)

If in addition
n
∏

j=1

x↓
j =

n
∏

j=1

y↓j ,

then we say that x is log majorised by y, and write this as x ≺log y. We

write x ≤ y if x↓
j ≤ y↓j for all j = 1, . . . , n.

Let X be any n × n matrix and let λ(X) = (λ1(X), . . . , λn(X)) and
s(X) = (s1(X), . . . , sn(X)) be the n -tuples whose components are the eigen-
values and the singular values of X, respectively. A famous inequality of H.
Weyl says that

(|λ1(X)|, . . . , |λn(X)|) ≺log s(X). (41)

(See [8] p. 43.)

Now let A and B be positive definite matrices and let 0 < t < 1. It has
been shown in [11] that

λ(A#tB) ≺log λ(A
1−tBt). (42)

A matrix version of Young’s inequality proved by T. Ando [3] says that

s(A1−tBt) ≤ λ((1− t)A+ tB). (43)

Combining (42) and (43) we have the chain

λ(A#tB) ≺log λ(A1−tBt) ≺log s(A
1−tBt)

≤ λ((1− t)A+ tB). (44)
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The inequality (26) raises the intriguing question of how the eigenvalue tuple

λ
(

A
1−t
2t BA

1−t
2t

)t

fits into this chain. To answer this we recall the Araki-Lieb-

Thirring inequalities which say that if X and Y are positive definite matrices,
then

λ(X tY tX t) ≺log λ(XYX)t, for 0 ≤ t ≤ 1, (45)

and
λ(XYX)t ≺log λ(X

tY tX t), for t ≥ 1. (46)

See the proof of Theorem IX.2.10 in [8]. Using the first of these inequalities,
we see that for 0 ≤ t ≤ 1,

λ(A1−tBt) = λ
(

A
1−t
2 BtA

1−t
2

)

≺log λ
(

A
1−t
2t BA

1−t
2t

)t

. (47)

Now suppose 1
2
≤ t ≤ 1. Then from (46) we obtain

λ
(

A
1−t
2t BA

1−t
2t

)2t

≺log λ
(

A1−tB2tA1−t
)

.

Taking square roots of both sides, we get

λ
(

A
1−t
2t BA

1−t
2t

)t

≺log s(A
1−tBt). (48)

Combining (44), (47) and (48) we have

λ(A#tB) ≺log λ(A1−tBt)

≺log λ
(

A
1−t
2t BA

1−t
2t

)t

≺log s(A1−tBt)

≤ λ((1− t)A + tB), (49)

for 1
2
≤ t ≤ 1.

On the other hand if 0 ≤ t ≤ 1
2
, then from (45) we obtain

λ
(

A1−tB2tA1−t
)

≺log λ
(

A
1−t
2t BA

1−t
2t

)2t

.

Taking square roots of both sides we get

s(A1−tBt) ≺log λ
(

A
1−t
2t BA

1−t
2t

)t

.

So for 0 ≤ t ≤ 1
2
, we have

λ(A#tB) ≺log λ(A1−tBt)

≺log s(A1−tBt)

≺log λ
(

A
1−t
2t BA

1−t
2t

)t

. (50)

To complete this chain in the same way as (49) it remains to answer whether

for 0 ≤ t ≤ 1
2
, λ

(

A
1−t
2t BA

1−t
2t

)t

is dominated by λ((1− t)A + tB).
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