Physics is many things to many people. It is a doorway to some of the most beautiful and profound phenomena in the universe, e.g. black holes, supernovae, Bose-Einstein condensates, superconductors. It is a driver of lifestyle-changing technology, e.g. engines, electricity, and transistors. And it is a powerful way of perceiving and analysing problems that can be applied in various domains, both within and outside standard physics. The beauty and profundity of the phenomena studied by physicists offer romance and excite passion; the utility of its discoveries and the power of its methods arouse interest. These methods can be very intricate and demanding: theoretical physics requires a skilful combination of physical and mathematical thinking, and experimental physics requires some of this along with the ability to turn tentative ideas into physical devices that can put those ideas to the test. The successful practice of physics demands mathematical and mechanical adroitness, persistence, and great imagination. Fortunately, the physicist’s imagination is nourished not just by physics but also by other areas of human enquiry and thought, of the kind that an Ashoka undergraduate is expected to encounter.
With all of this in mind, the physics programme has been designed to: (i) allow students wishing to major in physics to discover real physics and make a wise choice, in the first two semesters; (ii) provide a thorough training in fundamental physics, in the following three semesters; and (iii) bring together everything learnt earlier, and give students the option to pursue more advanced courses in physics or branch out into other areas, in the final semester. The idea is to accompany those wishing to become professional physicists as they take the first steps in that direction, and to introduce everyone who goes through the programme to the physicist’s way of thinking.
Precessional dynamics of geometrically scaled magnetostatic spin waves in two-dimensional magnonic fractals
2022 | American Physical Society